40 research outputs found

    The Combined Effect of Air Layers and Membrane Superhydrophobicity on Biofouling in Membrane Distillation

    Get PDF
    Previous studies of membrane distillation (MD) have shown that superhydrophobic membranes experience dramatically less inorganic and particulate fouling. However, little explanation for this improved performance has been given in the literature. Furthermore, studies comparing membrane superhydrophobicity and biofouling are lacking, though superhydrophobic surfaces are known to be more vulnerable to biofouling than other types. In non-membrane surfaces, visible air layers on superhydrophobic surfaces have been correlated with significant decreases in biofouling. Therefore, it was proposed here to use superhydrophobic MD membranes with periodic introduction of air to maintain an air layer on the membrane surface. Superhydrophobic membranes were created with initiated chemical vapor deposition (iCVD) of a fluorinated compound, perfluorodecyl acrylate (PFDA). The substrate membrane was PVDF. To test MD fouling, an MD membrane was placed on top of a fouling solution, with a heater and stirrer to caus e evaporation of water through the membrane. Results were analyzed with foulant mass measurements. Alginate gel fouling was examined, as this compound is a common proxy for biological fouling in ocean w ater. The introduction of air layers was found to dramatically decrease foulant adhesion to the membrane, by 95-97%. Membrane superhydrophobicity made a much smaller impact in reducing fouling. Keywords membrane distillation, superhydrophobic surfaces, alginate, air layers, anti-foulin

    The Use of Virtual Reality Facilitates Dialectical Behavior Therapy® “Observing Sounds and Visuals” Mindfulness Skills Training Exercises for a Latino Patient with Severe Burns: A Case Study

    Get PDF
    Sustaining a burn injury increases an individual's risk of developing psychological problems such as generalized anxiety, negative emotions, depression, acute stress disorder, or post-traumatic stress disorder. Despite the growing use of Dialectical Behavioral Therapy® (DBT®) by clinical psychologists, to date, there are no published studies using standard DBT® or DBT® skills learning for severe burn patients. The current study explored the feasibility and clinical potential of using Immersive Virtual Reality (VR) enhanced DBT® mindfulness skills training to reduce negative emotions and increase positive emotions of a patient with severe burn injuries. The participant was a hospitalized (in house) 21-year-old Spanish speaking Latino male patient being treated for a large (>35% TBSA) severe flame burn injury.Methods: The patient looked into a pair of Oculus Rift DK2 virtual reality goggles to perceive the computer-generated virtual reality illusion of floating down a river, with rocks, boulders, trees, mountains, and clouds, while listening to DBT® mindfulness training audios during 4 VR sessions over a 1 month period. Study measures were administered before and after each VR session.Results: As predicted, the patient reported increased positive emotions and decreased negative emotions. The patient also accepted the VR mindfulness treatment technique. He reported the sessions helped him become more comfortable with his emotions and he wanted to keep using mindfulness after returning home.Conclusions: Dialectical Behavioral Therapy is an empirically validated treatment approach that has proved effective with non-burn patient populations for treating many of the psychological problems experienced by severe burn patients. The current case study explored for the first time, the use of immersive virtual reality enhanced DBT® mindfulness skills training with a burn patient. The patient reported reductions in negative emotions and increases in positive emotions, after VR DBT® mindfulness skills training. Immersive Virtual Reality is becoming widely available to mainstream consumers, and thus has the potential to make this treatment available to a much wider number of patient populations, including severe burn patients. Additional development, and controlled studies are needed

    Behavioural and Developmental Interventions for Autism Spectrum Disorder: A Clinical Systematic Review

    Get PDF
    Background: Much controversy exists regarding the clinical efficacy of behavioural and developmental interventions for improving the core symptoms of autism spectrum disorders (ASD). We conducted a systematic review to summarize the evidence on the effectiveness of behavioural and developmental interventions for ASD. Methods and Findings: Comprehensive searches were conducted in 22 electronic databases through May 2007. Further information was obtained through hand searching journals, searching reference lists, databases of theses and dissertations, and contacting experts in the field. Experimental and observational analytic studies were included if they were written in English and reported the efficacy of any behavioural or developmental intervention for individuals with ASD. Two independent reviewers made the final study selection, extracted data, and reached consensus on study quality. Results were summarized descriptively and, where possible, meta-analyses of the study results were conducted. One-hundred-and-one studies at predominantly high risk of bias that reported inconsistent results across various interventions were included in the review. Meta-analyses of three controlled clinical trials showed that Lovaas treatment was superior to special education on measures of adaptive behaviour, communication and interaction, comprehensive language, daily living skills, expressive language, overall intellectual functioning and socialization. High-intensity Lovaas was superior to low-intensity Lovaas on measures of intellectual functioning in two retrospective cohort studies. Pooling the results of two randomized controlle

    Neutrino Education, Outreach, and Communications Activities: Captivating Examples from IceCube

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Combining air recharging and membrane superhydrophobicity for fouling prevention in membrane distillation

    No full text
    In previous studies of the desalination technology membrane distillation (MD), superhydrophobicity of the membrane has been shown to dramatically decrease fouling in adverse conditions, but the mechanism for this is not well understood. Additionally, air layers present on submerged solid superhydrophobic surfaces have been shown to dramatically reduce biofouling, and air-bubbling has been used to reducing fouling and increase flux and efficiency in MD. The present work studies the effect of maintaining air layers on the membrane surface and superhydrophobicity as a new method for preventing fouling of MD membranes by salts, particulates, and organic particles. Superhydrophobic MD membranes were prepared using initiated chemical vapor deposition (iCVD) of perfluorodecyl acrylate (PFDA) on poly(vinyldene fluoride) PVDF membranes and used to study the effects of surface energy on fouling. A static MD setup with evaporation through an MD membrane but no condensing of permeate was used to examine the effect of air exposure on fouling, by measuring the increase in weight of the membrane caused by scale deposition. Theory was derived for the reduction of fouling on superhydrophobic surfaces, and a review of related theory was included. Air layers may displace fouling gels, reduce the area of feed in contact with the membrane, reduce foulant adhesion, and enhance superhydrophobicity in a Cassie–Baxter state. The study shows that the presence of air on the membrane surface significantly reduces biological fouling, but in some cases had mildly exacerbating effects by increasing crystal formation of salts, especially when the air was not saturated with water vapor. Air recharging combined with superhydrophobicity reduced fouling in several cases where hydrophobic membranes alone did little.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (DMR-1120296)Masdar Institute of Science and Technology/MIT/UAE (Cooperative agreement, Reference no.02/MI/MI/ CP/11/07633/GEN/G/00

    Traumatic brain injury : integrated approaches to improve prevention, clinical care, and research

    Get PDF
    Rahul Raj on työryhmän InTBIR Participants Investigators jäsen.Peer reviewe
    corecore