2,111 research outputs found

    The Chemistry of Interstellar OH+, H2O+, and H3O+: Inferring the Cosmic Ray Ionization Rates from Observations of Molecular Ions

    Full text link
    We model the production of OH+, H2O+, and H3O+ in interstellar clouds, using a steady state photodissociation region code that treats the freeze-out of gas species, grain surface chemistry, and desorption of ices from grains. The code includes PAHs, which have important effects on the chemistry. All three ions generally have two peaks in abundance as a function of depth into the cloud, one at A_V<~1 and one at A_V~3-8, the exact values depending on the ratio of incident ultraviolet flux to gas density. For relatively low values of the incident far ultraviolet flux on the cloud ({\chi}<~ 1000; {\chi}= 1= local interstellar value), the columns of OH+ and H2O+ scale roughly as the cosmic ray primary ionization rate {\zeta}(crp) divided by the hydrogen nucleus density n. The H3O+ column is dominated by the second peak, and we show that if PAHs are present, N(H3O+) ~ 4x10^{13} cm^{-2} independent of {\zeta}(crp) or n. If there are no PAHs or very small grains at the second peak, N(H3O+) can attain such columns only if low ionization potential metals are heavily depleted. We also model diffuse and translucent clouds in the interstellar medium, and show how observations of N(OH+)/N(H) and N(OH+)/N(H2O+) can be used to estimate {\zeta}(crp)/n, {\chi}/n and A_V in them. We compare our models to Herschel observations of these two ions, and estimate {\zeta}(crp) ~ 4-6 x 10^-16 (n/100 cm^-3) s^-1 and \chi/n = 0.03 cm^3 for diffuse foreground clouds towards W49N

    The ionization fraction gradient across the Horsehead edge: An archetype for molecular clouds

    Full text link
    The ionization fraction plays a key role in the chemistry and dynamics of molecular clouds. We study the H13CO+, DCO+ and HOC+ line emission towards the Horsehead, from the shielded core to the UV irradiated cloud edge, i.e., the Photodissociation Region (PDR), as a template to investigate the ionization fraction gradient in molecular clouds. We analyze a PdBI map of the H13CO+ J=1-0 line, complemented with IRAM-30m H13CO+ and DCO+ higher-J line maps and new HOC+ and CO+ observations. We compare self-consistently the observed spatial distribution and line intensities with detailed depth-dependent predictions of a PDR model coupled with a nonlocal radiative transfer calculation. The chemical network includes deuterated species, 13C fractionation reactions and HCO+/HOC+ isomerization reactions. The role of neutral and charged PAHs in the cloud chemistry and ionization balance is investigated. The detection of HOC+ reactive ion towards the Horsehead PDR proves the high ionization fraction of the outer UV irradiated regions, where we derive a low [HCO+]/[HOC+]~75-200 abundance ratio. In the absence of PAHs, we reproduce the observations with gas-phase metal abundances, [Fe+Mg+...], lower than 4x10(-9) (with respect to H) and a cosmic-rays ionization rate of zeta=(5+/-3)x10(-17) s(-1). The inclusion of PAHs modifies the ionization fraction gradient and increases the required metal abundance. The ionization fraction in the Horsehead edge follows a steep gradient, with a scale length of ~0.05 pc (or ~25''), from [e-]~10(-4) (or n_e ~ 1-5 cm(-3)) in the PDR to a few times ~10(-9) in the core. PAH^- anions play a role in the charge balance of the cold and neutral gas if substantial amounts of free PAHs are present ([PAH] >10(-8)).Comment: 13 pages, 7 figures, 6 tables. Accepted for publication in A&A (english not edited

    Gravitational collapse of the OMC-1 region

    Get PDF
    We have investigated the global dynamical state of the Integral Shaped Filament in the Orion A cloud using new N2_2H+^+ (1-0) large-scale, IRAM30m observations. Our analysis of its internal gas dynamics reveals the presence of accelerated motions towards the Orion Nebula Cluster, showing a characteristic blue-shifted profile centred at the position of the OMC-1 South region. The properties of these observed gas motions (profile, extension, and magnitude) are consistent with the expected accelerations for the gravitational collapse of the OMC-1 region and explain both the physical and kinematic structure of this cloud.Comment: 5 pages, 2 figures; Accepted by A&

    Simulated CII observations for SPICA/SAFARI

    Full text link
    We investigate the case of CII 158 micron observations for SPICA/SAFARI using a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists of two converging flows of warm gas (10,000 K) within a cubic box 50 pc in length. The interplay of thermal instability, magnetic field and self-gravity leads to the formation of cold, dense clumps within a warm, turbulent interclump medium. We sample several clumps along a line of sight through the simulated cube and use them as input density profiles in the Meudon PDR code. This allows us to derive intensity predictions for the CII 158 micron line and provide time estimates for the mapping of a given sky area.Comment: 4 pages, 5 figures, to appear in the proceedings of the workshop "The Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins of Planets and Galaxies" (July 2009, Oxford, United Kingdom

    SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions

    Full text link
    The hydroxyl radical (OH) is found in various environments within the interstellar medium (ISM) of the Milky Way and external galaxies, mostly either in diffuse interstellar clouds or in the warm, dense environments of newly formed low-mass and high-mass stars, i.e, in the dense shells of compact and ultracompact HII regions (UCHIIRs). Until today, most studies of interstellar OH involved the molecule's radio wavelength hyperfine structure (hfs) transitions. These lines are generally not in LTE and either masing or over-cooling complicates their interpretation. In the past, observations of transitions between different rotational levels of OH, which are at far-infrared wavelengths, have suffered from limited spectral and angular resolution. Since these lines have critical densities many orders of magnitude higher than the radio wavelength ground state hfs lines and are emitted from levels with more than 100 K above the ground state, when observed in emission, they probe very dense and warm material. We probe the warm and dense molecular material surrounding the UCHIIR/OH maser sources W3(OH), G10.62-0.39 and NGC 7538 IRS1 by studying the 2Π1/2,J=3/21/2^2\Pi_{{1/2}}, J = {3/2} - {1/2} rotational transition of OH in emission and, toward the last source also the molecule's 2Π3/2,J=5/23/2^2\Pi_{3/2}, J = 5/2 - 3/2 ground-state transition in absorption. We used the Stratospheric Observatory for Infrared Astronomy (SOFIA) to observe these OH lines, which are near 1.84 THz (163μ163 \mum) and 2.51 THz (119.3μ119.3 \mum). We clearly detect the OH lines, some of which are blended with each other. Employing non-LTE radiative transfer calculations we predict line intensities using models of a low OH abundance envelope versus a compact, high-abundance source corresponding to the origin of the radio OH lines.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue

    The IRAM-30m line survey of the Horsehead PDR: I. CF+ as a tracer of C+ and a measure of the Fluorine abundance

    Full text link
    C+ is a key species in the interstellar medium but its 158 {\mu}m fine structure line cannot be observed from ground-based telescopes. Current models of fluorine chemistry predict that CF+ is the second most important fluorine reservoir, in regions where C+ is abundant. We detected the J = 1-0 and J = 2-1 rotational lines of CF+ with high signal-to-noise ratio towards the PDR and dense core positions in the Horsehead. Using a rotational diagram analysis, we derive a column density of N(CF+) = (1.5 - 2.0) \times 10^12 cm^-2. Because of the simple fluorine chemistry, the CF+ column density is proportional to the fluorine abundance. We thus infer the fluorine gas-phase abundance to be F/H = (0.6 - 1.5) \times 10^-8. Photochemical models indicate that CF+ is found in the layers where C+ is abundant. The emission arises in the UV illuminated skin of the nebula, tracing the outermost cloud layers. Indeed, CF+ and C+ are the only species observed to date in the Horsehead with a double peaked line profile caused by kinematics. We therefore propose that CF+, which is detectable from the ground, can be used as a proxy of the C+ layers.Comment: Accepted to A&A, 4 pages, 4 figures, 2 table

    Oxygen isotopic ratios in galactic clouds along the line of sight towards Sagittarius B2

    Full text link
    As an independent check on previous measurements of the isotopic abundance of oxygen through the Galaxy, we present a detailed analysis of the ground state rotational lines of 16OH and 18OH in absorption towards the giant molecular cloud complex, Sagittarius B2. We have modelled the line shapes to separate the contribution of several galactic clouds along the line of sight and calculate 16OH/18OH ratios for each of these features. The best fitting values are in the range 320-540, consistent with the previous measurements in the Galactic Disk but slightly higher than the standard ratio in the Galactic Centre. They do not show clear evidence for a gradient in the isotopic ratio with galactocentric distance. The individual 16OH column densities relative to water give ratios of [H2O/OH]=0.6-1.2, similar in magnitude to galactic clouds in the sight lines towards W51 and W49. A comparison with CH indicates [OH/CH] ratios higher than has been previously observed in diffuse clouds. We estimate OH abundances of 10^-7 - 10^-6 in the line of sight features.Comment: 10 pages, 6 figures, accepted for publication in A&

    First detection of [N II] 205 micrometer absorption in interstellar gas

    Get PDF
    We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained with Herschel-HIFI towards a small sample of far-infrared bright star forming regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4), and G34.3+0.1. All sources display an emission line profile associated directly with the HII regions themselves. For the first time we also detect absorption of the [NII] 205 micrometer line by extended low-density foreground material towards W31C and W49N over a wide range of velocities. We attribute this absorption to the warm ionised medium (WIM) and find N(N^+)\approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in absorption in the same sight-lines, if \approx7-10 % of all C^+ ions exist in the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas phase we find that the mean electron and proton volume densities are ~0.1-0.3 cm^-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM filling fraction are also supported by RADEX modelling of the [NII] 205 micrometer absorption and emission together with visible emission lines attributed mainly to the WIM. The detection of the 205 micrometer line in absorption emphasises the importance of a high spectral resolution, and also offers a new tool for investigation of the WIM.Comment: 7 pages, 4 figures, accepted for publication in Astronomy & Astrophysics, 11 June 201
    corecore