96 research outputs found
Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects
Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis
Role of Matrix Metalloproteinases and Therapeutic Benefits of Their Inhibition in Spinal Cord Injury
This review will focus on matrix metalloproteinases (MMPs) and their inhibitors in the context of spinal cord injury (SCI). MMPs have a specific cellular and temporal pattern of expression in the injured spinal cord. Here we consider their diverse functions in the acutely injured cord and during wound healing. Excessive activity of MMPs, and in particular gelatinase B (MMP-9), in the acutely injured cord contributes to disruption of the blood-spinal cord barrier, and the influx of leukocytes into the injured cord, as well as apoptosis. MMP-9 and MMP-2 regulate inflammation and neuropathic pain after peripheral nerve injury and may contribute to SCI-induced pain. Early pharmacologic inhibition of MMPs or the gelatinases (MMP-2 and MMP-9) results in an improvement in long-term neurological recovery and is associated with reduced glial scarring and neuropathic pain. During wound healing, gelatinase A (MMP-2) plays a critical role in limiting the formation of an inhibitory glial scar, and mice that are genetically deficient in this protease showed impaired recovery. Together, these findings illustrate complex, temporally distinct roles of MMPs in SCIs. As early gelatinase activity is detrimental, there is an emerging interest in developing gelatinase-targeted therapeutics that would be specifically tailored to the acute injured spinal cord. Thus, we focus this review on the development of selective gelatinase inhibitors
In vitro activity of ivermectin against Staphylococcus aureus clinical isolates
Background Ivermectin is an endectocide against many parasites. Though being a macrocyclic lactone, its activity against bacteria has been less known, possibly due to the fact that micromolar concentrations at tissue levels are required to achieve a therapeutic effect. Among pathogenic bacteria of major medical significance, Staphylococcus aureus cause a number of diseases in a wide variety of hosts including humans and animals. It has been attributed as one of the most pathogenic organisms. The emergence of methicillin resistance has made the treatment of S. aureus even more difficult as it is now resistant to most of the available antibiotics. Thus, search for alternate anti-staphylococcal agents requires immediate attention. Methods Twenty-one clinical isolates of S. aureus were isolated from bovine milk collected from Lahore and Faisalabad Pakistan. Different anthelmintics including levamisole, albendazole and ivermectin were tested against S. aureus to determine their minimum inhibitory concentrations. This was followed-up by growth curve analysis, spot assay and time-kill kinetics. Results The results showed that ivermectin but not levamisole or albendazole exhibited a potent anti-staphylococcal activity at the concentrations of 6.25 and 12.5 μg/ml against two isolates. Interestingly, one of the isolate was sensitive while the other was resistant to methicillin/cefoxitin. Conclusions Our novel findings indicate that ivermectin has an anti-bacterial effect against certain S. aureus isolates. However, to comprehend why ivermectin did not inhibit the growth of all Staphylococci needs further investigation. Nevertheless, we have extended the broad range of known pharmacological effects of ivermectin. As pharmacology and toxicology of ivermectin are well known, its further development as an anti-staphylococcal agent is potentially appealing
Chapter 10. Thiirane Class of Gelatinase Inhibitors as a Privileged Template that Crosses the Blood–Brain Barrier
Modulation of the Surface-Layer Protein of <i>Clostridium difficile</i> through Cwp84 Inhibition
Cysteine
protease Cwp84 is responsible for surface-layer processing in Clostridium difficile and was also shown to cleave several
human extracellular matrix components in vitro. To enable the facile
identification and characterization of Cwp84 inhibitors, we developed
a fluorogenic 10-mer peptide based on the enzyme’s natural
substrate SlpA that is amenable for use in FRET-based high-throughput
screening. The design of substrate-mimetic inhibitors led to epoxysuccinate 8c, which displayed an inactivation efficiency (kinact/KI) of (4.7 ± 0.3)
× 104 M–1 min–1. Further evaluation of 8c demonstrated its ability
to inhibit fibronectin cleavage and, more importantly, subvert surface-layer
biogenesis in C. difficile
Influencing Antibody-Mediated Attenuation of Methamphetamine CNS Distribution through Vaccine Linker Design
The thiirane-based selective MT1-MMP/MMP2 inhibitor ND-322 reduces melanoma tumor growth and delays metastatic dissemination
MT1-MMP and MMP2 have been implicated as pro-tumorigenic and pro-metastatic factors in a wide variety of cancers including melanoma. We have previously demonstrated that MT1-MMP is highly expressed in melanoma where it promotes melanoma cell invasion and metastasis in part through the activation of its target MMP2. Given the accessibility of MMPs, as they are either secreted (e.g. MMP2) or membrane-tethered (e.g. MT1-MMP), they represent ideal targets for specific inhibition via small molecules. Here we show that the novel small-molecule inhibitor ND-322 with high selectivity for MT1- MMP and MMP2, effectively inhibits MT1-MMP and MMP2 activity resulting in reduced in vitro melanoma cell growth, migration and invasion. Importantly, these inhibitory effects lead to significant reduction of melanoma tumor growth and metastasis. We further show that while cell migration and invasion could be similarly hampered by specific inhibition of either MT1-MMP or MMP2 via shRNAs, the growth inhibitory activity of ND-322 could only be mirrored by specific inhibition of MT1-MMP. These data support ND-322 as a novel effective inhibitor capable of counteracting both MT1-MMP and MMP2, two key proteases involved in melanoma growth and metastasis. ND-322 may therefore represent a new inhibitor in the repertoire of treatments against melanoma
Dual Protonophore–Chitinase Inhibitors Dramatically Affect O. volvulus Molting
The
L3-stage-specific chitinase OvCHT1 has been implicated in the
development of Onchocerca volvulus,
the causative agent of onchocerciasis. Closantel, a known anthelmintic
drug, was previously discovered as a potent and specific OvCHT1 inhibitor.
As closantel is also a known protonophore, we performed a simple scaffold
modulation to map out the structural features that are relevant for
its individual or dual biochemical roles. Furthermore, we present
that either OvCHT1 inhibition or protonophoric activity was capable
of affecting O. volvulus L3 molting
and that the presence of both activities in a single molecule yielded
more potent inhibition of the nematode’s developmental process
Disarming Pseudomonas aeruginosa Virulence Factor LasB by Leveraging a Caenorhabditis elegans Infection Model
SummaryThe emergence of antibiotic resistance places a sense of urgency on the development of alternative antibacterial strategies, of which targeting virulence factors has been regarded as a “second generation” antibiotic approach. In the case of Pseudomonas aeruginosa infections, a proteolytic virulence factor, LasB, is one such target. Unfortunately, we and others have not been successful in translating in vitro potency of LasB inhibitors to in vivo efficacy in an animal model. To overcome this obstacle, we now integrate in silico and in vitro identification of the mercaptoacetamide motif as an effective class of LasB inhibitors with full in vivo characterization of mercaptoacetamide prodrugs using Caenorhabditis elegans. We show that one of our mercaptoacetamide prodrugs has a good selectivity profile and high in vivo efficacy, and confirm that LasB is a promising target for the treatment of bacterial infections. In addition, our work highlights that the C. elegans infection model is a user-friendly and cost-effective translational tool for the development of anti-virulence compounds
- …
