2,111 research outputs found
The Chemistry of Interstellar OH+, H2O+, and H3O+: Inferring the Cosmic Ray Ionization Rates from Observations of Molecular Ions
We model the production of OH+, H2O+, and H3O+ in interstellar clouds, using
a steady state photodissociation region code that treats the freeze-out of gas
species, grain surface chemistry, and desorption of ices from grains. The code
includes PAHs, which have important effects on the chemistry. All three ions
generally have two peaks in abundance as a function of depth into the cloud,
one at A_V<~1 and one at A_V~3-8, the exact values depending on the ratio of
incident ultraviolet flux to gas density. For relatively low values of the
incident far ultraviolet flux on the cloud ({\chi}<~ 1000; {\chi}= 1= local
interstellar value), the columns of OH+ and H2O+ scale roughly as the cosmic
ray primary ionization rate {\zeta}(crp) divided by the hydrogen nucleus
density n. The H3O+ column is dominated by the second peak, and we show that if
PAHs are present, N(H3O+) ~ 4x10^{13} cm^{-2} independent of {\zeta}(crp) or n.
If there are no PAHs or very small grains at the second peak, N(H3O+) can
attain such columns only if low ionization potential metals are heavily
depleted. We also model diffuse and translucent clouds in the interstellar
medium, and show how observations of N(OH+)/N(H) and N(OH+)/N(H2O+) can be used
to estimate {\zeta}(crp)/n, {\chi}/n and A_V in them. We compare our models to
Herschel observations of these two ions, and estimate {\zeta}(crp) ~ 4-6 x
10^-16 (n/100 cm^-3) s^-1 and \chi/n = 0.03 cm^3 for diffuse foreground clouds
towards W49N
The ionization fraction gradient across the Horsehead edge: An archetype for molecular clouds
The ionization fraction plays a key role in the chemistry and dynamics of
molecular clouds. We study the H13CO+, DCO+ and HOC+ line emission towards the
Horsehead, from the shielded core to the UV irradiated cloud edge, i.e., the
Photodissociation Region (PDR), as a template to investigate the ionization
fraction gradient in molecular clouds. We analyze a PdBI map of the H13CO+
J=1-0 line, complemented with IRAM-30m H13CO+ and DCO+ higher-J line maps and
new HOC+ and CO+ observations. We compare self-consistently the observed
spatial distribution and line intensities with detailed depth-dependent
predictions of a PDR model coupled with a nonlocal radiative transfer
calculation. The chemical network includes deuterated species, 13C
fractionation reactions and HCO+/HOC+ isomerization reactions. The role of
neutral and charged PAHs in the cloud chemistry and ionization balance is
investigated. The detection of HOC+ reactive ion towards the Horsehead PDR
proves the high ionization fraction of the outer UV irradiated regions, where
we derive a low [HCO+]/[HOC+]~75-200 abundance ratio. In the absence of PAHs,
we reproduce the observations with gas-phase metal abundances, [Fe+Mg+...],
lower than 4x10(-9) (with respect to H) and a cosmic-rays ionization rate of
zeta=(5+/-3)x10(-17) s(-1). The inclusion of PAHs modifies the ionization
fraction gradient and increases the required metal abundance. The ionization
fraction in the Horsehead edge follows a steep gradient, with a scale length of
~0.05 pc (or ~25''), from [e-]~10(-4) (or n_e ~ 1-5 cm(-3)) in the PDR to a few
times ~10(-9) in the core. PAH^- anions play a role in the charge balance of
the cold and neutral gas if substantial amounts of free PAHs are present ([PAH]
>10(-8)).Comment: 13 pages, 7 figures, 6 tables. Accepted for publication in A&A
(english not edited
Gravitational collapse of the OMC-1 region
We have investigated the global dynamical state of the Integral Shaped
Filament in the Orion A cloud using new NH (1-0) large-scale, IRAM30m
observations. Our analysis of its internal gas dynamics reveals the presence of
accelerated motions towards the Orion Nebula Cluster, showing a characteristic
blue-shifted profile centred at the position of the OMC-1 South region. The
properties of these observed gas motions (profile, extension, and magnitude)
are consistent with the expected accelerations for the gravitational collapse
of the OMC-1 region and explain both the physical and kinematic structure of
this cloud.Comment: 5 pages, 2 figures; Accepted by A&
Simulated CII observations for SPICA/SAFARI
We investigate the case of CII 158 micron observations for SPICA/SAFARI using
a three-dimensional magnetohydrodynamical (MHD) simulation of the diffuse
interstellar medium (ISM) and the Meudon PDR code. The MHD simulation consists
of two converging flows of warm gas (10,000 K) within a cubic box 50 pc in
length. The interplay of thermal instability, magnetic field and self-gravity
leads to the formation of cold, dense clumps within a warm, turbulent
interclump medium. We sample several clumps along a line of sight through the
simulated cube and use them as input density profiles in the Meudon PDR code.
This allows us to derive intensity predictions for the CII 158 micron line and
provide time estimates for the mapping of a given sky area.Comment: 4 pages, 5 figures, to appear in the proceedings of the workshop "The
Space Infrared Telescope for Cosmology & Astrophysics: Revealing the Origins
of Planets and Galaxies" (July 2009, Oxford, United Kingdom
SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions
The hydroxyl radical (OH) is found in various environments within the
interstellar medium (ISM) of the Milky Way and external galaxies, mostly either
in diffuse interstellar clouds or in the warm, dense environments of newly
formed low-mass and high-mass stars, i.e, in the dense shells of compact and
ultracompact HII regions (UCHIIRs). Until today, most studies of interstellar
OH involved the molecule's radio wavelength hyperfine structure (hfs)
transitions. These lines are generally not in LTE and either masing or
over-cooling complicates their interpretation. In the past, observations of
transitions between different rotational levels of OH, which are at
far-infrared wavelengths, have suffered from limited spectral and angular
resolution. Since these lines have critical densities many orders of magnitude
higher than the radio wavelength ground state hfs lines and are emitted from
levels with more than 100 K above the ground state, when observed in emission,
they probe very dense and warm material. We probe the warm and dense molecular
material surrounding the UCHIIR/OH maser sources W3(OH), G10.62-0.39 and NGC
7538 IRS1 by studying the rotational
transition of OH in emission and, toward the last source also the molecule's
ground-state transition in absorption. We used the
Stratospheric Observatory for Infrared Astronomy (SOFIA) to observe these OH
lines, which are near 1.84 THz (m) and 2.51 THz (m). We
clearly detect the OH lines, some of which are blended with each other.
Employing non-LTE radiative transfer calculations we predict line intensities
using models of a low OH abundance envelope versus a compact, high-abundance
source corresponding to the origin of the radio OH lines.Comment: Accepted for publication in A&A (SOFIA/GREAT special issue
The IRAM-30m line survey of the Horsehead PDR: I. CF+ as a tracer of C+ and a measure of the Fluorine abundance
C+ is a key species in the interstellar medium but its 158 {\mu}m fine
structure line cannot be observed from ground-based telescopes. Current models
of fluorine chemistry predict that CF+ is the second most important fluorine
reservoir, in regions where C+ is abundant. We detected the J = 1-0 and J = 2-1
rotational lines of CF+ with high signal-to-noise ratio towards the PDR and
dense core positions in the Horsehead. Using a rotational diagram analysis, we
derive a column density of N(CF+) = (1.5 - 2.0) \times 10^12 cm^-2. Because of
the simple fluorine chemistry, the CF+ column density is proportional to the
fluorine abundance. We thus infer the fluorine gas-phase abundance to be F/H =
(0.6 - 1.5) \times 10^-8. Photochemical models indicate that CF+ is found in
the layers where C+ is abundant. The emission arises in the UV illuminated skin
of the nebula, tracing the outermost cloud layers. Indeed, CF+ and C+ are the
only species observed to date in the Horsehead with a double peaked line
profile caused by kinematics. We therefore propose that CF+, which is
detectable from the ground, can be used as a proxy of the C+ layers.Comment: Accepted to A&A, 4 pages, 4 figures, 2 table
Oxygen isotopic ratios in galactic clouds along the line of sight towards Sagittarius B2
As an independent check on previous measurements of the isotopic abundance of
oxygen through the Galaxy, we present a detailed analysis of the ground state
rotational lines of 16OH and 18OH in absorption towards the giant molecular
cloud complex, Sagittarius B2. We have modelled the line shapes to separate the
contribution of several galactic clouds along the line of sight and calculate
16OH/18OH ratios for each of these features. The best fitting values are in the
range 320-540, consistent with the previous measurements in the Galactic Disk
but slightly higher than the standard ratio in the Galactic Centre. They do not
show clear evidence for a gradient in the isotopic ratio with galactocentric
distance. The individual 16OH column densities relative to water give ratios of
[H2O/OH]=0.6-1.2, similar in magnitude to galactic clouds in the sight lines
towards W51 and W49. A comparison with CH indicates [OH/CH] ratios higher than
has been previously observed in diffuse clouds. We estimate OH abundances of
10^-7 - 10^-6 in the line of sight features.Comment: 10 pages, 6 figures, accepted for publication in A&
First detection of [N II] 205 micrometer absorption in interstellar gas
We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained
with Herschel-HIFI towards a small sample of far-infrared bright star forming
regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51
(G49.5-0.4), and G34.3+0.1. All sources display an emission line profile
associated directly with the HII regions themselves. For the first time we also
detect absorption of the [NII] 205 micrometer line by extended low-density
foreground material towards W31C and W49N over a wide range of velocities. We
attribute this absorption to the warm ionised medium (WIM) and find
N(N^+)\approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with
recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in
absorption in the same sight-lines, if \approx7-10 % of all C^+ ions exist in
the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas
phase we find that the mean electron and proton volume densities are ~0.1-0.3
cm^-3 assuming a WIM volume filling fraction of 0.1-0.4 with a corresponding
line-of-sight filling fraction of 0.46-0.74. A low density and a high WIM
filling fraction are also supported by RADEX modelling of the [NII] 205
micrometer absorption and emission together with visible emission lines
attributed mainly to the WIM. The detection of the 205 micrometer line in
absorption emphasises the importance of a high spectral resolution, and also
offers a new tool for investigation of the WIM.Comment: 7 pages, 4 figures, accepted for publication in Astronomy &
Astrophysics, 11 June 201
- …
