310 research outputs found

    Development of high power transferred electron effect devices for X-band and Ku-band oscillators

    Get PDF
    High power transferred electron effect devices for superhigh frequency oscillator

    Cluster galaxies 10 billion years ago

    Get PDF
    Cl J1449+0856 is a spectroscopically confirmed galaxy cluster at z ~ 2. The detection of a faint, extended X-ray emission, suggestive of an already evolved, partially relaxed structure, puts this system among the most distant "established” clusters rather than in the realm of z≳2 proto-clusters. This gives us a chance of studying galaxies in an evolved overdense environment very close to their formation epoch, and in particular to trace the evolution of early-type galaxies in clusters back to ten billion years ag

    The [CII] 158 μ\mum emission line as a gas mass tracer in high redshift quiescent galaxies

    Full text link
    Many efforts have been done in recent years to probe the gas fraction evolution of massive quiescent galaxies (QGs); however, a clear picture has not yet been established. Recent spectroscopic confirmations at z>3 offer the chance to measure the residual gas reservoirs of massive galaxies a few hundreds of Myr after their death and to study how fast quenching proceeds in a highly star-forming Universe. Even so, stringent constraints at z>>2 remain hardly accessible with ALMA when adopting molecular gas tracers commonly used for the quenched population. In this letter, we propose overcoming this impasse by using the carbon [CII] 158 μ\mum emission line to systematically probe the gaseous budget of unlensed QGs at z>2.8, when these galaxies could still host non-negligible star formation on an absolute scale and when the line becomes best observable with ALMA (Bands 8 and 7). So far predominantly used for star-forming galaxies, this emission line is the best choice to probe the gas budget of spectroscopically confirmed QGs at z>3z>3, reaching 2-4 and 13-30 times deeper than dust continuum (ALMA band 7) and CO(2-1)/(1-0) (VLA K-Kα\alpha bands), respectively, at fixed integration time. Exploiting archival ALMA observations, we place conservative 3σ\sigma upper limits on the molecular gas fraction (fmol=MH2/M_{\rm{mol}}=M_{\rm{H_2}}/M_{\star}) of ADF22-QG1 (fmol_{\rm{mol}}<21%), ZF-COS-20115 (fmol_{\rm{mol}}<3.2%), two of the best-studied high-z QGs in the literature, and GS-9209 (fmol_{\rm{mol}}<72%), the most distant massive QG discovered to date. The deep upper limit found for ZF-COS-20115 is 3 times lower than previously anticipated for high-z QGs suggesting, at best, the existence of a large scatter in the fmol_{\rm{mol}} distribution of the first QGs. Lastly, we discuss the current limitations of the method and propose ways to mitigate some of them by exploiting ALMA bands 9 and 10.Comment: 7 pages, 2 figures. A&A Letters in pres

    Formation epochs, star formation histories and sizes of massive early-type galaxies in cluster and field environments at z=1.2: insights from the rest-frame UV

    Full text link
    We derive stellar masses, ages and star formation histories of massive early-type galaxies in the z=1.237 RDCS1252.9-2927 cluster and compare them with those measured in a similarly mass-selected sample of field contemporaries drawn from the GOODS South Field. Robust estimates of these parameters are obtained by comparing a large grid of composite stellar population models with 8-9 band photometry in the rest-frame NUV, optical and IR, thus sampling the entire relevant domain of emission of the different stellar populations. Additionally, we present new, deep UU-band photometry of both fields, giving access to the critical FUV rest-frame, in order to constrain empirically the dependence on the environment of the most recent star formation processes. We find that early-type galaxies, both in the cluster and in the field, show analogous optical morphologies, follow comparable mass vs. size relation, have congruent average surface stellar mass densities and lie on the same Kormendy relation. We also that a fraction of early-type galaxies in the field employ longer timescales, τ\tau, to assemble their mass than their cluster contemporaries. Hence we conclude that, while the formation epoch of early-type only depends on their mass, the environment does regulate the timescales of their star formation histories. Our deep UU-band imaging strongly supports this conclusions. It shows that cluster galaxies are at least 0.5 mag fainter than their field contemporaries of similar mass and optical-to-infrared colors, implying that the last episode of star formation must have happened more recently in the field than in the cluster.Comment: 20pages, 10 figures. to appear on Ap

    On the Initial Mass Function and tilt of the Fundamental Plane of massive early-type galaxies

    Get PDF
    We investigate the most plausible stellar Initial Mass Function (IMF) and the main origin of the tilt of the Fundamental Plane (FP) for old, massive early-type galaxies. We consider a sample of 13 bright galaxies of the Coma cluster and combine our results with those obtained from a sample of 57 lens galaxies in the same luminous mass range. We estimate the luminous mass and stellar mass-to-light ratio values of the sample galaxies by fitting their SDSS multi-band photometry with composite stellar population models computed with different dust-free, solar-metallicity templates and IMFs. We compare these measurements and those derived from two-component orbit-based dynamical modelling. The photometric and dynamical luminous mass estimates of the galaxies in our sample are consistent, within the errors, if a Salpeter IMF is adopted. On the contrary, with a Kroupa or Chabrier IMF the two luminous mass diagnostics differ at a more than 4 \sigma level. For the massive Coma galaxies, their stellar mass-to-light ratio scales with luminous mass as the corresponding effective quantities are observed to scale on the FP. This indicates that the tilt of the FP is primarily caused by stellar population properties. We conclude that old, massive lens and non-lens early-type galaxies obey the same luminous and dynamical scaling relations, favour a Salpeter IMF, and suggest a stellar population origin for the tilt of the FP. The validity of these results for samples of early-type galaxies with different age and mass properties still remains to be tested.Comment: 5 pages, 2 figures, accepted by MNRA

    Star Formation Histories in a Cluster Environment at z~0.84

    Get PDF
    We present a spectrophotometric analysis of galaxies belonging to the dynamically young, massive cluster RX J0152.7-1357 at z~0.84, aimed at understanding the effects of the cluster environment on the star formation history (SFH) of cluster galaxies and the assembly of the red-sequence (RS). We use VLT/FORS spectroscopy, ACS/WFC optical and NTT/SofI near-IR data to characterize SFHs as a function of color, luminosity, morphology, stellar mass, and local environment from a sample of 134 spectroscopic members. In order to increase the signal-to-noise, individual galaxy spectra are stacked according to these properties. Moreover, the D4000, Balmer, CN3883, Fe4383 and C4668 indices are also quantified. The SFH analysis shows that galaxies in the blue faint-end of the RS have on average younger stars (Delta t ~ 2 Gyr) than those in the red bright-end. We also found, for a given luminosity range, differences in age (Delta t ~ 0.5 - 1.3 Gyr) as a function of color, indicating that the intrinsic scatter of the RS may be due to age variations. Passive galaxies in the blue faint-end of the RS are preferentially located in the low density areas of the cluster, likely being objects entering the RS from the "blue cloud". It is likely that the quenching of the star formation of these RS galaxies is due to interaction with the intracluster medium. Furthermore, the SFH of galaxies in the RS as a function of stellar mass reveals signatures of "downsizing" in the overall cluster.Comment: 36 pages, 5 tables, 14 figures. Accepted for publication in The Astrophysical Journa

    CBLAST-Low 2001 pilot study mooring deployment cruise and data report ; FV Nobska, June 4 to August 17, 2001

    Get PDF
    During the summer of 2001, several moorings and cruises were used as part of the CBLAST-Low (Coupled Boundary Layer Air-Sea Transfer under low wind conditions) pilot experiment in the North Atlantic, south of Martha’s Vineyard Island, MA, USA. Six subsurface tide gauges were deployed around the study site for a period of approximately 3 months during the summer of 2001. Further, two surface buoys equipped with meteorological instrumentation and subsurface arrays that measured temperature, conductivity and velocity were deployed during the months of July and August 2001. For a short intensive operating period during July 2001, a newly manufactured three-dimensional mooring designed to sample three-dimensional properties of the upper ocean was deployed for a period of 6 days. During the Intensive Operating Period (IOP) along-shelf and across-shelf conductivity-temperature-depth (CTD) sections were completed as well as a drifting array designed to passively collect data from the upper water column released for approximately 24 hours. This report describes the instrumentation and type of moorings deployed by the Woods Hole Oceanographic Institution Upper Ocean Processes (WHOI UOP) group as well as data return and quality from the CBLAST-Low 2001 pilot study. This is summarized in graphical and tabular form in this report.Funding provided by the Office of Naval Research under Contract No. N00014-01-1-0029 and from the Secretary of the Navy / CNO Chair Grant No. N00014-99-1-0090

    The Red Sequence of High-Redshift Clusters: a Comparison with Cosmological Galaxy Formation Models

    Full text link
    We compare the results from a semi-analytic model of galaxy formation with spectro-photometric observations of distant galaxy clusters observed in the range 0.8< z< 1.3. We investigate the properties of their red sequence (RS) galaxies and compare them with those of the field at the same redshift. In our model we find that i) a well-defined, narrow RS is obtained already by z= 1.2; this is found to be more populated than the field RS, analogously to what observed and predicted at z=0; ii) the predicted U-V rest-frame colors and scatter of the cluster RS at z=1.2 have average values of 1 and 0.15 respectively, with a cluster-to-cluster variance of 0.2 and 0.06, respectively. The scatter of the RS of cluster galaxies is around 5 times smaller than the corresponding field value; iii) when the RS galaxies are considered, the mass growth histories of field and cluster galaxies at z=1.2 are similar, with 90 % of the stellar mass of RS galaxies at z=1.2 already formed at cosmic times t=2.5 Gyr, and 50 % at t=1 Gyr; v) the predicted distribution of stellar ages of RS galaxies at z=1.2 peaks at 3.7 Gyr for both cluster and field populations; however, for the latter the distribution is significantly skewed toward lower ages. When compared with observations, the above findings show an overall consistency, although the average value 0.07 of the observed cluster RS scatter (U-V colors) at z=1.2 is smaller than the corresponding model central value. We discuss the physical origin and the significance of the above results in the framework of cosmological galaxy formation.Comment: 14 pages, accepted for publication in ApJ. Updated one referenc

    Multi-wavelength study of XMMU J2235.3-2557: the most massive galaxy cluster at z > 1

    Full text link
    [Abridged] XMMU J2235.3-2557 is one of the most distant X-ray selected clusters, spectroscopically confirmed at z=1.39. We characterize the galaxy populations of passive members, the thermodynamical properties of the hot gas, its metal abundance and the total mass of the system using imaging data with HST/ACS (i775 and z850 bands) and VLT/ISAAC (J and K_s bands), extensive spectroscopic data obtained with VLT/FORS2, and deep Chandra observations. Out of a total sample of 34 spectroscopically confirmed cluster members, we selected 16 passive galaxies within the central 2' (or 1 Mpc) with ACS coverage, and inferred star formation histories for a sub-sample of galaxies inside and outside the core by modeling their spectro-photometric data with spectral synthesis models, finding a strong mean age radial gradient. Chandra data show a regular elongated morphology, closely resembling the distribution of core galaxies, with a significant cool core. We measure a global X-ray temperature of kT=8.6(-1.2,+1.3) keV (68% c.l.). By detecting the rest-frame 6.7 keV Iron K line, we measure a metallicty Z= 0.26(+0.20,-0.16) Zsun. In the likely hypothesis of hydrostatic equilibrium, we obtain a total mass of Mtot(<1 Mpc)=(5.9+-1.3)10^14 Msun. Overall, our analysis implies that XMM2235 is the hottest and most massive bona-fide cluster discovered to date at z>1, with a baryonic content, both its galaxy population and intra-cluster gas, in a significantly advanced evolutionary stage at 1/3 of the current age of the Universe.Comment: 9 pages, 8 figures, accepted for publication in A&A (v2: typos/language style corrections, updated references

    Soil Phosphorus Uptake by Continuously Cropped Lupinus albus: A New Microcosm Design

    Get PDF
    When grown in soils with sparingly available phosphorus (P), white lupin (Lupinus albus L.) forms special root structures, called cluster roots, which secrete large amounts of organic acids and concomitantly acidify the rhizosphere. Many studies dealing with the understanding of this P acquisition strategy have been performed in short time experiments either in hydroponic cultures or in small microcosm designs with sand or sand:soil mixtures. In the present study, we applied an experimental design which came nearer to the natural field conditions: we performed a one-year experiment on large microcosms containing 7kg of soil and allowing separation of rhizosphere soil and bulk soil. We planted six successive generations of lupins and analysed P uptake, organic P desorption, phosphatase activities and organic acid concentrations in different soil samples along a spatio-temporal gradient. We compared the rhizosphere soil samples of cluster (RSC) and non-cluster roots (RSNC) as well as the bulk soil (BS) samples. A total shoot biomass of 55.69 ± 1.51g(d.w.)y−1 was produced and P uptake reached 220.59 ± 5.99mgy−1. More P was desorbed from RSC than from RSNC or BS (P < 0.05). RSC and RSNC showed a higher activity of acid and alkaline phosphatases than BS samples and a higher acid phosphatase activity was observed in RSC than in RSNC throughout the one-year experiment. Fumarate was the most abundant organic acid in all rhizosphere soil samples. Citrate was only present in detectable amounts in RSC while malate and fumarate were recovered from both RSC and RSNC. Almost no organic acids could be detected in the BS samples. Our results demonstrated that over a one-year cultivation period in the absence of an external P supply, white lupin was able to acquire phosphate from the soil and that the processes leading to this P uptake took place preferentially in the rhizosphere of cluster root
    corecore