494 research outputs found

    Subgroup analysis of scientific performance in the field of arthroplasty

    Get PDF
    Introduction: Arthroplasty is the final treatment option for maintaining mobility and quality of life in many primary degenerative and (post-) traumatic joint diseases. Identification of research output and potential deficits for specific subspecialties may be an important measure to achieve long-term improvement of patient care in this field. Methods: Using specific search terms and Boolean operators, all studies published since 1945 to the subgroups of arthroplasty listed in the Web of Science Core Collection were included. All identified publications were analysed according to bibliometric standards, and comparative conclusions were drawn regarding the scientific merit of each subgroup. Results: Most publications investigated the subgroups of septic surgery and materials followed by approach, navigation, aseptic loosening, robotic and enhanced recovery after surgery (ERAS). In the last 5 years, research in the fields of robotic and ERAS achieved the highest relative increase in publications In contrast, research on aseptic loosening has continued to lose interest over the last 5 years. Publications on robotics and materials received the most funding on average while those on aseptic loosening received the least. Most publications originated from USA, Germany, and England, except for research on ERAS in which Denmark stood out. Relatively, publications on aseptic loosening received the most citations, whereas the absolute scientific interest was highest for the topic infection. Discussion: In this bibliometric subgroup analysis, the primary scientific outputs focused on septic complications and materials research in the field of arthroplasty. With decreasing publication output and the least financial support, intensification of research on aseptic loosening is urgently recommended

    Capillary leak and endothelial permeability in critically ill patients: a current overview

    Get PDF
    Capillary leak syndrome (CLS) represents a phenotype of increased fluid extravasation, resulting in intravascular hypovolemia, extravascular edema formation and ultimately hypoperfusion. While endothelial permeability is an evolutionary preserved physiological process needed to sustain life, excessive fluid leak—often caused by systemic inflammation—can have detrimental effects on patients’ outcomes. This article delves into the current understanding of CLS pathophysiology, diagnosis and potential treatments. Systemic inflammation leading to a compromise of endothelial cell interactions through various signaling cues (e.g., the angiopoietin–Tie2 pathway), and shedding of the glycocalyx collectively contribute to the manifestation of CLS. Capillary permeability subsequently leads to the seepage of protein-rich fluid into the interstitial space. Recent insights into the importance of the sub-glycocalyx space and preserving lymphatic flow are highlighted for an in-depth understanding. While no established diagnostic criteria exist and CLS is frequently diagnosed by clinical characteristics only, we highlight more objective serological and (non)-invasive measurements that hint towards a CLS phenotype. While currently available treatment options are limited, we further review understanding of fluid resuscitation and experimental approaches to target endothelial permeability. Despite the improved understanding of CLS pathophysiology, efforts are needed to develop uniform diagnostic criteria, associate clinical consequences to these criteria, and delineate treatment options. Graphical Abstrac

    Transfer learning of deep neural network representations for fMRI decoding

    Get PDF
    Background: Deep neural networks have revolutionised machine learning, with unparalleled performance in object classification. However, in brain imaging (e.g., fMRI), the direct application of Convolutional Neural Networks (CNN) to decoding subject states or perception from imaging data seems impractical given the scarcity of available data. New method: In this work we propose a robust method to transfer information from deep learning (DL) features to brain fMRI data with the goal of decoding. By adopting Reduced Rank Regression with Ridge Regularisation we establish a multivariate link between imaging data and the fully connected layer (fc7) of a CNN. We exploit the reconstructed fc7 features by performing an object image classification task on two datasets: one of the largest fMRI databases, taken from different scanners from more than two hundred subjects watching different movie clips, and another with fMRI data taken while watching static images. Results: The fc7 features could be significantly reconstructed from the imaging data, and led to significant decoding performance. Comparison with existing methods: The decoding based on reconstructed fc7 outperformed the decoding based on imaging data alone. Conclusion: In this work we show how to improve fMRI-based decoding benefiting from the mapping between functional data and CNN features. The potential advantage of the proposed method is twofold: the extraction of stimuli representations by means of an automatic procedure (unsupervised) and the embedding of high-dimensional neuroimaging data onto a space designed for visual object discrimination, leading to a more manageable space from dimensionality point of view

    An Infrastructure for Spatial Linking of Survey Data

    Get PDF
    Research on environmental justice comprises health and well-being aspects, as well as topics related to general social participation. In this research field, among others, there is a need for an integrated use of social science survey data and spatial science data, e.g. for combining demographic information from survey data with data on pollution from spatial data. However, for researchers it is challenging to link both data sources, because (1) the interdisciplinary nature of both data sources is different, (2) both underlie different legal restrictions, in particular regarding data privacy, and (3) methodological challenges arise regarding the use of geo-information systems (GIS) for the processing and analysis of spatial data. In this article, we present an infrastructure of distributed web services which supports researchers in the process of spatial linking. The infrastructure addresses the challenges researchers have to face during that process. We present an example case study on the investigation of environmental inequalities with regards to income and land use hazards in Germany by using georeferenced survey data of the GESIS Panel and the German Socio-economic Panel (SOEP), and by using spatial data from the Monitor of Settlement and Open Space Development (IOER Monitor). The results show that increasing income of survey respondents is associated with less exposure to land-use-related environmental hazards in Germany

    Performance- and Stimulus-Dependent Oscillations in Monkey Prefrontal Cortex During Short-Term Memory

    Get PDF
    Short-term memory requires the coordination of sub-processes like encoding, retention, retrieval and comparison of stored material to subsequent input. Neuronal oscillations have an inherent time structure, can effectively coordinate synaptic integration of large neuron populations and could therefore organize and integrate distributed sub-processes in time and space. We observed field potential oscillations (14–95 Hz) in ventral prefrontal cortex of monkeys performing a visual memory task. Stimulus-selective and performance-dependent oscillations occurred simultaneously at 65–95 Hz and 14–50 Hz, the latter being phase-locked throughout memory maintenance. We propose that prefrontal oscillatory activity may be instrumental for the dynamical integration of local and global neuronal processes underlying short-term memory

    Contextual Feedback to Superficial Layers of V1

    Get PDF
    Neuronal cortical circuitry comprises feedforward, lateral, and feedback projections, each of which terminates in distinct cortical layers [1-3]. In sensory systems, feedforward processing transmits signals from the external world into the cortex, whereas feedback pathways signal the brain's inference of the world [4-11]. However, the integration of feedforward, lateral, and feedback inputs within each cortical area impedes the investigation of feedback, and to date, no technique has isolated the feedback of visual scene information in distinct layers of healthy human cortex. We masked feedforward input to a region of V1 cortex and studied the remaining internal processing. Using high-resolution functional brain imaging (0.8 mm(3)) and multivoxel pattern information techniques, we demonstrate that during normal visual stimulation scene information peaks in mid-layers. Conversely, we found that contextual feedback information peaks in outer, superficial layers. Further, we found that shifting the position of the visual scene surrounding the mask parametrically modulates feedback in superficial layers of V1. Our results reveal the layered cortical organization of external versus internal visual processing streams during perception in healthy human subjects. We provide empirical support for theoretical feedback models such as predictive coding [10, 12] and coherent infomax [13] and reveal the potential of high-resolution fMRI to access internal processing in sub-millimeter human cortex

    Primary visual cortex activity along the apparent-motion trace reflects illusory perception

    Get PDF
    The illusion of apparent motion can be induced when visual stimuli are successively presented at different locations. It has been shown in previous studies that motion-sensitive regions in extrastriate cortex are relevant for the processing of apparent motion, but it is unclear whether primary visual cortex (V1) is also involved in the representation of the illusory motion path. We investigated, in human subjects, apparent-motion-related activity in patches of V1 representing locations along the path of illusory stimulus motion using functional magnetic resonance imaging. Here we show that apparent motion caused a blood-oxygenation-level-dependent response along the V1 representations of the apparent-motion path, including regions that were not directly activated by the apparent-motion-inducing stimuli. This response was unaltered when participants had to perform an attention-demanding task that diverted their attention away from the stimulus. With a bistable motion quartet, we confirmed that the activity was related to the conscious perception of movement. Our data suggest that V1 is part of the network that represents the illusory path of apparent motion. The activation in V1 can be explained either by lateral interactions within V1 or by feedback mechanisms from higher visual areas, especially the motion-sensitive human MT/V5 complex
    corecore