388 research outputs found

    The Influence of Solvent Selection upon the Crystallizability and Nucleation Kinetics of Tolfenamic Acid Form II

    Get PDF
    The influence of the solution environment on the solution thermodynamics, crystallizability, and nucleation of tolfenamic acid (TFA) in five different solvents (isopropanol, ethanol, methanol, toluene, and acetonitrile) is examined using an integrated workflow encompassing both experimental studies and intermolecular modeling. The solubility of TFA in isopropanol is found to be the highest, consistent with the strongest solvent–solute interactions, and a concomitantly higher than ideal solubility. The crystallizability is found to be highly dependent on the solvent type with the overall order being isopropanol < ethanol < methanol < toluene < acetonitrile with the widest solution metastable zone width in isopropanol (24.49 to 47.41 °C) and the narrowest in acetonitrile (8.23 to 16.17 °C). Nucleation is found to occur via progressive mechanism in all the solvents studied. The calculated nucleation parameters reveal a considerably higher interfacial tension and larger critical nucleus radius in the isopropanol solutions, indicating the higher energy barrier hindering nucleation and hence lowering the nucleation rate. This is supported by diffusion coefficient measurements which are lowest in isopropanol, highlighting the lower molecular diffusion in the bulk of solution compared to the other solutions. The TFA concentration and critical supersaturation at the crystallization onset is found to be directly correlated with TFA/isopropanol solutions having the highest values of solubility and critical supersaturation. Intermolecular modeling of solute–solvent interactions supports the experimental observations of the solubility and crystallizability, highlighting the importance of understanding solvent selection and solution state structure at the molecular level in directing the solubility, solute mass transfer, crystallizability, and nucleation kinetics

    Non-Linear Vibrations in Nuclei

    Full text link
    We have perfomed Time Dependant Hartree-Fock (TDHF) calculations on the non linear response of nuclei. We have shown that quadrupole (and dipole) motion produces monopole (and quadrupole) oscillations in all atomic nuclei. We have shown that these findings can be interpreted as a large coupling between one and two phonon states leading to large anharmonicities.Comment: 4 pages, 3 figure

    A Measurement of Psi(2S) Resonance Parameters

    Full text link
    Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been measured in the vicinity of the Psi(2S) resonance using the BESII detector operated at the BEPC. The Psi(2S) total width; partial widths to hadrons, pi+pi- J/Psi, muons; and corresponding branching fractions have been determined to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)= (2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)= (97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%, respectively.Comment: 8 pages, 6 figure

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm

    Get PDF
    The PHENIX experiement has measured the electron-positron pair mass spectrum from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions from light meson decays to e^+e^- pairs have been determined based on measurements of hadron production cross sections by PHENIX. They account for nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair yield remaining after subtracting these contributions is dominated by semileptonic decays of charmed hadrons correlated through flavor conservation. Using the spectral shape predicted by PYTHIA, we estimate the charm production cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which is consistent with QCD calculations and measurements of single leptons by PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables. Submitted to Physics Letters B. v2 fixes technical errors in matching authors to institutions. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton

    Full text link
    The PHENIX experiment presents results from the RHIC 2005 run with polarized proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at mid-rapidity. Unpolarized cross section results are given for transverse momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double helicity asymmetries A_LL are presented based on a factor of five improvement in uncertainties as compared to previously published results, due to both an improved beam polarization of 50%, and to higher integrated luminosity. These measurements are sensitive to the gluon polarization in the proton, and exclude maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid Communications. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore