217 research outputs found

    Luteinizing hormone induces ovulation via tumor necrosis factor α-dependent increases in prostaglandin F2α in a nonmammalian vertebrate

    Get PDF
    Ovulation is induced by the preovulatory surge of luteinizing hormone (LH) that acts on the ovary and triggers the rupture of the preovulatory ovarian follicle by stimulating proteolysis and apoptosis in the follicle wall, causing the release of the mature oocyte. The pro-inflammatory cytokine tumor necrosis factor α (TNFα) and prostaglandin (PG) F2α (PGF2α) are involved in the control of ovulation but their role mediating the pro-ovulatory actions of LH is not well established. Here we show that Lh induces PGF2α synthesis through its stimulation of Tnfα production in trout, a primitive teleost fish. Recombinant trout Tnfα (rTnfα) and PGF2α recapitulate the stimulatory in vitro effects of salmon Lh (sLh) on contraction, proteolysis and loss of cell viability in the preovulatory follicle wall and, finally, ovulation. Furthermore, all pro-ovulatory actions of sLh are blocked by inhibition of Tnfα secretion or PG synthesis and all actions of rTnfα are blocked by PG synthesis inhibitors. Therefore, we provide evidence that the Tnfα-dependent increase in PGF2α production is necessary for the pro-ovulatory actions of Lh. The results from this study shed light onto the mechanisms underlying the pro-ovulatory actions of LH in vertebrates and may prove important in clinical assessments of female infertility

    Bacterial lipopolysaccharide induces apoptosis in the trout ovary

    Get PDF
    BACKGROUND: In mammals it is well known that infections can lead to alterations in reproductive function. As part of the innate immune response, a number of cytokines and other immune factors is produced during bacterial infection or after treatment with lipopolysaccharide (LPS) and acts on the reproductive system. In fish, LPS can also induce an innate immune response but little is known about the activation of the immune system by LPS on reproduction in fish. Therefore, we conducted studies to examine the in vivo and in vitro effects of lipopolysaccharide (LPS) on the reproductive function of sexually mature female trout. METHODS: In saline- and LPS -injected brook trout, we measured the concentration of plasma steroids as well as the in vitro steroidogenic response (testosterone and 17alpha-hydroxyprogesterone) of ovarian follicles to luteinizing hormone (LH), the ability of 17alpha,20beta-dihydroxy-4-pregnen-3-one to induce germinal vesicle breakdown (GVBD) in vitro, and that of epinephrine to stimulate follicular contraction in vitro. We also examined the direct effects of LPS in vitro on steroid production, GVBD and contraction in brook trout ovarian follicles. The incidence of apoptosis was evaluated by TUNEL analysis. Furthermore, we examined the gene expression pattern in the ovary of saline- and LPS-injected rainbow trout by microarray analysis. RESULTS: LPS treatment in vivo did not affect plasma testosterone concentration or the basal in vitro production of steroids, although a small but significant potentiation of the effects of LH on testosterone production in vitro was observed in ovarian follicles from LPS-treated fish. In addition, LPS increased the plasma concentration of cortisol. LPS treatment in vitro did not affect the basal or LH-stimulated steroid production in brook trout ovarian follicles. In addition, we did not observe any effects of LPS in vivo or in vitro on GVBD or follicular contraction. Therefore, LPS did not appear to impair ovarian steroid production, oocyte final maturation or follicular contraction under the present experimental conditions. Interestingly, LPS administration in vivo induced apoptosis in follicular cells, an observation that correlated with changes in the expression of genes involved in apoptosis, as evidenced by microarray analysis. CONCLUSION: These results indicate that female trout are particularly resistant to an acute administration of LPS in terms of ovarian hormone responsiveness. However, LPS caused a marked increase in apoptosis in follicular cells, suggesting that the trout ovary could be sensitive to the pro-apoptotic effects of LPS-induced inflammatory cytokines

    Extending immunological profiling in the gilthead sea bream, sparus aurata, by enriched cDNA library analysis, microarray design and initial studies upon the inflammatory response to PAMPs

    Get PDF
    This study describes the development and validation of an enriched oligonucleotide-microarray platform for Sparus aurata (SAQ) to provide a platform for transcriptomic studies in this species. A transcriptome database was constructed by assembly of gilthead sea bream sequences derived from public repositories of mRNA together with reads from a large collection of expressed sequence tags (EST) from two extensive targeted cDNA libraries characterizing mRNA transcripts regulated by both bacterial and viral challenge. The developed microarray was further validated by analysing monocyte/macrophage activation profiles after challenge with two Gram-negative bacterial pathogen-associated molecular patterns (PAMPs; lipopolysaccharide (LPS) and peptidoglycan (PGN)). Of the approximately 10,000 EST sequenced, we obtained a total of 6837 EST longer than 100 nt, with 3778 and 3059 EST obtained from the bacterial-primed and from the viral-primed cDNA libraries, respectively. Functional classification of contigs from the bacterial- and viral-primed cDNA libraries by Gene Ontology (GO) showed that the top five represented categories were equally represented in the two libraries: metabolism (approximately 24% of the total number of contigs), carrier proteins/membrane transport (approximately 15%), effectors/modulators and cell communication (approximately 11%), nucleoside, nucleotide and nucleic acid metabolism (approximately 7.5%) and intracellular transducers/signal transduction (approximately 5%). Transcriptome analyses using this enriched oligonucleotide platform identified differential shifts in the response to PGN and LPS in macrophage-like cells, highlighting responsive gene-cassettes tightly related to PAMP host recognition. As observed in other fish species, PGN is a powerful activator of the inflammatory response in S. aurata macrophage-like cells. We have developed and validated an oligonucleotide microarray (SAQ) that provides a platform enriched for the study of gene expression in S. aurata with an emphasis upon immunity and the immune response

    Cellular and molecular evidence for a role of tumor necrosis factor alpha in the ovulatory mechanism of trout

    Get PDF
    Background: The relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta). Methods: To determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses. Results: LPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha. Conclusions In view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction

    Lack of growth enhancement by exogenous growth hormone treatment in yellow perch (Perca flavescens) in four separate experiments

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Aquaculture 250 (2005): 471-479, doi:10.1016/j.aquaculture.2005.03.019.The effect of exogenous growth hormone (GH) treatment on the growth of juvenile yellow perch (Perca flavescens) was investigated in four experiments. In the first two experiments, juvenile yellow perch were reared at either 13°C or 21°C, and injected weekly with bovine GH (bGH) at 0.1, 1.0 or 10.0 μg/g body weight for 84 days. No significant growth enhancement in GH-treated fish was measured in fish in either of the experiments. In the third experiment, juvenile yellow perch were treated with estradiol-17β (E2, 15 μg/g of diet), bGH (1.0 μg/g body weight) injected weekly or both hormones for 70 days at 21°C. E2 alone stimulated growth, but no further growth stimulation occurred in the E2 + bGH-treated fish. In addition, no growth enhancement was found in fish treated with bGH alone. We measured no difference in serum insulin-like growth factor-I (IGF-I) levels between the treatment groups at 12 and 24 h after the final injection of GH; however, a drop in IGF-I levels after 24 h was observed. In a fourth study, the effect of recombinant yellow perch GH (rypGH, 0.2 or 1.0 μg/g body weight) injected weekly was evaluated in yellow perch juveniles. The fish were reared for 42 days at 18°C. Neither GH dosages improved growth compared to control-injected and non-injected fish. Taken together, the lack of effect of mammalian GH or rypGH in our experiments suggests (1) low binding affinity between these hormones and the GH receptor in yellow perch, (2) that the endogenous GH levels were already at biologically maximal levels or (3) that other endocrine factors are needed in order for GH to promote yellow perch growth. The reduction in IGF-I levels 24 h after handling suggests a negative effect of handling stress on the GH-IGF-I axis in yellow perch.This work was supported by the University of Wisconsin-Madison College of Agricultural and Life Sciences and School of Natural Resources; the Wisconsin Department of Natural Resources; the University of Wisconsin Sea Grant College Program, National Oceanic and Atmospheric Administration, US Department of Commerce; the State of Wisconsin (Federal Grant NA46RG0481, Project No. R/AQ-38); and the USDA NOAA Project R/A-05-99, grant #NA86RG0048 to FG and SR. This study was also funded by the Norwegian Research Council (NFR)

    Using global genome approaches to address problems in cod mariculture

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in ICES Journal of Marine Science 63 (2006): 393-399, doi:10.1016/j.icesjms.2005.10.006.A number of techniques including expressed sequence tag (EST) analysis, serial analysis of gene expression, and microarrays are available to study the global expression and regulation of genes. Many of these techniques are being used for intensively reared fish such as trout, salmon and catfish to study genes involved in growth, reproduction and health. In contrast, relatively little is known about the composition and regulation of transcriptomes in gadids. However, several bottlenecks in cod mariculture might benefit from the discovery and analysis of genes involved in reproduction, growth and disease. As a result, we have begun EST analysis of genes in the cod ovary. Complimentary DNA (cDNA) libraries of cod ovaries taken from females at oocyte final maturation and ovulation have been constructed, and 1,361 ESTs have been analyzed. As expected, several oocyte-related genes were observed including various zona pellucida egg membrane proteins. However, pivotal cell cycle regulators such as cyclins, genes involved in the regulation of apoptosis such as the Bcl-2-related ovarian killer protein, and hormone receptor components were also observed. Finally, a cDNA for a potential novel cod antifreeze protein was observed 12 times, suggesting the existence of a cod egg-specific antifreeze protein.This work was supported in part by grant #139630/140 from the Research Council of Norway to BN and USDA grant #2004-35204-14232 to FWG

    The rise and fall of the ancient northern pike master sex-determining gene

    Get PDF
    The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike (Esox lucius) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species- or population-specific sex determination transitions, including a recent loss of a Y chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions

    RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes

    Get PDF
    Background: Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings: Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I:C), polyinosinic:polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance: We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems

    The rise and fall of the ancient northern pike master sex determining gene

    Get PDF
    The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike (Esox lucius) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex-linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species- or population-specific sex determination transitions, including a recent loss of a Y-chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions

    An Enriched European Eel Transcriptome Sheds Light upon Host-Pathogen Interactions with Vibrio vulnificus

    Get PDF
    Infectious diseases are one of the principal bottlenecks for the European eel recovery. The aim of this study was to develop a new molecular tool to be used in host-pathogen interaction experiments in the eel. To this end, we first stimulated adult eels with different pathogen-associated molecular patterns (PAMPs), extracted RNA from the immune-related tissues and sequenced the transcriptome. We obtained more than 2 x 10(6) reads that were assembled and annotated into 45,067 new descriptions with a notable representation of novel transcripts related with pathogen recognition, signal transduction and the immune response. Then, we designed a DNA-microarray that was used to analyze the early immune response against Vibrio vulnificus, a septicemic pathogen that uses the gills as the portal of entry into the blood, as well as the role of the main toxin of this species (RtxA13) on this early interaction. The gill transcriptomic profiles obtained after bath infecting eels with the wild type strain or with a mutant deficient in rtxA13 were analyzed and compared. Results demonstrate that eels react rapidly and locally against the pathogen and that this immune-response is rtxA13-dependent as transcripts related with cell destruction were highly up-regulated only in the gills from eels infected with the wild-type strain. Furthermore, significant differences in the immune response against the wild type and the mutant strain also suggest that host survival after V. vulnificus infection could depend on an efficient local phagocytic activity. Finally, we also found evidence of the presence of an interbranchial lymphoid tissue in European eel gills although further experiments will be necessary to identify such tissue
    corecore