43 research outputs found
Photonuclear reactions of actinides in the giant dipole resonance region
Photonuclear reactions at energies covering the giant dipole resonance (GDR)
region are analyzed with an approach based on nuclear photoabsorption followed
by the process of competition between light particle evaporation and fission
for the excited nucleus. The photoabsorption cross section at energies covering
the GDR region is contributed by both the Lorentz type GDR cross section and
the quasideuteron cross section. The evaporation-fission process of the
compound nucleus is simulated in a Monte-Carlo framework. Photofission reaction
cross sections are analyzed in a systematic manner in the energy range of
10-20 MeV for the actinides Th, U and Np.
Photonuclear cross sections for the medium-mass nuclei Cu and Zn,
for which there are no fission events, are also presented. The study reproduces
satisfactorily the available experimental data of photofission cross sections
at GDR energy region and the increasing trend of nuclear fissility with the
fissility parameter for the actinides.Comment: 4 pages including 2 tables and 1 figur
A search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I
A search for periodic modulations of the solar neutrino flux was performed
using the Super-Kamiokande-I data taken from May 31st, 1996 to July 15th, 2001.
The detector's capability of measuring the exact time of events, combined with
a relatively high yield of solar neutrino events, allows a search for
short-time variations in the observed flux. We employed the Lomb test to look
for periodic modulations of the observed solar neutrino flux. The obtained
periodogram is consistent with statistical fluctuation and no significant
periodicity was found
Search for Neutral Q-balls in Super-Kamiokande II
A search for Q-balls induced groups of successive contained events has been
carried out in Super-Kamiokande II with 541.7 days of live time.
Neutral Q-balls would emit pions when colliding with nuclei, generating a
signal of successive contained pion events along a track. No candidate for
successive contained event groups has been found in Super-Kamiokande II, so
upper limits on the possible flux of such Q-balls have been obtained.Comment: 5 pages, 5 figures, Submitted to Phys. Lett.
Effect of surrounding environment on atomic structure and equilibrium shape of growing nanocrystals: gold in/on SiO2
We report on the equilibrium shape and atomic structure of thermally-processed Au nanocrystals (NCs) as determined by high resolution transmission electron microscopy (TEM). The NCs were either deposited on SiO2surface or embedded in SiO2layer. Quantitative data on the NCs surface free energy were obtained via the inverse Wulff construction. Nanocrystals inside the SiO2layer are defect-free and maintain a symmetrical equilibrium shape during the growth. Nanocrystals on SiO2surface exhibit asymmetrical equilibrium shape that is characterized by the introduction of twins and more complex atomic defects above a critical size. The observed differences in the equilibrium shape and atomic structure evolution of growing NCs in and on SiO2is explained in terms of evolution in isotropic/anisotropic environment making the surface free energy function angular and/or radial symmetric/asymmetric affecting the rotational/translational invariance of the surface stress tensor
Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.
BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362
Search for nucleon decay into charged antilepton plus meson in 0.316 megaton . years exposure of the Super-Kamiokande water Cherenkov detector
We have searched for proton decays into a charged antilepton (e+, μ+) plus a meson (η, ρ0, ω) and for neutron decays into a charged antilepton (e+, μ+) plus a meson (π−, ρ−) using Super-Kamiokande I-IV data, corresponding to 0.316 megaton⋅years of exposure. This measurement updates the previous published result by using 2.26 times more data and improved analysis methods. No significant evidence for nucleon decay is observed and lower limits on the partial lifetime of the nucleon are obtained. The limits range from 3×1031 to 1×1034 years at 90% confidence level, depending on the decay mode
Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande
A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search
for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible
energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is
observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center
and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced
from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter
from the Galactic center or the Sun interacting in a terrestrial detector