160 research outputs found
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
The Mitochondrial Genome Is a “Genetic Sanctuary” during the Oncogenic Process
Since Otto Warburg linked mitochondrial physiology and oncogenesis in the 1930s, a number of studies have focused on the analysis of the genetic basis for the presence of aerobic glycolysis in cancer cells. However, little or no evidence exists today to indicate that mtDNA mutations are directly responsible for the initiation of tumor onset. Based on a model of gliomagenesis in the mouse, we aimed to explore whether or not mtDNA mutations are associated with the initiation of tumor formation, maintenance and aggressiveness. We reproduced the different molecular events that lead from tumor initiation to progression in the mouse glioma. In human gliomas, most of the genetic alterations that have been previously identified result in the aberrant activation of different signaling pathways and deregulation of the cell cycle. Our data indicates that mitochondrial dysfunction is associated with reactive oxygen species (ROS) generation, leading to increased nuclear DNA (nDNA) mutagenesis, but maintaining the integrity of the mitochondrial genome. In addition, mutational stability has been observed in entire mtDNA of human gliomas; this is in full agreement with the results obtained in the cancer mouse model. We use this model as a paradigm of oncogenic transformation due to the fact that mutations commonly found in gliomas appear to be the most common molecular alterations leading to tumor development in most types of human cancer. Our results indicate that the mtDNA genome is kept by the cell as a “genetic sanctuary” during tumor development in the mouse and humans. This is compatible with the hypothesis that the mtDNA molecule plays an essential role in the control of the cellular adaptive survival response to tumor-induced oxidative stress. The integrity of mtDNA seems to be a necessary element for responding to the increased ROS production associated with the oncogenic process
The Warburg Effect Suppresses Oxidative Stress Induced Apoptosis in a Yeast Model for Cancer
BACKGROUND: Otto Warburg observed that cancer cells are often characterized by intense glycolysis in the presence of oxygen and a concomitant decrease in mitochondrial respiration. Research has mainly focused on a possible connection between increased glycolysis and tumor development whereas decreased respiration has largely been left unattended. Therefore, a causal relation between decreased respiration and tumorigenesis has not been demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, colonies of Saccharomyces cerevisiae, which is suitable for manipulation of mitochondrial respiration and shows mitochondria-mediated cell death, were used as a model. Repression of respiration as well as ROS-scavenging via glutathione inhibited apoptosis and conferred a survival advantage during seeding and early development of this fast proliferating solid cell population. In contrast, enhancement of respiration triggered cell death. CONCLUSION/SIGNIFICANCE: Thus, the Warburg effect might directly contribute to the initiation of cancer formation--not only by enhanced glycolysis--but also via decreased respiration in the presence of oxygen, which suppresses apoptosis
Mitochondrial Uncoupling Inhibits p53 Mitochondrial Translocation in TPA-Challenged Skin Epidermal JB6 Cells
The tumor suppressor p53 is known to be able to trigger apoptosis in response to DNA damage, oncogene activation, and certain chemotherapeutic drugs. In addition to its transcriptional activation, a fraction of p53 translocates to mitochondria at the very early stage of apoptosis, which eventually contributes to the loss of mitochondrial membrane potential, generation of reactive oxygen species (ROS), cytochrome c release, and caspase activation. However, the mitochondrial events that affect p53 translocation are still unclear. Since mitochondrial uncoupling has been suggested to contribute to cancer development, herein, we studied whether p53 mitochondrial translocation and subsequent apoptosis were affected by mitochondrial uncoupling using chemical protonophores, and further verified the results using a siRNA approach in murine skin epidermal JB6 cells. Our results showed that mitochondrial uncoupling blocked p53 mitochondrial translocation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA), a known tumor promoter to induce p53-mediated apoptosis in skin carcinogenesis. This blocking effect, in turn, led to preservation of mitochondrial functions, and eventually suppression of caspase activity and apoptosis. Moreover, uncoupling protein 2 (UCP2), a potential suppressor of ROS in mitochondria, is important for TPA-induced cell transformation in JB6 cells. UCP2 knock down cells showed enhanced p53 mitochondrial translocation, and were less prone to form colonies in soft agar after TPA treatment. Altogether, our data suggest that mitochondrial uncoupling may serve as an important regulator of p53 mitochondrial translocation and p53-mediated apoptosis during early tumor promotion. Therefore, targeting mitochondrial uncoupling may be considered as a novel treatment strategy for cancer
Mitochondrial targeted catalase suppresses invasive breast cancer in mice
<p>Abstract</p> <p>Background</p> <p>Treatment of invasive breast cancer has an alarmingly high rate of failure because effective targets have not been identified. One potential target is mitochondrial generated reactive oxygen species (ROS) because ROS production has been associated with changes in substrate metabolism and lower concentration of anti-oxidant enzymes in tumor and stromal cells and increased metastatic potential.</p> <p>Methods</p> <p>Transgenic mice expressing a human catalase gene (mCAT) were crossed with MMTV-PyMT transgenic mice that develop metastatic breast cancer. All mice (33 mCAT positive and 23 mCAT negative) were terminated at 110 days of age, when tumors were well advanced. Tumors were histologically assessed for invasiveness, proliferation and metastatic foci in the lungs. ROS levels and activation status of p38 MAPK were determined.</p> <p>Results</p> <p>PyMT mice expressing mCAT had a 12.5 per cent incidence of high histological grade primary tumor invasiveness compared to a 62.5 per cent incidence in PyMT mice without mCAT. The histological grade correlated with incidence of metastasis with 56 per cent of PyMT mice positive for mCAT showing evidence of pulmonary metastasis compared to 85.4 per cent of PyMT mice negative for mCAT with pulmonary metastasis (p ≤ 0.05). PyMT tumor cells expressing mCAT had lower ROS levels and were more resistant to hydrogen peroxide-induced oxidative stress than wild type tumor cells, suggesting that mCAT has the potential of quenching intracellular ROS and subsequent invasive behavior. The metastatic tumor burden in PyMT mice expressing mCAT was 0.1 mm<sup>2</sup>/cm<sup>2 </sup>of lung tissue compared with 1.3 mm<sup>2</sup>/cm<sup>2 </sup>of lung tissue in PyMT mice expressing the wild type allele (p ≤ 0.01), indicating that mCAT could play a role in mitigating metastatic tumor progression at a distant organ site. Expression of mCAT in the lungs increased resistance to hydrogen peroxide-induced oxidative stress that was associated with decreased activation of p38MAPK suggesting ROS signaling is dependent on p38MAPK for at least some of its downstream effects.</p> <p>Conclusion</p> <p>Targeting catalase within mitochondria of tumor cells and tumor stromal cells suppresses ROS-driven tumor progression and metastasis. Therefore, increasing the antioxidant capacity of the mitochondrial compartment could be a rational therapeutic approach for invasive breast cancer.</p> <p>Please see related commentary article: <url>http://www.biomedcentral.com/1741-7015/9/62</url></p
Bak Compensated for Bax in p53-null Cells to Release Cytochrome c for the Initiation of Mitochondrial Signaling during Withanolide D-Induced Apoptosis
The goal of cancer chemotherapy to induce multi-directional apoptosis as targeting a single pathway is unable to decrease all the downstream effect arises from crosstalk. Present study reports that Withanolide D (WithaD), a steroidal lactone isolated from Withania somnifera, induced cellular apoptosis in which mitochondria and p53 were intricately involved. In MOLT-3 and HCT116p53+/+ cells, WithaD induced crosstalk between intrinsic and extrinsic signaling through Bid, whereas in K562 and HCT116p53−/− cells, only intrinsic pathway was activated where Bid remain unaltered. WithaD showed pronounced activation of p53 in cancer cells. Moreover, lowered apoptogenic effect of HCT116p53−/− over HCT116p53+/+ established a strong correlation between WithaD-mediated apoptosis and p53. WithaD induced Bax and Bak upregulation in HCT116p53+/+, whereas increase only Bak expression in HCT116p53−/− cells, which was coordinated with augmented p53 expression. p53 inhibition substantially reduced Bax level and failed to inhibit Bak upregulation in HCT116p53+/+ cells confirming p53-dependent Bax and p53-independent Bak activation. Additionally, in HCT116p53+/+ cells, combined loss of Bax and Bak (HCT116Bax−Bak−) reduced WithaD-induced apoptosis and completely blocked cytochrome c release whereas single loss of Bax or Bak (HCT116Bax−Bak+/HCT116Bax+Bak−) was only marginally effective after WithaD treatment. In HCT116p53−/− cells, though Bax translocation to mitochondria was abrogated, Bak oligomerization helped the cells to release cytochrome c even before the disruption of mitochondrial membrane potential. WithaD also showed in vitro growth-inhibitory activity against an array of p53 wild type and null cancer cells and K562 xenograft in vivo. Taken together, WithaD elicited apoptosis in malignant cells through Bax/Bak dependent pathway in p53-wild type cells, whereas Bak compensated against loss of Bax in p53-null cells
Mutual Regulation of Bcl-2 Proteins Independent of the BH3 Domain as Shown by the BH3-Lacking Protein Bcl-xAK
The BH3 domain of Bcl-2 proteins was regarded as indispensable for apoptosis induction and for mutual regulation of family members. We recently described Bcl-xAK, a proapoptotic splice product of the bcl-x gene, which lacks BH3 but encloses BH2, BH4 and a transmembrane domain. It remained however unclear, how Bcl-xAK may trigger apoptosis
α-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate
BACKGROUND: A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their
combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with
extracellular production of H2O2 that promoted cell death.
METHODS: The redox-silent vitamin E analogue a-tocopheryl succinate (a-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells.
RESULTS: Prostate cancer cells were sensitive to a-TOS and VK3 treatment, but resistant to AA upto 3.2mM. When combined, a
synergistic effect was found for VK3\u2013AA, whereas a-TOS\u2013VK3 and a-TOS\u2013AA combination showed an antagonist and additive
effect, respectively. However, sub-lethal doses of AA\u2013VK3 combination combined with a sub-toxic dose of a-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton
alteration, lysosomal\u2013mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition
of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and
autoschizis were detected.
CONCLUSION: These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity
cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation
Background
Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death.
Results
We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1.
Conclusions
We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast
- …