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Abstract 

 

In this work, we report on the measurement of the thermal conductivity of thin insulating films of 

SiO2 obtained by thermal oxidation, and Al2O3 grown by atomic layer deposition (ALD), both on 

Si wafers. We used photoreflectance microscopy to determine the thermal properties of the films 

as a function of thickness in the 2 nm to 1000 nm range. The effective thermal conductivity of the 

Al2O3 layer is shown to decrease with thickness down to 70% for the thinnest layers. The data 

were analyzed upon considering that the change in the effective thermal conductivity corresponds 

to an intrinsic thermal conductivity associated to an additional interfacial thermal resistance. The 

intrinsic conductivity and interfacial thermal resistance of SiO2 were found to be equal to 0.95 
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W/m.K and 5.1x10-9 m2K/W respectively; those of Al2O3 were found to be 1.56 W/m.K and 

4.3x10-9 m2K/W. 

Keywords 

Thermal conductivity, thermal diffusivity, interfacial thermal resistance, frequency-domain 

photoreflectance, Atomic layer deposition 
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1. Introduction 

Thermal and electronic conductivities are strongly correlated in most materials. However, many 

applications demand the maximization of one of these properties while minimizing the other. In 

microelectronics for instance, good electrical insulation is essential (capacitors, interconnects), 

but low-k dielectrics usually come with poor thermal conductivity, hampering heat dissipation. 

Conversely, high electrical conductivity and thermal insulation are crucial for thermoelectric 

conversion, in order to avoid Joule heating while preserving the temperature gradient [1, 2]. 

Nanostructured materials offer a new way to act on these antagonistic requirements, since 

nanoscale thermal properties can significantly differ from bulk values [3, 4]. A lot of attention 

has been focused recently on understanding the underlying physics, like phonon scattering [5] 

and heat transport phenomena [6, 7]. 

In this paper, we investigate the thermal properties of two electrical insulators, SiO2 and Al2O3 

thin films. SiO2 is essential to microelectronics and other industrial applications. It has therefore 

received a lot of attention, and its thermal properties are relatively well known. Some research 

groups have studied the thermal conductivity of Al2O3 amorphous thin films [8-11], but the 

evaluation of their interfacial thermal resistances is still very incomplete [12]. Al2O3 amorphous 

thin films are promising, since they can reduce electronic recombination losses in solar cells by 

the passivation of silicon surfaces, thus enabling higher efficiency [13]. Moreover, thin 

amorphous Al2O3 films are good thermal insulators as well as excellent moisture barriers [14] that 

can be fabricated at low temperatures [15, 16], making them highly desirable in electronic 

components [17]. 
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A broad range of experimental methods is available in order to determine the thermal properties 

of materials. They essentially differ in their heat generation process (optical, Joule,…), in the 

property which is probed (temperature of the surface, sample or air, acoustic waves, etc…), and 

in the probing mechanism (refractive index, thermal emission, interferometry, fluorescence, 

electrical resistance…). Temporally, various strategies have also been developed: steady state, 

transient or modulated. Several reviews of thin films characterization techniques have been 

proposed [18, 19]. Among these techniques, modulated photoreflectance microscopy has the 

advantages of being contactless, non-destructive and, owing to the high spatial resolution of 

visible light microscopy, allows measurements on relatively small samples (>10 µm). It is based 

on the generation of thermal “waves” by intensity-modulated optical excitation. This technique 

was first proposed by A. Rosencwaig et al. [20], and then widely used to determine the thermal 

properties of bulk materials [21, 22], grains [23], coatings and thin films [24, 25]. In this work, 

the frequency domain photoreflectance method is used to study the effect of thickness on the 

thermal properties of amorphous SiO2 and Al2O3 thin films. The method requires the deposition 

of a gold layer to opacify the surface, but is well adapted to this kind of study, where different 

nanoscale layers have to be distinguished. A 3D heat diffusion model was used to extract the 

thermal properties of each material independently [22]. 

2. Experimental 

The SiO2 thin films with different thicknesses were fabricated by Kelvin Nanotechnology Ltd 

(KNT), in collaboration with Glasgow University. The starting material is a thick layer of SiO2 

grown by thermal oxidation on a p-type Si wafer. Repeated photolithography steps, followed by 

timed hydrofluoric acid (HF) etching, were performed to obtain the required thicknesses of 12, 
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30, 65, 145, 237, 530 and 950 nm, as depicted in Fig. 1 a). The layer thickness was measured by 

white light interferometry [26]. 

The studied Al2O3 samples were fabricated by Picosun using a PicosunTM ALD reactor. ALD is a 

powerful method to grow fully conformal, pinhole-free layers with atomic accuracy [26]. This is 

based on the self-terminating nature of gas-solid reactions taking place at the sample surface. The 

studied thin films were grown on silicon wafer with a 10-14 µm n-type epilayer of resistivity 3-6 

ohm.cm and a native SiO2 layer (thickness of approximately 1.5 nm). The values of the obtained 

thicknesses (2, 5, 9.5, 24, 48, 98, 152, 196, 490 nm) were measured by ellipsometry [28], as 

shown in Fig. 1 b).  

The frequency-domain photoreflectance microscopy is one of the most convenient photothermal 

techniques to measure the thermal diffusivity of solid materials. It uses an intensity-modulated 

green laser (λ=532 nm) focused by an optical microscope onto the surface of the sample [21, 29]. 

The modulated beam excites thermal “waves”, and the resulting distribution of the surface 

temperature modulation is read by a second probe laser (λ =670 nm) using the temperature 

dependence of the reflectivity, which is proportional to temperature in a first approximation, and 

depends on the nature of the reflecting material. The amplitude and the phase of the modulated 

photoreflectance signals are extracted by lock-in detection and recorded as a function of the 

distance between the two spots. This method requires a good absorption of the heating laser, for 

efficient thermal wave generation, and an efficient reflection of the probe laser. In the case of 

transparent materials, an opaque and reflective transducing surface is therefore always needed in 

order to create and probe the thermal waves. In our case, the Al2O3 and SiO2 samples were coated 

with a 100 nm thick gold layer. The measurements were performed at room temperature, with an 

excitation frequency of 150 kHz. The heat diffusion theoretical model depends on an effective 
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diameter, which is obtained by a convolution of the heating laser spot and the probing laser spot. 

This effective diameter was found to be 3 µm, a value which can be either determined by 

convolution of the Airy discs associated to the laser wavelengths and the numerical aperture of 

the objective, or by fitting measurements obtained on a known sample. 

3. Results and Discussion 

The thermal diffusivity D of an optically and thermally thick, isotropic, bulk material can be 

straightforwardly extracted from the slope 𝑑𝑃𝑑𝑥 = √𝜋𝑓
𝐷  of the phase lag P of the surface temperature 

rise with respect to the excitation at a distance x from the excitation, where f is the excitation 

frequency [30]. For a multilayered sample, there is no such simple relation, since the phase slope 

𝑑𝑃
𝑑𝑥 is then a function of the diffusivities and conductivities of the different layers [29]. However, 

the surface temperature modulation can be calculated using a thermal quadrupole formalism [25]. 

The thermal diffusivity and conductivity of one layer of known thickness is therefore obtained by 

using this model and determining the thermal properties which best fit the measured amplitude 

and phase of the surface temperature modulation. The samples are considered homogenous 

laterally over the studied region (40 µm), and the anisotropy of the diffusion coefficient, i.e. 

differences between the in-plane and through-plane diffusion coefficients, D// and DA 

respectively, are neglected. Moreover, the diffusivity and conductivity are not determined 

independently, but rather upon assuming that the ratio of thermal conductivity k to thermal 

diffusivity D is constant 𝑘𝐷 = 𝜌𝐶 =cst, with ρ the density and C the specific heat of the bulk 

material, taken from the literature. In some cases, e.g. when the thermal contrast and the 

measurement Signal to Noise Ratio are sufficient, the thermal parameters of up to two media [29] 

can be obtained simultaneously. However, because the number of variables increases with each 
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additional layer, a reliable determination of the thermal properties of a given layer requires the 

precise knowledge of the thicknesses and thermal properties of the other layers. Therefore, the 

thermal properties of the different layers composing the samples were determined in three steps, 

depicted in Fig. 2: 

x Step 1: A gold layer was deposited simultaneously on glass and on the studied samples. 

Since its thermal properties are well known, and because it is thermally insulating, glass is 

an appropriate choice to study the properties of the 100 nm gold layer which essentially 

drive the surface temperature. 

x Step 2: An identical gold layer was deposited on a bare Si substrate, to characterize the 

thermal properties of the substrate. 

x Step 3: An identical substrate, supporting the layers to be characterized and the same gold 

layers was fabricated. Using the properties obtained in steps 1 and 2, the thermal 

properties of the relevant layer can finally be measured.  

In two separate runs, using different adhesion layers and under different conditions, gold was 

deposited on SiO2 and Al2O3 thin films along with a glass reference sample for each run. On top 

of the SiO2 layer, we measured a thermal diffusivity D = 9.6x10-5m2/s and a thermal conductivity 

k = 238 W/m.K for the gold layer. The density of gold and its specific heat were taken from 

literature [31] : 19.3x103 kg/m3 and 128 J/kg.K respectively. On top of the Al2O3 layers, the 

measured thermal diffusivity and conductivity of gold were found to be D = 6.2x10-5 m2/s and k = 

155 W/m.K respectively. The same gold is deposited simultaneously over all samples of the same 

kind; thus it is reasonably assumed that the gold coating measured in step 1 has identical 

properties over the same series.  
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Similarly, a precise substrate characterization was then obtained by taking measurements on 

substrates coated simultaneously with the same gold film (step 2). The substrate for both series is 

silicon, and the ratio 𝑘𝐷 = 𝜌𝐶 was kept constant [32] at 16.7x105 J/m3K, following the Dulong-

Petit law. The substrate used for all the SiO2 samples is a p-type (boron) doped silicon with 

0.001-0.01 Ohm.cm resistivity. Its thermal properties were found to be D =4.5x10-5 m2/s and k = 

75 W/m.K. The substrate for the Al2O3 films, as described above, was not vertically 

homogeneous since the silicon wafers comprise an epilayer of 10-14 µm n-doped Si. However, at 

our excitation frequency f=150 kHz, the penetration depth of thermal waves is given by 𝜇 = √ 𝐷
𝜋𝑓 

= 13 µm. Therefore, thermal waves do not significantly penetrate the underlying undoped silicon, 

and this substrate can be safely considered as homogeneous, semi-infinite, n-doped silicon. The 

obtained substrate thermal properties are D = 8x10-5 m2/s and k = 135 W/m.K. Finally (step 3), 

the properties of each material was determined using the parameters of the appropriate gold 

coating and substrate obtained in step 1 and 2. 

Let us consider SiO2, a well-studied material, in order to allow comparison with existing 

measurements. The reported values of micrometric thick films thermal conductivity essentially 

depend on the deposition technique, and range from 1 to 1.4 W/m.K for SiO2 grown by thermal 

oxidation [33-35]. Fig. 3 shows the obtained values of the effective thermal conductivity as a 

function of thickness. Typical examples of the measurements and theoretical fits quality are 

shown in the next section. As we scale down thickness (< 100 nm), thin 
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films can be modeled as thermal resistances. In other words, the theoretical fit is mainly affected 

by the value of 𝑙. 𝑘−1, where l is the thickness. In this case, the change in the thermal properties 

only affects the amplitude and not the phase, which is dictated by the diffusivity. The inset in Fig. 

3 shows the fit of the thermal conductivities of these thin layers as a function of thickness l, by a 

resistance model [35]: 

                                       𝑙. 𝑘−1 = 𝑙. 𝑘𝑖−1 + 𝑅𝑡ℎ                                 (1) 

where 𝑙. 𝑘−1 is the total thermal resistance, Rth is the additional interfacial thermal resistance 

(metal/film and film/substrate interfaces), ki is the intrinsic thermal conductivity which stands for 

the upper limit of the effective thermal conductivity reached for the thickest layers. The best fit 

corresponds to an intrinsic thermal conductivity of (0.95 ± 0.03) W/m.K, a value identical (within 

5%) to the one reported by Govorkov et al. [33]. We noticed higher discrepancies (30%) 

compared to values reported by the 3𝜔 method [34] and some similar techniques [35]. These 

discrepancies could be related to the heat generation/collection method. Photoreflectance excites 

a sub-µm circular region and probes laterally, whereas resistors used to excite and probe in the 

3𝜔 method are usually tens of micrometers wide. While both methods probe a combination of in-

plane and through-plane thermal properties, photoreflectance is comparatively more sensitive to 

in-plane thermal properties, and the 3𝜔 method to through-plane properties. Moreover, it is 

important to point out that even for the thickest layer, 1 µm, the value of bulk fused silica (1.38 

W/m.K) [37] may not be attained. Since thermal transport across multilayer systems is influenced 

by the thermal boundary resistance, it is important to extract this quantity. In the current study, 

we deduce the influence of the two interfaces through the best fit of the resistance model 

(equation 1). This resistance was found to be (5.1±1) x 10-9 m2K/W, approximately 7 times 

smaller than the values reported by Chien et al.[35]. The uncertainties on ki and Rth are the 
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standard deviation errors on the fitting parameters. For the thicker layers (>100 nm), the 

penetration depth, which is in this case equal to 1.3 µm, becomes comparable to the layer 

thickness; in this range, the thermal resistance model does not hold. 

Fig. 4 shows the results obtained over 9 samples with different Al2O3 layer thicknesses. Fig. 4a) 

represents the amplitudes (log scale) and Fig. 4b) the phases of the photoreflectance signals 

versus the distance from the heating point. The symbols are the experimental results, and solid 

lines are the corresponding best fits. As can be noticed, each layer thickness yields a 

measurement which can be clearly distinguished, owing to the fact that Al2O3, like SiO2, is a very 

insulating material, strongly contrasting with the silicon substrate and gold layer. Each of these 

measurements is accurately fitted using the parameters measured for the substrate and the gold 

coating, with the thermal properties of Al2O3 as the only variable parameters. In order to avoid 

any rough assumptions on the native oxide layer (approx. 1.5 nm) found on the Si substrate and 

the possible presence of a thermal boundary resistance, we used a single equivalent layer with an 

effective thermal conductivity to describe the oxide and the resistance. The values of Al2O3 

effective thermal conductivity and thermal diffusivity used to fit the measurements are shown in 

Fig. 5 as a function of the layer thickness. The ratio 𝑘𝐷 = 𝜌𝐶=2.2x106 J/m3K was kept constant 

upon fitting all the measurements, with ρ the density of amorphous Al2O3 and C the specific heat 

taken from literature [16] to be 2.95x103 kg/m3 and 755 J/K.kg, respectively. The precision on the 

reported values of thermal conductivity and diffusivity is presented in Fig. 5 by error bars. The 

error bars were determined by varying the fitting parameters until all measurement points, both in 

amplitude and in phase, were comprised between curves corresponding to D ±'D or k±'k. These 

values of 'D or 'k were then adopted as measurement uncertainties. The values of the effective 

thermal conductivity were found to vary between 1.65 and 0.465 W/m.K, and those of the 
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diffusivity between (0.74 and 0.22)x10-6 m2/s depending on the thickness. One can note a strong 

drop in the thermal conductivity of Al2O3 below 20 nm, which could possibly be caused by 

mechanical stress in the first few atomic layers. Indeed, optical refractive index measurements in 

sub-50 nm films [38] have shown that annealing, which precisely relieves this stress, has a strong 

influence on these properties, and could similarly impact the thermal properties. However, 

between 98 nm and 2 nm layer thickness, Al2O3 films behave as thermal resistances, and we used 

the model expressed in equation (1), as shown in the inset in Fig. 5. Note that we retrieve a value 

for the intrinsic thermal conductivity of ki = (1.56 ± 0.08) W/m.K, which is close to the value of 

effective thermal conductivity of the thickest layer. The thermal resistance was found to be equal 

to (4.26 ± 0.67) x 10-9 m2K/W, which corresponds to the effective resistance of the two 

interfaces. Let us remark that the analysis of the experimental data based on Fourier’s heat 

equation seems to stay reasonable despite the few-nanometers thicknesses involved. We could 

not identify clearly a further reduction of the thermal conductivity, as would be the case if 

ballistic transport were happening, for the smallest thicknesses within our experimental accuracy. 

This could be due to the fact that diffusion still holds at such scale for amorphous, i.e. disordered, 

media. 

 

 

4. Conclusion 

In summary, we presented a study of the thermal properties of SiO2 and Al2O3 thin films as a 

function of thickness. For low thicknesses, 12 nm for SiO2 and 2-5 nm for Al2O3, we measured 

reductions of the effective thermal conductivity by 30% and 70% compared to the values 
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obtained for micrometric layers of SiO2 and Al2O3 respectively. The interfacial thermal resistance 

was small in both cases, suggesting good thermal transport across the interfaces. The diffusivity 

and conductivity are not measured independently, but rather upon the assumption that ρC = cst, 

though the effect of diffusivity is clearly revealed by the change of the phase of the 

photoreflectance signal for the thick layers (down to 100 nm). The thermal conductivity and 

diffusivity were determined with an average precision of 15%, except for the 10, 5 and 2 nm 

thick layers of Al2O3. For these very thin films, the precision is 20%, although the absolute value 

of the uncertainty is unchanged. The different recorded response for each measured layer proves 

that frequency domain photoreflectance microscopy is a well-adapted robust technique to analyze 

thin films down to the nanometric scale. 
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Figures captions 
 

Figure 1: Schematic of the fabricated samples, a) the SiO2 layers and b) the Al2O3 layers. 

Figure 2: Schematic of the analysis procedure. 

Figure 3: Effective thermal conductivity and diffusivity versus thickness of SiO2 layer over doped 

Si substrate. The symbols are the measured values along with the corresponding uncertainties. 

The inset solid line corresponds to the best fit following equation (1); the obtained parameters are 

ki= 0.95 W/m.K and Rth = 5.1 x 10-9 m2K/W. 
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Figure 4: a) Amplitude and, b) phase of the measured photoreflectance signals along with 

corresponding fits for different thicknesses of Al2O3. The experimental error on the measurement 

is 5%, and was estimated by repeating each measurement 5 times. 

Figure 5: Effective thermal conductivity and diffusivity versus thickness of Al2O3 layer over Si 

substrate. The symbols are the measured values along with the corresponding uncertainties. The 

inset solid line corresponds to the best fit following equation (1); the obtained parameters are ki= 

1.56 W/m.K and Rth = 4.26 x 10-9 m2K/W. 
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