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Abstract

How a living organism maintains its healthy equilibrium in response to endless exposure of potentially harmful chemicals is
an important question in current biology. By transcriptomic analysis of zebrafish livers treated by various chemicals, we
defined hubs as molecular pathways that are frequently perturbed by chemicals and have high degree of functional
connectivity to other pathways. Our network analysis revealed that these hubs were organized into two groups showing
inverted functionality with each other. Intriguingly, the inverted activity profiles in these two groups of hubs were observed
to associate only with toxicopathological states but not with physiological changes. Furthermore, these inverted profiles
were also present in rat, mouse, and human under certain toxicopathological conditions. Thus, toxicopathological-
associated anti-correlated profiles in hubs not only indicate their potential use in diagnosis but also development of
systems-based therapeutics to modulate gene expression by chemical approach in order to rewire the deregulated activities
of hubs back to normal physiology.
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Introduction

Living organisms are constantly exposed to potentially harmful

chemicals within their living habitats. Detoxification that involves

metabolizing and eliminating these chemicals are of great

importance to maintain healthy equilibrium. In vertebrates, the

liver is an essential organ in detoxifying xenobiotics and

monitoring nutritional cues via homeostatic regulation in broad

biochemical processes. This offers the liver as an excellent organ to

study homeostatic processes in response to chemical imbalances

and xenobiotic insults.

Several omics studies had revealed that genes involved in

xenobiotic metabolism, heat shock signaling, oxidative stress, cell

proliferation, apoptotic pathway, nuclear receptor signaling and

proteasome are among those mostly reported to show altered

expression [1–5]. Some of these genes even show distinct

differential expression profiles in response to specific chemicals

[6]. These specific responsive genes are no doubt useful for

biomarkers with predictive and diagnostic values [2,4,6]. Howev-

er, large-scale omics-integrated studies correlating molecular

pathways that are sensitively perturbed by various chemicals are

still limited. This kind of study is important because deregulation

of molecular pathways usually involved multiple genes that convey

greater biological importance than just individual genes in the

context of liver homeostasis.

Thus, it is important to understand the intricate relationship

among molecular pathways in the liver under various chemical

insults as their deregulated activities often resulting metabolic

disorders, cancers, and liver damage. In this study we used the

zebrafish model to identify molecular pathways that act as hubs to

respond to perturbations triggered by different chemicals. We

exposed zebrafish to six different chemicals, Benzo-[a]-pyrene

(BAP), 17-b estradiol (E2), 4-Nitrophenol (NP), 4-Chloroaniline

(CA), Arsenic (V) acid (As) and Mercury (II) chloride (Hg), at

various concentrations and under different exposure durations,

and generated hepatic transcriptomic data by DNA microarray.

These chemicals were chosen because they serve as representatives

of selected environmental toxicants and pollutants that are

potential health hazards to various organisms including humans,

hence having considerable public health concern. BAP is a

polycyclic aromatic hydrocarbon that serves as a representative of

persistent organic pollutants while E2 is a steroid that represents

estrogenic compounds and these two classes of compounds are

known endocrine disruptors found in the environment [7,8].

Arsenic (V) represents a metalloid compound, and mercury (II)

represents a heavy metal compound and both are ubiquitous

environmental toxicants and their poisoning are public health

issues worldwide [9,10]. Both NP and CA are organo-nitrogen

compounds of various industrial and agricultural sources that have

polluted the environment [11,12] and are known to cause
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hemoglobin adducts resulting in methemoglobinemia and possibly

anemia [12,13]. NP has also been reported to act as an endocrine

disruptor [14] while BAP, E2 and arsenic (V) are also known to be

genotoxic carcinogens [3,4,15], and mercury (II) can induce

cellular damage particularly in central nervous system, kidney and

liver [5,16].

Using gene set enrichment, functional correlation and network

analyses, we successfully defined a group of molecular pathways

acting as hubs for their frequent respond to multiple chemicals and

high degree of functional correlations (connectivity degrees) to

many other molecular pathways. Interestingly, we found that these

hubs were organized into two groups showing inverted activity

correlation with each other. Our current work revealed that the

inverted activity profiles of hubs are obvious only when a fish is

confronted with chemically-induced toxicopathological conditions.

Since the identified hubs play important roles in liver homeostasis,

their malfunctions suggest broad association to liver disorders.

Furthermore, analyses using independent external datasets

obtained from liver tissues of rat, mouse, and human cells exposed

to chemicals [17–19] also suggested the present of inverted activity

profiles of hubs. This implies that the observed inverted activity

profiles may be conserved from fish to mammals albeit further

characterizations are required. The existence of these toxico-

pathological-associated anti-correlation in hubs open the possibil-

ity to devise combinatorial therapeutics with drug cocktails to

rebalance these inverted profiles back to normal physiology.

Results

Molecular Pathways that are Frequently Perturbed by
Chemicals in the Liver

We generated a total of 168 arrays (48 arrays from control

groups, 120 arrays from the chemically treated groups) for

zebrafish livers exposed to six different chemicals at various

concentrations and durations, accounting for a total of 40 specific

chemically-induced perturbations. For comparative study, we

included 3 additional hepatic transcriptomic data obtained from

zebrafish experiments with starvation and specific carbohydrate

dietary manipulation [20,21]. The overall 43 perturbations and

treatment conditions are listed in the Table S1.

To examine whether the expression of genes within a molecular

pathway is enriched by a perturbation, enrichment analyses

considering the relative ranks of gene expression profile were

conducted by Gene Set Enrichment Analysis (GSEA) [22], which

utilizes Kolmogorov-Smirnov-like statistic. We performed GSEA

by comparing each of the 40 chemically- and 3 dietary-induced

perturbations against their respective control groups for pathways

of at least 10 detected genes within each expression experiment.

Pathways with nominal p-value,0.05 for a given enrichment were

considered significant in response to a perturbation. We tabulated

the z-score corrected GSEA results with their corresponding

perturbations in a matrix in order to determine how frequent each

molecular pathway was affected. The full GSEA results of 246

molecular pathways with minimal 10 genes for each perturbation

experiment are presented in Data S1. Redundant pathways with

poor responsiveness were subsequently omitted, leaving 189 non-

redundant molecular pathways for further analyses. We plotted

the number of pathways with their respective number of significant

responses across 43 conditions (Figure 1A). Most of these pathways

show low number of significant responses across multiple

perturbations.

We next defined a function called normalized pathway coverage

(NPC) in order to determine appropriate thresholds to partition

pathways into categories composing of high responsive (HR),

medium responsive (MR), and low responsive (LR) across multiple

perturbations (see Materials and Methods). The relation of NPC

against the percentage of pathways with the number of significant

responses of i-th pathway$threshold (Nsr
i §threshold ) is plotted

(Figure 1B). From the plot, we defined pathways with at least 10

significant responses (nominal p-value,0.05) across 43 perturba-

tions as high responsive pathways (HR). Pathways with 5 to 9 and

less than 5 significant responses are defined as medium responsive

(MR) and low responsive (LR), respectively. There are approxi-

mately 61.4%, 24.9%, and 13.8% of LR, MR, HR pathways,

respectively.

Functional Correlations of Molecular Pathways Across
Multiple Chemical Perturbations

At cellular level, activities among molecular pathways are

governed by intricate regulation and expression of their genes. To

investigate the correlation and potential functional connectivity of

molecular pathways, we performed Pearson correlation to assess

linear correlation among 189 molecular pathways across 43

perturbations. Normalized Enrichment Score (NES) generated by

GSEA (see Materials and Methods) were used to represent the

meta-activities of pathways. In general, the greater the NES value,

the greater the enrichment for genes presented in a molecular

pathway in a pre-ranked transcriptomic data of a perturbation.

The negative or positive NES value denotes whether the pre-

ranked transcriptomic data is positively (i.e. most enriched genes

were up-regulated) or negatively (i.e. most enriched genes were

down-regulated) correlated with a particular molecular pathway.

A pair of pathways is considered functionally connected if the

calculated Pearson correlation coefficient (PCC).0.5 or

PCC,20.5 (Data S2) with p-value,0.001 (Data S3). The

number of non-redundant 189 pathways with their respective

connectivity degree is plotted in Figure 1C, with average

connectivity degree of 7.43. We defined pathways that exhibit

degree of functional correlations (connectivity) larger than 10 (i.e.,

,30% of total 189 non-redundant pathways) as highly connected.

There are 57 molecular pathways with $10 connectivity degrees,

which were defined as highly connected pathways. Those

pathways with less than 10 connectivity degrees were considered

as low connected. Pathways associated with different category of

responsiveness and connectivity degree are given in Table S2.

Results from Pearson correlation also revealed that pathways

with known associated functions also show significant correlations

in fish triggered by chemicals (Table S3). For examples, glycolysis

and gluconeogenesis are expected to show high functional

correlation as they share a substantial number of common genes.

However, pathways such as glycolysis and pyruvate metabolism,

glycolysis and citrate cycle as well as proteasome and ubiquitin-

mediated proteolysis which share little or no common gene also

show significant correlation for known associated functions. This

indicates that NES generated from GSEA is a valid approximation

to represent the overall pathway activities in a given biological

state.

Identification of Hubs with High Responsiveness and
High Connectivity

We are interested in finding molecular pathways acting as hubs

that they are not only frequently perturbed by various chemicals

but also show high functional connectivity to many other

pathways. We plotted the frequency of perturbations and the

degree of connectivity in order to visualize their relationships for

each of the molecular pathway (Figure 1D). Interestingly, most

molecular pathways with low responsiveness tend to have poorer

Anti-Correlation of Chemically Responsive Pathways
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correlation (gray spots in Figure 1D) than those with high

responsiveness. Hubs with both high responsiveness and high

connectivity degrees are shown as red spots in Figure 1D.

Molecular pathways with low responsiveness and poor connectiv-

ity are thought to be impervious to most chemical perturbations

and are less likely to be co-regulated with other pathways during

chemical insults. However, poor connectivity for low responsive

pathways can also be due to the current limited dataset and lack of

sensitivity of the assays used.

We identified a group of 16 hubs corresponding to 43

perturbations in this study (pink and green highlights in Table

S2). Overall, these pathways are associated with lipid metabolism

(fatty acid metabolism; mitochondrial fatty acid beta oxidation;

PPAR signaling; propanoate metabolism; butanoate metabolism),

amino acid metabolism (tryptophan metabolism; beta-alanine

metabolisms; valine, leucine and isoleucine degradation), protein

biosynthesis and degradation (ribosome; aminoacyl t-RNA

biosynthesis; N-glycan biosynthesis; proteasome), neuroactive

ligand receptor interaction, circadian exercise and IL6 pathway.

Their ease of being perturbed and their high functional correlation

with each other suggest that these hubs may play an important role

in liver homeostasis towards broad chemical insults.

Molecular pathways related to hubs identified in this study had

been found to be affected from both transcriptomics and

proteomics works using other models and chemicals. For instance,

amino acid metabolism, protein biosynthesis, fatty acid metabo-

lism, fatty acid b-oxidation are affected in hepatic transcriptome

and proteome of zebrafish treated with 17a-ethynylestradiol

[23,24]. Hepatic transcriptome and proteome from mice treated

with propiconazole revealed differential expression and amount of

Figure 1. Responsiveness and connectivity of molecular pathways perturbed by chemicals. (A) Number of perturbed pathways to their
respective number of significant responses across 43 distinct chemical perturbations. The graph was obtained by counting and grouping total
number of 189 non-redundant molecular pathways that were significantly perturbed. Most pathways show low number of significant responds
across multiple perturbations. Pathways showing same responsiveness and connectivity are plotted as one data point. (B) Normalized pathway
coverage across 43 perturbations and percentage of pathways with a given cutoff threshold of significant respond. The thresholds used to define
high and medium responsiveness are indicated in red and blue boxes, respectively. (C) Number of pathways with respect to their connectivity
degree, as obtained from Pearson correlation analysis using NES scores across 43 perturbations as meta-activities of molecular pathways. Pairs of
pathways with Pearson correlation coefficient (PCC).0.5 or PCC,20.5 are considered functionally connected, where the connectivity degree
denotes number of functionally connected pathways to a given pathways. Most pathways show low number of functional correlations to other
pathways across multiple perturbations. (D) Relation of the number of significant responds of pathways to their connectivity degree. Red spots are
hubs with both high responsiveness (with at least 10 significant responds) and high degree of correlation connectivity (with at least 10 degree of
connectivity). Non-hub pathways are indicated as gray spots. Most non-hub pathways show both low responsiveness and low degree of connectivity
as most of them assembled at the lower left of the plot, with a smaller number of non-hubs with high degree of connectivity at lower right of the
plot.
doi:10.1371/journal.pone.0027819.g001
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proteins involved in amino acid metabolism including tryptophan

metabolism, valine, leucine, and isoleucine degradation, together

with lipid metabolism as well as proteasome [25]. Also, several

transcriptomics and proteomics studies showed that signaling,

mitochondrial function, lipid metabolism, amino acid metabolism,

and energetic metabolism are affected in acetaminophen-treated

mice and rats [26–28]. Besides, most serum N-linked glycoproteins

are synthesized via N-glycan biosynthesis and secreted by the liver.

Malfunction of N-glycan biosynthesis hence altered the N-linked

glycoproteome that is known to be associated with chronic diseases

such as hepatocellular carcinoma [29,30]. In addition, the

circadian pathway regulates several rate-limiting factors in vital

cellular processes including lipid and sugar metabolism [31].

Furthermore, it had been known that alteration of excitatory and

inhibitory amino acids relevant to neuroactive roles to hub

neuroactive ligand receptor interaction affect hepatic encephalop-

athy during acute liver failure [32]. PPAR signaling, another hub

identified in this study, is also shown to regulate liver repairing

process where its malfunction impair liver regeneration [33].

Thus, hubs identified in this study appear to modulate liver

homeostasis across broad cellular perturbations in higher verte-

brates as well.

Network of Hubs Shows Two Groups of Molecular
Pathways with Inverted Functional Correlations

Using NES scores as meta-activities of molecular pathways, we

performed Pearson correlation studies to capture their functional

associability across 43 chemical perturbations. Hubs that are

functionally correlated to one another are connected in network as

shown in Figure 2. We noted that lipid metabolism together with

amino acid metabolism and ribosome pathways were intercon-

nected with positive correlations within one group (defined as

Group A, connected with solid lines among pink nodes in Figure 2).

Hubs from Group A show negative correlations to hubs in the

other group (defined as Group B, connected with dash lines to

green nodes in Figure 2). Hubs within the same group only show

positive correlations whereas none of member within Group A or

B shows positive correlation to hubs at the opposite group. Negative

correlations are only observed to members between opposite

groups. These observations indicate a clear inverted relationship

between members of these two groups during chemical insults:

pathways with positive correlations appear to be co-activated or co-

repressed under a given biological state whereas pathways that show

negative correlations appear to function oppositely under the same

biological state. Hubs such as Ribosome and IL6 pathways are not

included as they do not show inverted functionality to opposite

group of hubs (discussed in the next section).

Inverted Activity Profiles of Molecular Pathways are only
Associated to Toxicopathological States

The overall meta-activity profiles of hubs as represented by NES

scores across 43 chemical perturbations is given in Figure 3A. Red

and blue shades represent activation and suppression of pathway,

respectively, with those significant responses are shaded with their

respective darker colors. Gray shades indicate no enrichments

found for a given condition.

Figure 2. Network of hubs (Pathways with both high responsiveness and high connectivity). The network was constructed from Pearson
correlation analysis using NES scores across 43 perturbations as meta-activities of molecular pathways. Pathways with Pearson correlation coefficient
(PCC).0.5 or PCC,20.5 are considered connected to each others. Pink nodes (Group A) of hubs compose mostly lipid-related pathways and green
nodes (Group B) of hubs are non-lipid pathways. Solid and dash lines indicate positive and negative correlations, respectively.
doi:10.1371/journal.pone.0027819.g002
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As shown in Figure 3A, when fish were exposed to higher

concentrations of chemicals (50BAP 24 h Male, 500BAP 24 h

Male) or prolonged exposure periods (500BAP 96 h Male, 50E2

96 h Male, CA 96 h Male, As 96 h Male in Figure 3A), the

inverted activity profiles between hubs became obvious for most of

these perturbations (bolded sample labels in Figure 3A). We

observed that when fish were perturbed under a physiological

change (Liver Starved Female, Female Liver Dietary, Male Liver

Dietary) or by short exposure periods to lower concentrations of

chemicals (5BAP 24 h and 05E2 24 h Male), there was no obvious

inverted activity profile among hubs.

We next devised a simple scoring scheme in order to assess

whether there are other non-hub pathways that also exhibit anti-

correlated behavior using 20 conditions with obvious inverted

activity profiles (bolded sample labels in Figure 3) as ‘‘seeds’’ (see

Materials and Methods for detail description). The identified anti-

correlated pathways and their assigned ‘‘anti-correlation scores’’

are given in Table S4. As shown in Table S4, hubs ribosome and

IL6 pathways are not belonged to anti-correlated pathways due to

their low anti-correlation scores. The network for these anti-

correlated pathways is given in Figure S1. There are 7 ‘‘outliers’’

that do not show connectivity (i.e., PCC,0.5 or PCC.20.5) to

their assigned group. For instance, insulin signaling pathway of

Group A does not connect to any pathway in Group A but is

negatively connected to Group B. The anti-correlation of these

‘‘outliers’’ may be mediated via weaker functional associations to

pathways of the same positive/negative group. Similar to hubs,

none of these anti-correlated non-hub pathways, including

‘‘outliers’’, show negative correlation to members within the same

group.

The overall meta-activity profiles of non-hub pathways showing

anti-correlation are given in Figure 3B. There is no obvious

inverted profile between non-hub pathways at both Group A and

B at physiological, short exposure periods and lower concentra-

tions of chemicals, except at one physiological condition (Female

Liver Dietary). At higher chemical levels and prolonged exposure

periods, the inverted profiles of non-hub pathways became more

obvious albeit less prominent than hubs.

As shown in Figure 3, both male and female fishes show poor

response to 4-nitrophenol (NP) treatments. This is also the case for

chloroaniline (CA) treatments in female but not in male fish. It

remains to be determined whether these chemicals can trigger

Figure 3. Meta-activity profiles of anti-correlated molecular pathways across 43 chemical perturbations. (A) Red and green fonts
indicate hubs of Group A and B, respectively. Red and blue shades denote activation and suppression of pathways, as indicated from their respective
NES scores, respectively. Darker shades correspond to their respective colors denote significant responds. Bolded sample labels are those conditions
showing inverted activity profiles for hubs in Group A and B. (B) Meta-activity profiles of non-hub pathways showing anti-correlated behavior.
Pathways in pink and green boxes are non-hub pathways with high anti-correlation scores associated to Group A and B, respectively (See Materials
and Methods for detail description). Blue fonts are ‘‘outliers’’ pathways as discussed in the text. As = Arsenic (V); BAP = Benzo-[a]-pyrene;
CA = Chloroaniline; E2 = Estradiol; Hg = Mercury (II) chloride; NP = 4-Nitrophenol. 8 h, 24 h, 48 h, and 96 h denote chemical exposure period for 8, 24,
48, and 96 hours, respectively.
doi:10.1371/journal.pone.0027819.g003
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inverted profile at higher concentrations. However, both sexes of

fish exhibit inverted profiles of pathway under toxicopathological

states although female fish show better tolerance to chemical

treatments as suggested from their weaker inverted profiles (e.g.

Arsenic profiles).

To evaluate whether the inverted activity profiles are only

associated to toxicopathological conditions induced by chemicals,

we performed analyses using control data from our experimental

works where fish were starved during the 96-hour of chemical

treatments and samples were collected at 8 h, 24 h, 48 h and 96 h.

Untreated male and female fish collected at 8 h were used as

comparative controls for those starved for 24 h, 48 h, and 96 h for

their respective sexes. As shown in Figure 4A, none of the starved

fish show inverted activity profiles in hubs (green sample labels,

Figure 4A) although male fish starved at 96 h show weak inverted

activity profiles in non-hub pathways. We also analyzed

transcriptomic data from carcinogen-induced liver tumor in

zebrafish generated from our previous study [34]. We found that

carcinogen-induced liver tumor in the zebrafish indeed showed

obvious inverted activity profile in both hubs and non-hub

pathways. Our analyses thus indicate, at least for data in the

current study, that inverted activity profiles of molecular pathways

especially hubs are associated to toxicopathological states.

Inverted Activity Profiles of Molecular Pathways are also
Present in Mammalian Systems

To explore the existence of these inverted activity profiles in

other biological systems, we performed GSEA analyses for

independent external hepatic transcriptomic data obtained from

the Gene Expression Omnibus (GEO) for rat, mouse, and human

treated with various chemicals. Four expression series,

GEO:GSE5509 [17], GEO:GSE17184 [18], GEO:GSE9839,

and GEO:GSE1843 [19] were used. Results showing the presence

and absence of inverted activity profiles are in Figure 4B and

Figure 4C, respectively. Expression data from three toxicants,

alpha-naphthyl-isothiocyanate (ANIT), dimethylnitrosamine

(DMN), and N-methylformamide (NMF), that are known to cause

obvious histopathologic effects in rat liver [18], showed the

existence of inverted activity profiles of molecular pathways as

observed in the zebrafish (Figure 4B). Interestingly, additional

expression data of three ‘‘non-toxic’’ compounds, caerulein,

dinitrophenol (DNP), and rosiglitazone [17], did not exhibit

inverted activity profiles (Figure 4C).

Analysis of transcriptomic data GEO:GSE17184 [19] from

concanavalin A (ConA)-induced mouse fulminant hepatitis also

suggest the presence of inverted activity profiles among molecular

pathways observed in the zebrafish (Figure 4B). As ConA is

commonly used to induce immune-mediated liver diseases in

experimental models, the existence of these inverted profiles

implicates their association to toxicopathological states. In

addition, mouse treated with ConA for 6 h showed more obvious

inverted profiles, especially in hub pathways, than those treated for

1 h, indicating that these inverted activity profiles are also

associated to the progression of toxicopathological stages

(Figure 4B). Moreover, transcriptomic data (GEO:GSE9839) from

human liver tissue showing hepatocellular carcinoma (HCC) as a

result of overexpression of HOX A13 exhibited inverted activity

profiles, albeit more obvious among non-hub pathways (Figure 4B).

Preferential of toxicopathological states in association
towards Scheme B profile

We found most toxicopathological-associated states studied thus

far are biased towards profile of ‘‘Scheme B’’, with most hubs in

Group B are activated accompanied with suppression of hubs in

Group A (Figure 3 and Figure 4A). This is also the case for the

mammalian systems (Figure 4B). We observed two conditions

where male fish was exposed to 50 mg/L and 500 mg/L of BAP for

24 h (50BAP 24 h Male and 500BAP 24 h Male in Figure 3)

showed inverted activity profiles of ‘‘Scheme A’’, with members

within Group A being activated. Female fish exposed to NP for

48 h (NP 48 h Female in Figure 3) also showed weak signal of

Scheme A. Whether there are more toxicopathological states

associated to Scheme A remained to be seen. At this stage, we are

unable to determine the molecular mechanism for the preference

of most toxicopathological states, at least from data in our current

study, towards inverted activity profiles for Scheme B. Further

works are needed to explore their regulatory mechanisms that lead

to this preference.

Discussion

In this study, we used zebrafish as a vertebrate model to identify

hub molecular pathways that respond to multiple chemical

perturbations in the liver and assess their functional correlations.

We observed a substantial number of hubs involved in lipid

metabolism. This is consistent with the fact that the liver plays a

central role in lipid metabolism in response to nutritional cues by

regulating the synthesis, oxidization, transport and excretion of

lipids [35]. Also, signals from autonomic nervous system such as

neuroactive ligand receptor interaction pathway can also alter

metabolic states in the liver [36]. It had been noted that lipid

accumulation is the common consequence associated to metabolic

syndromes such as type 2 diabetes mellitus, hyperglycemia,

hyperinsulinemia, cardiovascular diseases, and obesity [37]. This

suggests that lost of homeostatic resiliency in lipid metabolism can

lead to broad range of hepatic disorders such as steatosis, non-

alcoholic steatohepatitis, cirrhosis, hypertension, and hepatocellu-

lar carcinoma [38].

Other hubs such as ribosome, proteasome, circadian exercise,

N-glycan biosynthesis, aminoacyl-tRNA biosynthesis, translation

factors, and IL6 pathway form non-lipid metabolic category.

Suppression of proteolysis is normally required when a rapid

transcriptional response and protein synthesis are needed in a cell

such as during cell division. Translation factors, aminoacyl-tRNA

and ribosomes are anticipated to coordinate at the subsequent

stage after the transcription step. Also, circadian clock had been

reported to couple with proteasome [39] to play essential roles in

mediating nutritional metabolism in liver [40]. Besides, glycopro-

teins at the cell surface are found to modulate homeostatic

responses. Malfunctions in N-glycan biosynthesis can thus leads to

disorders such as autoimmunity, metabolic syndrome, aging, and

even cancers [29,41].

It had been reported that amino acids such as isoleucine,

leucine, tyrosine, phenylalanine, tryptophan, lysine, and arginine

are capable of inhibiting the chymotrypsin-like activity of the

proteasome in a dose-dependent manner [42]. Our results show

negative correlation of proteasome to beta-alanine metabolism

which in turn positively correlated to valine, leucine and isoleucine

degradation and tryptophan metabolism (Figure 2), implicating

homeostatic roles of amino acids in protein degradation via

proteasome machinery. In general, hubs identified in this study

appear to play important homeostatic roles in the liver and their

malfunctions can cause wide range of disorders.

Figure 5 summarizes the overall outline and working hypothesis

based on this work. The pyramid shows different levels of

mechanisms of homeostatic processes upon perturbations induced

by various chemicals. The arrow beside the pyramid indicates the

Anti-Correlation of Chemically Responsive Pathways
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flow and spread of homeostatic signal from the tip at the molecular

level to the base consisting of molecular pathways that formed the

homeostasis system in the liver. Upon receiving a chemical cue, a

cascade of signal transduction coupled with chemical-induced

conformational change of receptors and enzymes will be triggered.

Expression of genes can be altered if the chemical signal is more

intense than the threshold. This will lead to the next tier of

regulation with altered levels of proteins including signaling

molecules and transcription factors to subsequently drive rewiring

of gene expression within hubs [43,44]. The overall mechanisms of

homeostasis can thus be metaphorically perceived as a dynamic

balance that continuously adjusting biological processes in a

liver cell to maintain healthy equilibrium within its tolerable

limits.

Figure 4. Meta-activity profiles of independent evaluation to investigate the association of inverted activity profiles with
toxicopathological states. (A) Control data in this work where fishes were starved from 8 h to 96 h were used with data of 8 h starvation as
comparative control to respective sexes of fish (green sample labels). No inverted activity profile is observed for starvation in hubs. However,
carcinogen-induced liver tumor in zebrafish (pink sample label) generated from our previous work (GEO: GSE3519) [34] exhibits obvious inverted
activity profile. (B) Expression data showing inverted profiles obtained from chemical-treated or pathologic states in liver tissues of rat, mouse, and
human. (C) Expression data not showing inverted profile in chemical-treated and pathologic state in rat. Dr, Danio rerio (zebrafish); ANIT, Alpha-
naphthyl-isothiocyanate; DMN, Dimethylnitrosamine; NMF, N-methylformamide; ConA, Concanavalin A; DNP, Dinitrophenol; HCC, Hepatocellular
carcinoma.
doi:10.1371/journal.pone.0027819.g004
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Figure 5. Schematic representation of overall finding and hypothesis in this work. Zebrafish was exposed to six different chemicals at
varying concentrations and exposure durations. Upon exposure to these chemicals, the underneath homeostatic process as schematically illustrate in
the pyramid will be initiated. The arrow beside illustrates the spread of homeostatic signals from smaller molecular scale to larger scale composing
pathway networking. These chemicals will trigger conformational changes of signaling receptors and enzymes, resulting differential gene expression
causing altered proteome content. If the chemicals are above certain threshold levels that a fish can cope for maintaining its normal physiological
equilibrium, rewiring of molecular pathways via deregulated gene expression can take place leading to inverted profiles of hubs. The inverted
functionality of hubs can be perceived as a two-component bistable switch that toggles a cell from one state to another, leading to
toxicopathological states at either Scheme A (activation of hubs among Group A with suppression of hubs among Group B) or Scheme B (activation
of hubs among Group B with suppression of hubs among Group A), depending on how the overall molecular rewiring drives the cell in navigating
the toxicopathological landscape.
doi:10.1371/journal.pone.0027819.g005
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The concept of ‘‘attractor’’ that is used to describe the behavior

of complex systems in physics [45] had been adopted in stem cell

biology to elaborate the pluripotency of a stem cell in navigating

through a complex attractor landscape which ultimately leads to

cell fate decision [46]. ‘‘Attractor’’ serves as a driving force to drive

a stem cell towards a particular differentiated state upon receiving

a differentiation factor. The same principle can be adopted in

chemically-induced toxicopathological states. When a cell encoun-

ters a harmful chemical, homeostasis involving xenobiotic

metabolism and its transport will be initiated. If the toxic level is

above the threshold that a cell can cope within its healthy

equilibrium, ‘‘attractor’’ resulting from deregulated gene expres-

sion will drive the affected cell to a particular toxicopathological

state, depending on cellular context and toxic level exerted by a

given chemical.

To maintain healthy equilibrium, a cell undergoes homeostasis

processes constituting multiple tiers of negative and positive

feedback loops to ensure all processes are tightly regulated such

that all cellular processes only take place in the right amount, right

place, and right time within a cell. The balanced activities of these

negative and positive feedback loops can thus be viewed as

balanced of ‘‘Yin’’ and ‘‘Yang’’ components, an ancient Chinese

concept refers to opposite but mutually interdependent elements.

In biology, this Yin-Yang concept had been utilized to describe the

balance of various cellular activities, such as antioxidation/

oxidation [47] as well as the balanced actions between oncogenes

and tumor suppressor genes [48–50]. In this study, we found that

inverted activity profiles of hubs were triggered only under

conditions where a fish and mammalian cells were exposed to

higher concentrations of chemicals, prolonged exposure durations,

and carcinogen-induced tumors. As these conditions are associated

to toxicopathological states, we therefore concluded that the

inverted activity profiles of hubs, as can be metaphorically

perceived as imbalanced Yin-Yang states, are of toxicopathologi-

cal origin.

There are two toxicopathological schemes associated to the

inverted profiles. ‘‘Scheme A’’ with activated Group A hubs and

suppressed Group B hubs. The vice versa is applicable for

‘‘Scheme B’’. Our current analyses indicate that most toxico-

pathological states favor Scheme B for fish and mammalian

systems. We envisage lower ‘‘pathological barrier’’ (with analogy

to energy barrier of enzymatic catalysis) for Scheme B across an

imaginary toxicopathological landscape with normal physiological

equilibrium being a global minimum (Figure 5). Also, Scheme B

pathology exhibits ‘‘wider well’’ to represent more local states to

trap a malfunctioning cell. On the other hand, Scheme A

pathology, with much higher ‘‘pathological barrier’’, is less likely

to attain. Although this imaginary toxicopathological landscape

provides qualitative explanation for inverted profiles of hubs in

favor of Scheme B, further works are needed to unveil their exact

molecular mechanisms.

The double-headed arrow at the base of the pyramid in Figure 5

indicates transitional reversibility and resiliency from normal

physiology to both schemes of toxicopathological states (Scheme A

or Scheme B) or vice versa. As hubs are associated with two groups

within a network showing inverted functional correlations, this

topology can be perceived as mutually inhibitive two-component

system that can act as a toggle-like bistable switches to flip a cell

from one state to another. Recent advances in network medicine

[51] that aim to identify genes located within a disease module

together with network pharmacology [52,53] are now shaping

drug development in the context of network and systems biology.

Formulation using drug cocktails such as ‘‘long-tail drugs’’ [54]

that aim to target a wide spectrum of gene activities can be the

future trend in therapeutic design to modulate diverse biological

processes.

Although we observed the association of toxicopathological

states to inverted activity profiles of shared molecular pathways

identified from fish to mammals, at this stage, we cannot exclude

the possibility that there are other hub pathways showing inverted

activities but fail to capture in this study. Furthermore, it is possible

that there are totally different sets of molecular pathways showing

inverted activities owing to different toxicopathological mecha-

nisms under particular conditions. For instance, as shown in

Figure 4C, we fail to capture inverted profiles from transcriptomic

data of cirrhotic rat (GEO:GSE1843) [19] probably due to

different pathological mechanism from our current analyses. Also,

gene expression is context-dependent and the responsiveness of

genes is affected by a number of factors such as chemicals, dosage,

exposure period, tissues, species of animal model, as well as sex

and age. Thus, it is necessary to extend current study by

incorporating transcriptomic data with broader coverage of

compounds in future in order to recover molecular pathways

showing robust inverted activities under wide chemical and

pathological perturbations. Notwithstanding at the preliminary

stage, our finding for the existence of inverted activity profiles of

molecular pathways that are associated to toxicopathological states

in the zebrafish liver and mammalian systems may extend the

direction of future researches in understanding molecular

regulations in pathology as well as system-based therapeutics to

treat complex diseases such as metabolic syndromes, cardiovascu-

lar diseases and cancers using appropriate experimental models.

Materials and Methods

Chemical treatment and sampling of zebrafish
Adult zebrafish (6 months–1 year old) were obtained from a

local fish farm. The fishes were allowed to acclimatize in aquaria

for several days before transferred into smaller containers for

chemical exposure. Fishes were exposed to chemicals for up to

96 h at a density of one fish/200 ml at 27uC in a static condition.

The treatment regimens used are summarized in Table S1 and

were based on our previous experience with these chemicals which

were determined based on published data available on Toxnet

(http://toxnet.nlm.nih.gov/) and our preliminary acute toxicity

exposure experiments conducted for the compounds [3–5]. De-

chlorinated water and chemicals were renewed daily. All

treatments were conducted using triplicate groups of four fishes.

Liver samples were snap-frozen in liquid nitrogen and stored at

280uC prior to RNA extraction. All experimental protocols were

approved by Institutional Animal Care and Use Committee

(IACUC) of National University of Singapore (Protocol 079/07).

Total RNA extraction and microarray hybridization
Total RNA was extracted using Trizol reagent (Invitrogen,

USA) according to the manufacturer’s instructions. Reference

RNA for microarray hybridization was obtained by pooling

zebrafish whole adult male total RNA with female total RNA at

9:1 ratio. The integrity of RNA samples was verified by gel

electrophoresis, and their concentrations were determined by UV

spectrophotometer.

Reference RNA was co-hybridized with RNA samples either

from chemically treated or control fish on a glass array spotted

with 16.5K and 23K zebrafish oligo probes. Both reference and

sample RNAs were reverse-transcribed and labeled differently

using fluorescent dyes Cy-3 or Cy-5. After hybridization at 42uC
for 16 hours in hybridization chambers, the microarray slides were

washed in a series of washing solutions (26SSC with 0.1% SDS;
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16 SSC with 0.1% SDS; 0.26 SSC and 0.056 SSC; 30 seconds

each), dried by low-speed centrifugation and scanned for

fluorescence detection using the GenePix 4000B microarray

scanner (Axon Instruments). More detailed protocols for micro-

array experiment and data acquisition have been described

recently by us [55,56].

Description of hepatic transcriptomic data of zebrafish
All data used in this study is given in Table S1. Two series,

GEO:GSE11107 [20] and GEO:GSE8856 [21] experimented

with starvation and carbohydrate dietary manupulations were

collected from Gene Expression Omnibus (GEO). The rest of data

were generated from our in house experiments as summarized in

Table S1.

Microarray data processing and gene set enrichment
analysis

The raw microarray data was normalized using Lowess method

in the R package (http://www.braju.com/R/). The zebrafish

genes were mapped to human homologous genes as previously

described [34]. Student’s t-test was performed to evaluate

statistical significance between treatments and controls. The

‘‘GSEAPreranked’’ option of GSEA [22] was used for gene set

enrichment analysis. The ranking metric used was log10(1/P)

where P is the p-value of a gene obtained from Student’s t-tests.

Positive and negative values of log10(1/P) were assigned for up-

and down-regulated genes, respectively. The genes were then

ranked in descending order based on values of log10(1/P). The

ranked genes were the input array for GSEA and were mapped to

639 pre-defined gene sets of canonical pathways obtained from the

GSEA website (http://www.broadinstitute.org/gsea/). Gene sets

with less than 10 genes mapped to input were excluded from

further analysis.

GSEA uses Kolmogorov-Smirnov statistic to evaluate the

statistic significance of genes to which a pre-defined gene set is

overrepresented at the top or bottom rank of whole transcriptome

profile [22]. An enrichment score (ES) for each pathway was

calculated by walking down the ranked profile, increasing a

running-sum statistic when a gene in a pre-defined gene set was

encountered and decreasing it when the gene was absent. The ES

is the maximum deviation from zero encountered in the random

walk corresponds to a weighted Kolmogorov-Smirnov-like statis-

tic. The statistical significance of a given ES was estimated by

using an empirical phenotype-based permutation test procedure

(1000 permutations were used). The phenotype labels were

permutated and the ES of the gene set for the permutated data

were recomputed to generate a null distribution for the ES. The

empirical, nominal p-value of the observed ES was then calculated

in relative to this null distribution. The estimated significance level

was adjusted with multiple hypothesis testing. The ES for each

gene set was first normalized to the size of the set yielding a

normalized enrichment score (NES) with the following relation:

NES~actual ES=mean ES calculated from allð

permutations of the datasetÞ

Pathway with nominal p-value,0.05 was considered significantly

respond to a perturbation. Positive and negative values of NES

indicate that pathways were activated and suppressed, respectively.

Definition of pathway responsiveness
In order to determine appropriate thresholds (number of

significant responses) for partitioning pathway category corre-

sponding to high responsive (HR), medium responsive (MR), and

low responsive (LR), we defined a function called normalized

pathway coverage (NPC) for one particular chosen threshold as

NPC (threshold)~

P
Pathwayi with Nsr

i
§threshold Nsr

i

�
43

Number of pathways with Nsr
i §threshold

where Nsr
i is the number of significant responses (p-value,0.05) of

pathwayi under 43 conditions (for details, see the demonstration in

Figure S2). Normalized pathway coverage represents the average

contribution of significant responses from each pathway with

Nsr
i §threshold. For example if NPC = 0.3, it means for average

there are 30%|43&13 significant responses can be observed for

one specific pathway. Higher value of normalized coverage for

high responsive (HR) pathway is expected. Also, the percentage of

pathways with Nsr
i §threshold is another factor to determine

appropriate thresholds. Therefore, we try to balance the NPC and

number of pathways in the process of defining pathway

responsiveness. Correlation between normalized pathway cover-

age (NPC) and percentage of pathways with Nsr
i §threshold is

plotted in Figure 1B.

Use of correlation method to assess functional
association of pathways

In this study, we used NES obtained from GSEA to represent

the ‘‘meta-activity’’ of a pathway. We used Pearson correlation

which assumes linear dependence between variables to infer

functional association between pathways. Matrix of z-score-

corrected NES values was used as input to calculate Pearson

correlation coefficient (PCC) as stated below:

PCC~

PN

i~1

(Xi{ X
{

)(Yi{ Y )
{

(n{1)SxSY

where X
{

and Y
{

are means of X and Y respectively, SX and SY are

standard deviations of X and Y respectively, and n is the number

of pathways.

To evaluate the significance between correlations, a matrix of p-

values for testing the hypothesis of no correlation was performed.

Each p-value is the probability of getting a correlation as large as

the observed value by random chance, where the true correlation

is zero. We considered the correlation between pathways is

significant if PCC.0.5 or PCC,20.5 with p-value,0.0001.

Devising a simple scoring scheme to identify anti-
correlated pathways

We observed there are 20 conditions in our data showing

obvious inverted activity profiles among hubs (bolded labels in

Figure 3A). We thus used these 20 conditions as ‘‘seeds’’ to identify

other pathways that may also exhibit inverted profiles. For these

20 conditions, if a significant respond of a given pathway is

encountered, +1 score is assigned to the group (A or B, with at

least three hub pathways) that shows similar profile with a

particular pathway, else a penalty of 21 score is assigned.

Accumulative scores for Group A (A_score) and B (B_score) for

this pathway are calculated. A pathway will be assigned as

member of Group A if its A-score$+3 (B-score#23) and vice

versa. To assess whether these assigned pathways are really anti-

correlated, ‘‘anti-correlation score’’ for a pathway is calculated as

followed:
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Anti-correlation score~
A score

n
or

B score

n

whichever A_ or B_score is positive, and n is the number of

significant responds of a pathway across 20 anti-correlated

conditions and 3#n#20. A pathway is considered anti-correlated

if the anti-correlation score .0.7.

Data processing of independent mammalian datasets
In order to assess the present of inverted activity profiles of

molecular pathways in mammalian systems, we collected inde-

pendent external hepatic transcriptome data of rat and mouse

treated with chemicals from the Gene Expression Omnibus

(GEO). Transcriptome data of human hepatocellular carcinomas

was also included. Four GEO expression series, GEO:GSE5509

[17], GEO:GSE17184 [18], GEO:GSE9839, and GEO:GSE1843

[19] were used. Student’s t-test was performed for each series

between treated with their respective control groups. log10(1/P)

was computed for each gene and was used as ranking metric as

described in the zebrafish data. Gene symbols provided by

platforms in these selected GEO series were used as input for

GSEA, with molecular pathways less than 10 genes mapped to the

ranked input arrays were discarded. Pathways with nominal p-

value,0.05 were considered significantly affected. Molecular

pathways showing inverted profiles in zebrafish were selected to

assess their activity profile in mammalian systems.

Supporting Information

Figure S1 Network of molecular pathways showing
anti-correlated behavior. Hubs are indicated with red and

green fonts. Pink and green nodes represent pathways associated

to Group A and B, respectively.

(TIF)

Figure S2 Demonstration of Normalized Pathway Cov-
erage (NPC) function, which represents the average
contribution of significant responses from each pathway
with Nsr

i §threshold. Lets us assume that the number of

significant responses of three pathways Pi, Pj, Pk, are larger or

equal to a threshold, say 5, then the NPC for these pathways of

threshold 5 will be NPC(5) = (5/43+7/43+6/43)/3<0.1395.

Similar computation is performed for other pathways with

different values of thresholds. The computation results are shown

in the figure for Nsr
i §5. Crosses (x) are pathways with Nsr

i v5
where they are not used for computation. Ticks (!) are pathways

that fulfilled the threshold criteria for further computation.

(JPG)

Data S1 z-score corrected normalized enrichment
scores for each molecular pathway across 43 chemical
perturbations.

(XLS)

Data S2 Pairwise Pearson correlation between path-
ways.

(XLS)

Data S3 Statistical test (p-value) for pairwise correla-
tion between pathways.

(XLS)

Table S1 Categories, types, and experimental summa-
ry of hepatic transcriptomic data used in this study.
As = Arsenic (V); BAP = Benzo-[a]-pyrene; CA = Chloroa-
niline; E2 = Estradiol; Hg = Mercury (II) chloride; NP = 4-
Nitrophenol.

(DOC)

Table S2 Categories of pathways at different levels of
responsiveness and degree of connectivities.
HR = Highly responsive; MR = Medium responsive;
LR = Low responsive; HC = Highly connected; LC = Low
connected.

(DOC)

Table S3 Categories of pathways with known associat-
ed functions showing significant correlation coefficients.

(DOC)

Table S4 Assigned anti-correlation scores to pathways
showing significant responds to 20 selected conditions
with obvious inverted activities of hubs as ‘‘seed’’. Red

and green fonts are hub pathways of Group A and B, respectively.

Pink and green backgrounds are anti-correlated pathways assigned

to Group A and B, respectively. See Materials and Methods for

detail description for anti-correlation scores.

(DOC)
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