121 research outputs found

    Nano-second laser interference photoembossed microstructures for enhanced cell alignment

    Get PDF
    Photoembossing is a powerful photolithographic technique to prepare surface relief structures relying on polymerization-induced diffusion in a solventless development step. Conveniently, surface patterns are formed by two or more interfering laser beams without the need for a lithographic mask. The use of nanosecond pulsed light-based interference lithography strengthens the pattern resolution through the absence of vibrational line pattern distortions. Typically, a conventional photoembossing protocol consists of an exposure step at room temperature that is followed by a thermal development step at high temperature. In this work, we explore the possibility to perform the pulsed holographic exposure directly at the development temperature. The surface relief structures generated using this modified photoembossing protocol are compared with those generated using the conventional one. Importantly, the enhancement of surface relief height has been observed by exposing the samples directly at the development temperature, reaching approximately double relief heights when compared to samples obtained using the conventional protocol. Advantageously, the light dose needed to reach the optimum height and the amount of photoinitiator can be substantially reduced in this modified protocol, demonstrating it to be a more efficient process for surface relief generation in photopolymers. Kidney epithelial cell alignment studies on substrates with relief-height optimized structures generated using the two described protocols demonstrate improved cell alignment in samples generated with exposure directly at the development temperature, highlighting the relevance of the height enhancement reached by this method. Although cell alignment is well-known to be enhanced by increasing the relief height of the polymeric grating, our work demonstrates nano-second laser interference photoembossing as a powerful tool to easily prepare polymeric gratings with tunable topography in the range of interest for fundamental cell alignment studies

    Beyond mobile phone displays: Flat panel display technology for biomedical applications

    Get PDF
    Organ-on-Chips (OoCs) have emerged as a human-specific experimental platform for preclinical research and therapeutics testing that will reduce the cost of pre-clinical drug development, provide better physiological relevance and replace animal testing. Yet, the lack of standardization and cost-effective fabrication technologies can hamper wide-spread adoption of OoCs. In this work we validate the use of flat panel display (FPD) technology as an enabling and cost-effective technology platform for biomedical applications by demonstrating facile integration of key OoC modules like microfluidics and micro electrode arrays (MEAs) in the standardized 96-well plate format. Individual and integrated modules were tested for their biological applicability in OoCs. For microelectrode arrays we demonstrate 90–95% confluency, 3 days after cell seeding and >70% of the initial mitochondrial cell activity for microfluidic devices. Thus highlighting the biocompatibility of these modules fabricated using FPD technology. Furthermore, we provide two examples of monolithically integrated microfluidics and microelectronics, i.e. integrated electronic valves and integrated MEAs, that showcase the strength of FPD technology applied to biomedical device fabrication. Finally, the merits and opportunities provided by FPD technology are discussed through examples of advanced structures and functionalities that are unique to this enabling platform

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    Cellular Phenotype-Dependent and -Independent Effects of Vitamin C on the Renewal and Gene Expression of Mouse Embryonic Fibroblasts

    Get PDF
    Vitamin C has been shown to delay the cellular senescence and was considered a candidate for chemoprevention and cancer therapy. To understand the reported contrasting roles of vitamin C: growth-promoting in the primary cells and growth-inhibiting in cancer cells, primary mouse embryonic fibroblasts (MEF) and their isogenic spontaneously immortalized fibroblasts with unlimited cell division potential were used as the model pair. We used microarray gene expression profiling to show that the immortalized MEF possess human cancer gene expression fingerprints including a pattern of up-regulation of inflammatory response-related genes. Using the MEF model, we found that a physiological treatment level of vitamin C (10−5 M), but not other unrelated antioxidants, enhanced cell growth. The growth-promoting effect was associated with a pattern of enhanced expression of cell cycle- and cell division-related genes in both primary and immortalized cells. In the immortalized MEF, physiological treatment levels of vitamin C also enhanced the expression of immortalization-associated genes including a down-regulation of genes in the extracellular matrix functional category. In contrast, confocal immunofluorescence imaging of the primary MEF suggested an increase in collagen IV protein upon vitamin C treatment. Similar to the cancer cells, the growth-inhibitory effect of the redox-active form of vitamin C was preferentially observed in immortalized MEF. All effects of vitamin C required its intracellular presence since the transporter-deficient SVCT2−/− MEF did not respond to vitamin C. SVCT2−/− MEF divided and became immortalized readily indicating little dependence on vitamin C for the cell division. Immortalized SVCT2−/− MEF required higher concentration of vitamin C for the growth inhibition compared to the immortalized wildtype MEF suggesting an intracellular vitamin C toxicity. The relevance of our observation in aging and human cancer prevention was discussed

    Genomic Characterization of Host Factors Related to SARS-CoV-2 Infection in People with Dementia and Control Populations: The GR@ACE/DEGESCO Study

    Get PDF
    Emerging studies have suggested several chromosomal regions as potential host genetic factors involved in the susceptibility to SARS-CoV-2 infection and disease outcome. We nested a COVID-19 genome-wide association study using the GR@ACE/DEGESCO study, searching for susceptibility factors associated with COVID-19 disease. To this end, we compared 221 COVID-19 confirmed cases with 17,035 individuals in whom the COVID-19 disease status was unknown. Then, we performed a meta-analysis with the publicly available data from the COVID-19 Host Genetics Initiative. Because the APOE locus has been suggested as a potential modifier of COVID-19 disease, we added sensitivity analyses stratifying by dementia status or by disease severity. We confirmed the existence of the 3p21.31 region (LZTFL1, SLC6A20) implicated in the susceptibility to SARS-CoV-2 infection and TYK2 gene might be involved in COVID-19 severity. Nevertheless, no statistically significant association was observed in the COVID-19 fatal outcome or in the stratified analyses (dementia-only and non-dementia strata) for the APOE locus not supporting its involvement in SARS-CoV-2 pathobiology or COVID-19 prognosis

    Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Spanish Government (Ministry of Economy and Competitiveness, MINECO) and FEDER Projects: CGL2014 52135-C3-3-R, ESP2017-89463-C3-3-R, CGL2014-59946-R, CGL2015-65569-R, CGL2015-64284-C2-2-R, CGL2015-64284-C2-1-R, CGL2016-78075-P, GL2008-02879/BTE, LEDDRA 243857, RECARE-FP7, CGL2017-83866-C3-1-R, and PCIN-2017-061/AEI. Dhais Peña-Angulo received a “Juan de la Cierva” postdoctoral contract (FJCI-2017-33652 Spanish Ministry of Economy and Competitiveness, MEC). Ana Lucia acknowledge the "Brigitte-Schlieben-Lange-Programm". The “Geoenvironmental Processes and Global Change” (E02_17R) was financed by the Aragón Government and the European Social Fund. José Andrés López-Tarazón acknowledges the Secretariat for Universities and Research of the Department of the Economy and Knowledge of the Autonomous Government of Catalonia for supporting the Consolidated Research Group 2014 SGR 645 (RIUS- Fluvial Dynamics Research Group). Artemi Cerdà thank the funding of the OCDE TAD/CRP JA00088807. José Martínez-Fernandez acknowledges the project Unidad de Excelencia CLU-2018-04 co-funded by FEDER and Castilla y León Government. Ane Zabaleta is supported by the Hydro-Environmental Processes consolidated research group (IT1029-16, Basque Government). This paper has the benefit of the Lab and Field Data Pool created within the framework of the COST action CONNECTEUR (ES1306)

    Exploring Health Science Students’ Notions on Organ Donation and Transplantation: A Multicenter Study

    Get PDF
    The knowledge acquired during university education about organ donation and transplantation (ODT) decisively influences the information future health professionals transmit. This is important in ODT where the participation of the general public is essential to obtain organs. Objective: To determine notions of Spanish medicine and nursing students on ODT and its relationship with attitude toward ODT. Methods and Design: and design. We conducted a sociologic, multicenter, and observational study. The population for our study consisted of medical and nursing students in Spanish universities. Our database was the Collaborative International Donor Project, stratified by geographic area and academic course. A validated questionnaire (PCID-DTO-RIOS) was self-administered and completed anonymously. Our sample consisted of 9598 medical and 10, 566 nursing students (99% confidence interval; precision of ±1%), stratified by geographic area and year of study. Results: The completion rate for our study was 90%. Only 20% (n=3640) of students thought their notions on ODT were good; 41% (n=7531) thought their notions were normal; 36% (n=6550) thought their notions were scarce. Comparing groups, there were differences between those who believed that their notions on ODT were good (44% nursing vs 56% medical students; P < .000), and those who believed it scarce (54% nursing vs 46% medical students; P < .000). Notions on ODT were related with attitude toward the donation of one''s own organs: those who considered their notions were good were more in favor then those who considered it scarce (88% vs 72%; P < .000). Conclusion: Only 20% of Spanish medical and nursing students thought their notions on ODT were good. Having good knowledge is related to a favorable attitude towards ODT. Receiving specific information on the subject could improve their knowledge about ODT during their training
    corecore