64 research outputs found

    Thickness-dependent thermal properties of amorphous insulating thin films measured by photoreflectance microscopy

    Get PDF
    In this work, we report on the measurement of the thermal conductivity of thin insulating films of SiO2 obtained by thermal oxidation, and Al2O3 grown by atomic layer deposition (ALD), both on Si wafers. We used photoreflectance microscopy to determine the thermal properties of the films as a function of thickness in the 2 nm to 1000 nm range. The effective thermal conductivity of the Al2O3 layer is shown to decrease with thickness down to 70% for the thinnest layers. The data were analyzed upon considering that the change in the effective thermal conductivity corresponds to an intrinsic thermal conductivity associated to an additional interfacial thermal resistance. The intrinsic conductivity and interfacial thermal resistance of SiO2 were found to be equal to 0.95 W/m·K and 5.1 × 10− 9 m2K/W respectively; those of Al2O3 were found to be 1.56 W/m·K and 4.3 × 10− 9 m2K/W

    Temperature Measurement of Microsystems by Scanning Thermal Microscopy

    Get PDF
    Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/5920)International audienceSurface temperature measurements were performed with a Scanning Thermal Microscope. We aim at proving an eventual sub-micrometric resolution of this metrology when using a wollaston wire probe of micrometric size. A dedicated CMOS device was designed with arrays of lines 0.35mm in size with 0.8 mm and 10mm periods. Integrated Circuits with or without a passivition layer were tested. To enhance sensitivity, the IC heat source was excited with an AC current. We show that the passivation layer spreads heat so that the lines are not distinguishable. Removing this layer allows us to distinguish the lines in the case of the 10mm period

    Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions

    Get PDF
    This work aims to characterize the physiological response of grapevine (Vitis vinifera L.) cv. Tempranillo to UV-B radiation under water deficit conditions. Grapevine fruit-bearing cuttings were exposed to three levels of supplemental biologically effective UV-B radiation (0, 5.98 and 9.66 kJ m−2 day−1) and two water regimes (well watered and water deficit), in a factorial design, from fruit-set to maturity under glasshouse-controlled conditions. UV-B induced a transient decrease in net photosynthesis (Anet), actual and maximum potential efficiency of photosystem II, particularly on well watered plants. Methanol extractable UV-B absorbing compounds (MEUVAC) concentration and superoxide dismutase activity increased with UV-B. Water deficit effected decrease in Anet and stomatal conductance, and did not change non-photochemical quenching and the de-epoxidation state of xanthophylls, dark respiration and photorespiration being alternative ways to dissipate the excess of energy. Little interactive effects between UV-B and drought were detected on photosynthesis performance, where the impact of UV-B was overshadowed by the effects of water deficit. Grape berry ripening was strongly delayed when UV-B and water deficit were applied in combination. In summary, deficit irrigation did not modify the adaptive response of grapevine to UV-B, through the accumulation of MEUVAC. However, combined treatments caused additive effects on berry ripening

    Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium Reduction of Polymer-Templated Silica

    Full text link
    This paper reports the cross-plane thermal conductivity of ordered mesoporous nanocrystalline silicon thin films between 25 and 315 K. The films were produced by evaporation induced self-assembly of mesoporous silica followed by magnesium reduction. The periodic ordering of pores in mesoporous silicon was characterized by X-ray diffraction and direct SEM imaging. The average crystallite size, porosity, and film thickness were about 13 nm, 25-35%, and 140-340 nm, respectively. The pores were arranged in a face-centered cubic lattice. The cross-plane thermal conductivity of the mesoporous silicon thin films was measured using the 3ω method. It was between 3 and 5 orders of magnitude smaller than that of bulk single crystal silicon in the temperature range considered. The effects of temperature, film thickness, and copolymer template on the thermal conductivity were investigated. A model based on kinetic theory was used to accurately predict the measured thermal conductivity for all temperatures. On the one hand, both the measured thermal conductivity and the model predictions showed a temperature dependence of k proportional to T2 at low temperatures, typical of amorphous and strongly disordered materials. On the other hand, at high temperatures the thermal conductivity of mesoporous silicon films reached a maximum, indicating a crystalline-like behavior. These results will be useful in designing mesoporous silicon with desired thermal conductivity by tuning its morphology for various applications

    Sensitivity of grapevine phenology to water availability, temperature and CO2 concentration

    Get PDF
    In recent decades, mean global temperatures have increased in parallel with a sharp rise in atmospheric carbon dioxide (CO2) levels, with apparent implications for precipitation patterns. The aim of the present work is to assess the sensitivity of different phenological stages of grapevine to temperature and to study the influence of other factors related to climate change (water availability and CO2 concentration) on this relationship. Grapevine phenological records from 9 plantings between 42.75°N and 46.03°N consisting of dates for budburst, flowering and fruit maturity were used. In addition, we used phenological data collected from 2 years of experiments with grapevine fruit-bearing cuttings with two grapevine varieties under two levels of water availability, two temperature regimes and two levels of CO2. Dormancy breaking and flowering were strongly dependent on spring temperature, while neither variation in temperature during the chilling period nor precipitation significantly affected budburst date. The time needed to reach fruit maturity diminished with increasing temperature and decreasing precipitation. Experiments under semi-controlled conditions revealed great sensitivity of berry development to both temperature and CO2. Water availability had significant interactions with both temperature and CO2; however, in general, water deficit delayed maturity when combined with other factors. Sensitivities to temperature and CO2 varied widely, but higher sensitivities appeared in the coolest year, particularly for the late ripening variety, ‘White Tempranillo’. The knowledge gained in whole plant physiology and multi stress approaches is crucial to predict the effects of climate change and to design mitigation and adaptation strategies allowing viticulture to cope with climate change

    QUANTIHEAT Project: Progresses after two years

    No full text
    International audienc

    Situation de l'élevage des petits ruminants dans la région de Bafata, Guinée-Bissau

    No full text
    Situation of Rearing of Small Ruminants in the Area of Bafata in Guine-Bissau. It is so a short time domestic animal's rearing development and research are considered in Guine-Bissau. Here is described the peasant's rearing of small ruminants in the east of the country, '"where are working the autors. The general difficulties and the future's prospect are discussed

    Adaptive multiresolution methods

    No full text
    International audienceno abstrac
    corecore