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Abstract

was resistant to methicillin/cefoxitin.

Background: lvermectin is an endectocide against many parasites. Though being a macrocyclic lactone, its activity against
bacteria has been less known, possibly due to the fact that micromolar concentrations at tissue levels are required to achieve
a therapeutic effect. Among pathogenic bacteria of major medical significance, Staphylococcus aureus cause a number of
diseases in a wide variety of hosts including humans and animals. It has been attributed as one of the most pathogenic
organisms. The emergence of methicillin resistance has made the treatment of S. aureus even more difficult as it is now
resistant to most of the available antibiotics. Thus, search for alternate anti-staphylococcal agents requires immediate attention.

Methods: Twenty-one clinical isolates of S. aureus were isolated from bovine milk collected from Lahore and Faisalabad
Pakistan. Different anthelmintics including levamisole, albendazole and ivermectin were tested against S. aureus to determine
their minimum inhibitory concentrations. This was followed-up by growth curve analysis, spot assay and time-kill kinetics.

Results: The results showed that ivermectin but not levamisole or albendazole exhibited a potent anti-staphylococcal activity
at the concentrations of 625 and 12.5 pg/ml against two isolates. Interestingly, one of the isolate was sensitive while the other

Conclusions: Our novel findings indicate that ivermectin has an anti-bacterial effect against certain S. aureus isolates. However,
to comprehend why ivermectin did not inhibit the growth of all Staphylococci needs further investigation. Nevertheless, we
have extended the broad range of known pharmacological effects of ivermectin. As pharmacology and toxicology of
ivermectin are well known, its further development as an anti-staphylococcal agent is potentially appealing.
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Background

Anthelmintics are drugs used for controlling helminthes.
The major classes of broad spectrum anthelmintics include
benzimidazoles (BZ) (e.g. albendazole (ALB)), imidathio-
zoles (e.g. levamisole (LEV)), tetrahydropyrimidines (e.g.
pyrantel), and macrocyclic lactones (MLs) (e.g. ivermectin
(IVM)). These four classes of anthelmintics have different
modes of action. BZs act by binding to the growing ends of
microtubules and thus prevent addition of new [-tubulin
dimers. As a result, the microtubules shorten and ultim-
ately disappear thus disrupting essential functions which
leads to death of the parasite [1]. Imidathiozoles and tetra-
hydropyrimidines target the nicotinic receptors ie. they
bind to acetylcholine-gated cation channels as agonists at

* Correspondence: xin.zhao@mcgill.ca

1Departr‘nent of Animal Science, McGill University, Sainte-Anne-de-Bellevue,
Canada

Full list of author information is available at the end of the article

( ) BiolVled Central

the neuromuscular receptor and cause spastic paralysis of
the parasite leading to its death [2, 3]. MLs act on the
ligand-gated-chloride channels (glutamate-gated chloride
channels) and cause the channels to irreversibly open by
binding to the site other than the glutamate binding site
and this leads to a permanent hyperpolarization and paraly-
sis of the cells and results in death of the parasite [4].

Due to limited numbers of drugs entering the market
and emergence of drug resistance to major classes of anti-
bacteria, scientists have been investigating known drugs
with previous unknown anti-bacterial activities. Some
groups have recently reported anti-bacterial activity of
various anthelmintics against different bacteria. For
example, Imperi et al. [5] have proposed that niclosamide
which is an anthelmintic used against tapeworms could
reduce the pathogenicity of Pseudomonas aeruginosa.
Similarly, Rajamuthiah et al. [6] have reported an anti-
staphylococcal activity of closantel which belongs to the

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13756-018-0314-4&domain=pdf
mailto:xin.zhao@mcgill.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ashraf et al. Antimicrobial Resistance and Infection Control (2018) 7:27

salicylanilide group of anthelmintics. Furthermore, the ac-
tivity of niclosamide and oxycolzanide (a flukicidal) against
S. aureus has also been reported [7]. Finally, Gooyit and
Janda [8] have reported that the salicylanilide anthelmintics
(closantel, rafoxinide, niclosamide, oxyclozanide) were also
effective against Clostridium difficile.

IVM has shown activities against a broad range of host
species and thus it has earned the title of a wonder drug
[9, 10]. This enigmatic multifaceted drug continues to
surprise and exceed expectations. For example, IVM at
sub-lethal concentrations has been reported to have an
anti-plasmodial activity by inhibiting sporogony of Plas-
modium falciparum [11]. IVM also acts as an anti-viral
agent against flavivirus by inhibiting its replication
through targeting the N3 helicase activity [12]. In
addition, an anti-mycobacterial activity of IVM has also
been identified against Mycobacterium tuberculosis and
Mycobacterium ulcerans [13, 14]. Sharmeen et al. [15]
found that IVM killed leukemic cells by a chloride
dependent membrane hyperpolarization. Recently, anti-
mitotic activities of IVM have also been reported i.e. by
binding to the tubulins and consequently altering the
polymerization equilibrium and leading the cells into
mitotic arrest [16, 17]. However, despite being a macro-
cyclic lactone, its activity against bacteria has been less
known, possibly because micromolar concentrations are
required at tissue levels to achieve a therapeutic effect.

Staphylococci are gram-positive spherical bacteria that
contain many species. It has been suggested that 30% of the
world population are silent carriers of S. aureus without
any symptoms [18]. However, S. aureus can cause a wide
range of diseases from skin and soft-tissue infection to life-
threatening diseases in humans and is also the leading
cause of bacteremia [19]. In the dairy industry, S. aureus is
also one of the most common bacteria causing mastitis
[20]. B-lactams have been widely used for the treatment of
S. aureus infections. Due to emergence of resistance to [3-
lactams, methicillin, a semi-synthetic penicillinase resistant
[-lactam, was produced and introduced into the market in
1959. Unfortunately, it became resistant just two-years after
its introduction [21]. Currently, many S. aureus clinical iso-
lates are resistant to almost all the available antibiotics and
the term methicillin resistant Staphylococcus aureus
(MRSA) and vancomycin resistant S. aureus are heard all
around the globe [22]. The challenges related to the MRSA
type alone can be visualized as the mortality associated with
invasiveness of MRSA has gone up to 20% [23]. Hence, in
2017, the World Health Organization has put S. aureus in
the list of microorganisms which immediately need new an-
tibiotics for its treatment. The main problem with MRSA
phenotype is that the organisms that are methicillin resist-
ant are often resistant to most of the known antibiotics.

In an effort to search for alternative treatment of S. aur-
eus infections, in the present study, we screened three
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known anthelmintics (IVM, ALB, and LEV) and found that
IVM but not ALB or LEV had a potent anti-bacterial
activity against S. aureus species.

Methods

Bacterial isolates

Twenty-one S. aureus isolates were used in this study. The
isolates were isolated from clinical mastitis cases from La-
hore and Faisalabad, Pakistan. Among them 11 isolates were
methicillin sensitive whereas 10 were methicillin resistant.
The S. aureus isolates were grown in the Mueller Hinton
(MH) broth or tryptic soya broth (TSB) (Sigma Aldrich,
Canada) at 37 °C.

Determination of minimum inhibitory concentrations (MICs)
To determine the minimum inhibitory concentrations
(MICs) for the S. aureus isolates, 5 X 10° CFU/ml cells were
inoculated into the Mueller Hinton (MH) broth (Sigma Al-
drich, Canada). One hundred fifty pl of the bacterial solution
was dispensed into each well of 96-well round bottom mi-
crotiter plates (Sarstedt, Canada). The test compounds [VM,
ALB, LEV, cefoxitin (FOX) and dimethyl sulfoxide (DMSO)
(as a solvent control) (Sigma Aldrich) were serially diluted 2-
fold in the MH broth. IVM and LEV dilutions were from
100 to 1.56 pg/ml, while ALB was from 50 to 0.78 pg/ml
and FOX was from 128 to 2 pg/ml. The MH broth with the
bacterial suspension and test compounds were incubated for
18 h at 35 °C. The MICs were determined by examining vis-
ible bacterial growth with naked eyes.

Effects of IVM on growth curves

To determine the effects of IVM on growth curves, glycerol
stocks of MSSA (09) and MRSA (P22) isolates were grown
overnight in the tryptic soya broth (TSB) (Sigma Aldrich) at
35 °C. A loop full of overnight cultures were streaked on the
MH agar and the plates were further incubated for 24 h at
35 °C. After 24 h, a 0.5 McFarland culture was prepared in
the MH broth. The bacteria were diluted to a final concentra-
tion of 5 X 10° CFU/ml. Different test compounds including
IVM, ALB, LEV, and FOX were then added at a concentra-
tion of 50, 50, 50 or 16 pg/ml, respectively. In addition,, FOX
was also added at a concentration of 32 pg/ml. DMSO was
used as a solvent control. The bacteria were then grown up
to 14 h at 35 °C and 1 ml sample was taken every 2 h. The
optical density (O.D) was measured at 600 nm. Among the
20 isolates tested, the two S. aureus isolates against which
IVM had a more potent activity were used in further studies.
For two specific S. aureus isolates (P22 (MRSA) and O9
(MSSA)), IVM was then serially titrated at concentrations of
100, 50, 25, 12.5, 6.25, 3.125 and 1.56 pug/ml and O.D values
were taken at 2 h intervals for a total of 14 h. All the bacteria
were grown at 200 rpm at 35 °C.
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Table 1 Minimum inhibitory concentration (MIC)

MIC pg/ml

P22 (MRSA) 09 (MSSA)
lvermectin (IVM) 125 6.25
Levamisole (LEV) ND ND
Albendazole (ALB) ND ND
Cefoxitin (FOX) 32 4

ND Not detectable up to 100 pg/ml for LEV and 50 pg/ml for ALB

Spot assay

The 0.5 McFarland culture of both isolates was prepared and
further diluted (as described above) to get final concentra-
tions of 5 X 10° CFU/ml. IVM was added at concentrations
of 0, 1.56, 3.125, 6.25, 12.5, 25, 50, and 100 pg/ml. After 12 h
incubation at 35 °C, 5 pl bacteria from both isolates were
spotted on the MH agar. The plates were then incubated at
35 °C for 24 h. Pictures were then taken using a transillumi-
nator FBTIV-816, Kodak EDAS 290 (Fischer Scientific,
Canada).

Time kill-kinetics

For further confirmation of the above results, bacterial
suspension of 0.5 McFarland was prepared for both isolates
from freshly prepared overnight cultures as described
above. 0.5 McFarland culture for both S. aureus (MSSA
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and MRSA) isolates was transferred to the MH broth to at-
tain a final concentration of 5 X 10° CFU/ml Then IVM
was added at concentrations of 1/4X(MIC), 1/2X(MIC),
0X(MIC), 1X(MIC), 2X(MIC), 4X(MIC), 8X(MIC) and
12X(MIC) for both isolates. The tubes were then incubated
at 35 °C and 100 pl samples were taken at 0, 2, 4, 8 and
12 h. The aliquots were then plated onto MH agar plates to
assess viable bacteria by CFU counting. After 24 h of incu-
bation at 35 °C, plates were examined for growth.

Results

Minimum inhibitory concentrations of different drugs
against S. aureus

As shown in Table 1, MICs for IVM were 6.25 pg/ml and
12.5 pg/ml for O9 (MSSA) and P22 (MRSA), respectively.
The bacterial growth was not inhibited by ALB up to
50 pg/ml or by LEV up to 100 pg/ml. The limited solubil-
ity of ALB and LEV did not allow us to go beyond 50 and
100 pg/ml, respectively. The MIC of FOX was 4 pg/ml for
09 and 16 pg/ml for P22.

Inhibition of S. aureus growth by IVM as evidenced by
growth curves

The growth curve analysis demonstrated that ALB, LEV,
and DMSO did not have any effect on the growth of both
S. aureus isolates (Fig. 1a, b), whereas IVM reduced the

a P22 (MRSA) growth curves

-+ IVM (6.25 pg/mi)
= LEV (50 ug/mi)
-+ ALB (50 ug/mi)
12 -+ DMSO (3.2%)
- FOX (16 pg/mi)
o~ FOX (32 ug/mi)

Absorbance (600 nm)

2 4 8 10 12 14

6
Time after drug treatment (h)

(7]

P22 (MRSA) growth curves (IVM titration)

-+ IVM (100 ug/mi)
& VM (50 pg/ml)
- IVM (25 pg/ml)
12 -+ IVM (12.5 pg/mi)
- IVM (6.25 pg/mi)
-e- VM (3.125 pgimi)

B VM (1.56 pg/mi)
-& DMSO (3.2%)

Absorbance (600 nm)

2 4 8 10 12 14

6
Time after drug treatment (h)

Fig. 1 Growth curves of the P22 (MRSA) (a, ¢) and 09 (MSSA) (b, d) isolates in the presence of different drugs. Ivermectin (IVM), levamisole (LEV),
albendazole (ALB), dimethyl-sulphoxide (DMSO) and cefoxitin (FOX) were used as test compounds at fixed concentrations

b 09 (MSSA) growth curves

- IVM (3.12 pg/m))
= LEV (50 ug/mi)
—+ ALB (50 ug/ml)
12 ~ DMSO (3.2%)
- FOX (16 ug/mi)
&~ FOX (32 ug/m))

Absorbance (600 nm)

2 4 6 8 10 12 14
Time after drug treatment (h)

d 09 (MSSA) growth curves (VM titration)

- IVM (100 ug/mi)
= IVM (50 pg/mi)

-+ IVM (25 pg/mi)

12: - IVM (125 pg/m)
= IVM (6.25 pg/ml)
- IVM (3.125 ug/mi)
B IVM(1.56 pg/m))
-4 DMSO (3.2%)

Absorbance (600 nm)

03

2 6 8 10 12 14

3
Time after drug treatment (h)
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growth of both isolates. For FOX, O9 showed no growth
at both concentrations tested whereas P22 showed growth
at 16 pg/ml but no growth was observed at 32 pg/ml. The
2-fold IVM titration from 100 to 1.56 pg/ml demonstrated
that IVM inhibited bacterial growth at concentrations
above 3.125 pg/ml for O9 and 6.25 pg/ml for the P22
isolates (Fig. 1c, d).

Inhibition of S. aureus growth by IVM as shown in the
spot assay and time-kill kinetics

The spot assay showed no growth in both isolates beyond
their MICs representing absence of any bacterial spots at
concentration of 12.5 pg/ml for the O9 (MSSA) and
25 pg/ml for the P22 (MRSA) isolates (Fig. 2¢, d). The re-
sults of time-kill kinetics were similar to those of the spot
assay and IVM showed reduction in CFU/ml as compared
to the control (DMSO) which suggested that bacterial
growth was completely inhibited by IVM at concentra-
tions of 1X(MIC) and above for both isolates (Fig. 2a, b).

Discussion

IVM is a drug used against helminthes of human and veter-
inary importance. To our knowledge, this study is a maiden
attempt reporting the activity of IVM against S. aureus clin-
ical isolates. Interestingly, one of the isolates had a methicillin
sensitive and the other had a methicillin resistant phenotype.
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The MICs for IVM against the MSSA (09) and MRSA
(P22) isolates were 6.25 and 12.5 pg/ml, respectively. The
findings of growth curve experiments were in correlation
with the MICs as there was no increase in the O.D values
beyond 3.125 pg/ml and 6.25 pg/ml for both isolates. The
spot assay also showed similar results to the MIC, and
growth curve experiments as there was complete inhibition
of growth on the bacterial spots beyond the MICs. Time-kill
kinetics was also in complete agreement with the other data
and showed complete inhibition of bacterial growth beyond
1X(MIC) which means the CFU did not go above 5 X
10° CFU/ml. However, the isolates were not killed even
when the concentration of IVM was increased up to 12X
(MIC). In contrast, the number of bacteria increased when
IVM concentrations were tested below the MICs.

The findings from the time-kill kinetics data indicated that
the effects of IVM was probably bacteriostatic rather than
bactericidal. When IVM acts as a bacteriostatic agent, it
would be beneficial as the bacteriostatic antibiotics could
circumvent some problems related to bactericidal drugs. For
example, when the bactericidal drugs kill the bacteria,
endotoxins are released which may be toxic to the host,
whereas, in the case of bacteriostatic drugs, the bacterial
growth is inhibited enabling the host to elicit protective
immunity and thus results in immunological clearance of the
bacteria [24]. Torres et al. [25] reported that IVM was

-

a

P22 (MRSA) time-kill kinetics for IVM

-+~ DMSO
-a 1/4X(MIC)
-8 1/2X(MIC)
- 1X(MIC)
-+ 2X(MIC)
—+ 4X(MIC)
-+ 8X(MIC)
-e- 12X(MIC)

logqo CFU/mI

log49 CFU/mI

09 (MSSA) time-kill kinetics for IVM

1 - DMSO
-4 1/4X(MIC)
8 1/2X(MIC)
= 1X(MIC)
-+ 2X(MIC)
=+ 4X(MIC)
—+- 8X(MIC)
1 e 12X(MIC)

— 3
—
o 2 ; 6 l’! 1'0 1‘2 o é 4 6 8 1'0 1‘2
Time (h) Time (h)
lvermectin titration
= _. - E® E B =
= = £ £ B o o &
o RS 5 = = 3 =
< o = =3 n L ~ )
o S o n ~ 3 \ \n
C Q — N ~ — © [32) —
09 (MSSA)
P22 (MRSA)

Fig. 2 Time-kill kinetics and the spot assay results for P22 (MRSA) (a, d) and 09 (MSSA) (b, c) respectively. The error bars were standard error of
the means for three independent experiments for the time-kill kinetics. The spots are representative of three independent experiments
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effective against biofilm formation by S. aureus. Our results
extend these previous findings about antibacterial efficacy of
IVM against S. aureus.

S. aureus infections have been reported all over the world.
The treatment of infections associated to S. aureus infections
has become difficult because of the emergence of antibiotic
resistance. Hence, new drugs other than conventional antibi-
otics should be immediately introduced to tackle the prob-
lem and minimize the selection pressure on resistant
isolates. To that end, we tested antibacterial activities of an-
thelmintics on S. aureus and found that IVM showed anti-
bacterial activities against 2 isolates of 20 S aureus isolates. It
would be of interest to further investigate the reason why
other isolates were not sensitive to this drug. It is known that
IVM is a good substrate of P-glycoprotein (efflux pumps) in
helminthes [26, 27]. The evidence of involvement of drug ef-
flux pumps clearly requires further investigations. IVM is
used at a dose rate of 200 pg/kg body weight in humans and
animals. At this dosage, the maximum plasma concentration
of IVM goes up to 52 ng/ml [28]. The concentration at
which the anti-staphylococcal activity of IVM was evident in
this study is higher than the concentration of its current
therapeutic use and perhaps this might be the reason why
this mechanism has not been reported previously. However,
the lethal dose 50 (LDsg) of IVM has been reported up to
50 mg/kg [29], which suggests that IVM has a wide
therapeutic index. At this dosage, IVM concentration at tis-
sue levels is at the low micromolar range. Hence, we report
anti-staphylococcal activity of IVM against MRSA and
MSSA isolates at pharmacologically relevant concentrations.
Given that IVM is already approved for treatment against
various parasites in humans and animals, its development as
a potential antimicrobial agent to kill S. aureus, especially
MRSA, is an appealing option.

Conclusions

The present study investigated the antibacterial effects of
IVM, ALB and LEV against methicillin sensitive and methi-
cillin resistant S. aureus. Among these anthelmintics, only
IVM showed a potent anti-staphylococcal activity. The
MICs for IVM against MSSA and MRSA isolates were 6.25
and 125 pg/ml, respectively. The growth curves corre-
sponded to the MICs. The spot assay and time kill kinetics
also showed similar results to the MIC, and growth curve
experiments. In summary, this study is the first attempt to
indicate that IVMs also has anti-bacterial efficacy against S.
aureus. Further development of IVM as an anti-microbial
agent is potentially appealing, as its pharmacokinetics and
pharmacodynamics have already been studied in mammals.
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