30 research outputs found

    Photogrammetric localization of motorcycle rider

    Get PDF
    Tato diplomová práce se zabývá návrhem měřicího zařízení, které by umožňovalo snímat pohyby jezdce během dynamických jízdních stavů, s cílem vytvořit simulaci v multi-body softwaru na základě naměřených dat. V první části práce je věnována pozornost přehledu současného stavu poznání, tj. principům fotogrammetrie, používaným snímačům a vlastnostem motocyklu. Druhá část pojednává o samotné konstrukci měřicího řetězce, realizaci měření, zpracování dat a jejich vyhodnocení v multi-body softwaru.This Master’s thesis deals with designing a measuring device that would record driver’s movements during dynamic riding states known as localization, and based on the recorded data creating a simulation in multi-body software. The first part reviews the current state of knowledge in the field of photogrammetry, sensors, and motorcycles’ characteristics. Moreover, the second part focuses on constructing the measuring device, practical aspects of data collection, processing, and evaluation in multi-body software.

    Verso modelli predittivi di successo dei nuovi prodotti: un approccio sperimentale sui Social Network

    Get PDF
    Sommario La crescente competitività e rapidità di cambiamento del mercato sta portando le aziende a chiedere a progettisti e ingegneri di prodotto di creare idee che incontrano al meglio i bisogni del consumatore, rendendo sempre più importante il processo di comprensione di ciò che gli utenti vogliono e desiderano. L'analisi di Big Data estratti da Social Network è ormai una pratica molto comune con un incredibile impatto strategico, che permette di valutare le immediate reazioni del mercato per poter regolare azioni di marketing e di supporto. Le metodologie di analisi viste fino ad adesso si basano su Sentiment Analysis, che mostra le reazioni degli utenti al prodotto, ma non può dire se il prodotto stia rispondendo o meno ai bisogni dell'utente. Questo lavoro di tesi si prospetta di elaborare un metodo di estrazione di contenuti strutturati attraverso un approccio sperimentale, applicando per la prima volta un software che può permettere di individuare all'interno delle conversazioni i vantaggi e gli svantaggi che gli utenti stanno riscontrando nell'utilizzo di un determinato prodotto. Abstract Increasing competition and rapidly changing of market is leading companies to ask designers and product engineers to create ideas that best meet consumer needs, making it increasingly important the process of understanding what users want and desire. The analysis of Big Data extracted from the Social Network is now a very common practice with an incredible strategic impact, which allows to evaluate the immediate reaction of the market to adjust marketing and support actions. The analytical methodologies seen until now are based on Sentiment Analysis, which displays the users' reactions to the product, but we can not say whether or not the product is responding to user needs. The thesis work lies ahead to develop a method of extraction of structured content through an experimental approach, applying for the first time a software that may allow the detection part of the conversations the advantages and disadvantages that users are finding in using a particular product

    Development and Evaluation of Weak-Post W-Beam Guardrail in Mow Strips

    Get PDF
    The objective of this study was to adapt and evaluate a weak-post, W-beam guardrail system for use within mow strips and other pavements. The weak-post guardrail system was originally designed as the MGS bridge rail and has also been adapted for use on culverts. It was envisioned that the weak-post design would absorb the impact forces and prevent damage to the mow strips, thereby minimizing maintenance and repair costs. Evaluation of the weak posts in mow strips began with three rounds of dynamic bogie testing. Round 1 of bogie testing showed that 4-in. (102-mm) thick concrete would sustain only minor spalling from impacts to the posts. However, the posts would push through 4-in. and 6-in. (102-mm and 152-mm) thick asphalt mow strips. During Round 2, 24-in. (610-mm) long, 4-in. x 4-in. (102-mm x 102-mm) sockets with 10-in. x 9-in (254-mm x 229-mm) shear plates were utilized to better distribute the impact load to the asphalt pavement and prevent damage. However, Round 3 of bogie testing consisted of dual-post impacts, and the asphalt suffered from shear block fracture between the two 24-in. (610-mm) sockets and the back edge of the mow strip. A dual-post test within a 4-in. (102-mm) thick concrete pad showed only minor spalling. A full-scale MASH 3-11 test was conducted on the weak-post guardrail system installed within an asphalt mow strip. Due to the Round 3 testing results, the asphalt thickness was increased to 6 in. (152 mm), and the socket depth was increased to 30 in. (762 mm). The 2270P pickup was contained and safely redirected, and all MASH safety criteria were satisfied. Unfortunately, the asphalt fractured, and a 2ó-in. (64-mm) wide crack ran from socket to socket throughout the impact region of the system. Therefore, the weak-post guardrail system was crashworthy, but would require repairs in its current configuration. The system could also be installed in a concrete mow strip to prevent pavement damage

    Mapping and Analysis of Coral Reef Damage Related to Boating in Kāneʻohe Bay with Unmanned Aerial Systems

    Get PDF
    MA University of Hawaii at Manoa 2016Includes bibliographical references (leaves 63–71).Low-cost unmanned aerial systems have been underutilized in mapping damage to coral reefs due to recreational boating activities. The need for fast and accurate mapping is important when making sense of situations where coral reefs require emergency restoration and damage assessments. With coral reefs under increasing stress from global climate change and other anthropogenic factors, the need to protect them is more important than ever. There are inherent challenges in mapping benthic habitats with typical methods such as scuba surveys and satellite photo interpretation. This study aims to use unmanned aerial vehicles to map damage to coral reefs related to boating in Kāneʻohe Bay. Images were taken at relatively low altitudes from an unmanned aerial vehicle and then mosaicked together using commercially available software. The image orthomosaics were georeferenced and digitized into vector files for further analysis. The vector files can reveal patterns and concentrations of vessel related damage to coral reefs in the bay. Continued data collection can serve to monitor damage and predict future locations of boat interactions with these important marine resources

    Deep Ocean Vehicle Applications and Modifications

    Get PDF
    This project had two primary goals: (1) to explore opportunities to further a deep-ocean vehicle’s reach using alternative pressure spheres, and (2) to implement an existing deep-ocean vehicle (lander) in active scientific research. I gained a greater understanding of the limitations and design choices made for existing pressure spheres using Finite Element Analysis (FEA). My simplified FEA model predicted sphere failure for the existing 30% Fiber Glass 70% Nylon injection molded spheres at an external pressure of 3,954psi or 2,690m ocean-depth (only a 7.38% error compared to the tested minimum failure depth), so I determined it a valid model. I also explored alternative designs and materials that could be used for pressure spheres in deep-sea applications. Existing pressure sphere models filled with an incompressible fluid failed at 12,670psi or 8,621m ocean-depth - over three times the depth of the same sphere filled with air. Next, I varied the sphere thickness of existing spheres to determine its impact on depth rating. While the increased thickness did provide an increase in depth rating, there were diminishing returns as the sphere was made thicker. I deemed both of these design options infeasible for our application. To consider the use of laminated composite spheres, the addition of an equatorial ring was required to manufacture O-ring seals safely and reliably. A simple cylindrical equatorial ring model using a stainless-steel ring had a predicted failure at 3,017psi or 2,053m ocean-depth. While this model predicted failure at 637m shallower than the sphere without the ring, it was the only ring material tested to reach the rated depth for the existing pressure spheres (2km), so I concluded stainless-steel is the best ring material. A spherical stainless-steel equatorial ring design was then analyzed which predicted failure at 3,915psi or 2,664m ocean-depth – only 8.3% less than the original sphere with no ring. Because of its successful performance and near identical results to the original model, I determined a stainless-steel spherical equatorial ring is the best option for laminated composite sphere sealing. Finally, I analyzed three different kinds of laminated composite pressure spheres: two carbon fiber and one fiber glass. Each laminate was designed to be quasi-isotropic and as close to 0.8” thick as possible to keep it consistent with the original sphere design. The sphere made of 584 Carbon Fiber with a lay-up of: [[-45/45/0/90]6]s was found to predict failure at 10,000psi or 6,804m ocean-depth, more than 2.5 times that of the original sphere. Next, a model made of 282 Carbon Fiber with a lay-up of: [[-45/45/0/90]11]s predicted failure at 9,242psi or 6,289m ocean-depth – more than 2.3 times as deep as the original pressure spheres. Lastly, a sphere of 7781 Fiber Glass with a lay-up of: [[-45/45/0/90]11]s predicted failure at 6,630psi or 4,511m ocean-depth – about two-thirds the depth of the 584 Carbon Fiber composite, but more than 1.6 times the depth of the original sphere. While real-life applications of these materials would include design modifications and manufacturing imperfections which would lower their maximum depth rating, these results are highly encouraging and show that all three materials could be viable options for future production. Additionally, through partnership with Dr. Crow White and his marine science undergraduate students, I completed numerous deployments for a Before and After Controlled Impact (BACI) study on the area of the proposed windfarm off the coast of Morro Bay, CA. Many modifications were made to the existing lander which enabled it to successfully be implemented in these studies including a new bait containment unit, light color filters, a GPS tracking device, and a large vessel recovery device. A total of 5 pier deployments and 3 boat deployments were conducted by my team over the course of 6-months. Planning for these deployments included accounting for budgeting, weather, permitting, and multi-organizational logistics while working with both NOAA and the Cal Poly marine operations staff

    Polidrone – Business Plan of a multipurpose modular drone produced via FDM

    Get PDF
    El TFG, realizado conjuntamente con la oficina I3P del Politécnico de Turín, constituye un Plan de Negocio para un dron creado y patentado por una serie de personas vinculadas al Politécnico de Turín con el fin de evaluar su viabilidad. La primera fase del Proyecto fue la definición de los casos de uso o nichos de mercado para los que iba destinado el dron. Para ello se tuvo que tener una absoluta comprensión mecánica del dron, destacando nuestras ventajas competitivas. También se realizó una serie de encuestas, entrevistas y análisis de mercado. Tomando como base los casos de uso elegidos, se realizó el Plan de Negocio completo. El cual analiza los puntos fuertes del dron, los segmentos y el tamaño de mercado, los clientes potenciales, la forma de comercialización, su distribución y venta, su promoción, fijar el precio, los proveedores, los materiales y equipos necesarios, su plan de financiación y beneficios esperados en 5 años, análisis de la competencia, etc. Finalmente, el Plan de Negocio fue presentado como concursante en una competición regional de proyectos innovadores. La START CUP Piemonte-Valle d’Aosta.Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica en la Ingeniería, Ingeniería Cartográfica, Geodesia y Fotogrametría, Ingeniería Mecánica e Ingeniería de los Procesos de FabricaciónGrado en Ingeniería Mecánic

    IMU Validation Apparatus for Human Joints

    Full text link
    ME450 Capstone Design and Manufacturing Experience: Fall 2020Inertial measurement units (IMUs) are small sensor packs that include accelerometers, gyroscopes, and magnetometers that are used to conduct movement analysis outside of a laboratory setting. IMUs use an integration process to determine absolute orientation and location of the object they are attached to, so error in their output is vulnerable to discrepancies from the effects of long-term data collection. Additional error can also be introduced through magnetic interference with the magnetometer readings. To combat this, calibration and post-processing algorithms can be made to adjust for these measurement errors, but ground truth angle data is needed to quantify their performance. This report outlines the requirements, specifications, evaluated concepts, verification methods, and developed solution for a device that is capable of measuring ground truth angles for comparison with angles derived from different IMU algorithms.Dr. Stephen Cain, Mechanical Engineering, University of Michiganhttp://deepblue.lib.umich.edu/bitstream/2027.42/164441/1/IMU_Validation_Apparatus_for_Human_Joints.pd

    Controlo multi-drones com suporte a missões autónomas

    Get PDF
    Recent advancements regarding miniaturization of sensors and instruments, as well as the reduction of their cost, promoted a growth in the usage of drones in an increasingly wide range of scenarios such as search and rescue, agriculture and environmental monitoring. However, most currently available mechanisms for drone control still require a constantly aware pilot, thus limiting the convenience of executing complex missions, especially when more than one drone is involved. Major drone and flight controller manufacturers, however, are displaying an increasing interest in providing programming interfaces and development kits that enable the execution of basic autonomous flight, including commands such as taking off, landing and waypoint navigation. These interfaces facilitate the integration of said drones in platforms that aim to abstract manual control from their users. This dissertation proposes a complete and modular solution for controlling one or more drones, enabling an inexperienced user to plan, execute and monitor complex missions with various participants, also implementing the required functionality for the collaboration of a set of drones in the execution of such missions. The proposed solution consists in a modular platform composed of loosely coupled components. Each component is individually designed to handle specific tasks such as flight control hardware interfacing, telemetry acquisition and storage, and mission planning. Components accomplish their interactions by using message brokers, while user interaction is achieved through intuitive web and mobile applications. The functionality of the solution is evaluated through the completion of four experiments, which represent typical scenarios where the control platform may be used. These experiments cover both single-drone and multi-drone functionality, with the first two covering tasks carried out by one drone, while the last two represent scenarios where multiple drones collaborate towards a common goal.Com os avanços recentes na redução do tamanho dos sensores e instrumentos, assim como na redução de custos dos mesmos, a utilização de drones é cada vez mais comum e abrange um número cada vez superior de casos de utilização tais como missões de procura e resgate, agricultura e monitorização ambiental. Contudo, a maior parte das alternativas existentes para controlo ainda exigem a atenção constante de um piloto, limitando a conveniência da execução de missões complexas, sobretudo quando nelas participa mais que um drone. Os principais fabricantes de drones e controladores de vôo, no entanto, disponibilizam cada vez mais frequentemente interfaces para a execução de funções básicas de vôo autónomo, como por exemplo a descolagem, aterragem e a navegação baseada em coordenadas geográficas. A existência cada vez mais comum destas interfaces permite a integração de drones em plataformas que têm como objectivo a abstração do seu controlo directo. Esta dissertação propõe uma solução modular completa para controlo de um ou mais drones, permitindo a um utilizador inexperiente o planeamento, execução e monitorização de missões complexas com vários participantes, implementando também a funcionalidade necessária para a colaboração de vários drones na execução de uma missão. A solução proposta consiste numa plataforma modular, composta por componentes que são executados de forma independente. Cada componente é individualmente desenvolvido para executar tarefas específicas como a comunicação com o controlador de vôo, a aquisição e armazenamento de telemetria e o planeamento de missões. Os componentes realizam as suas interações através da utilização de filas de mensagens, enquanto a interação com o utilizador é realizada através de aplicações intuitivas web ou mobile. As funcionalidades da solução proposta são avaliadas através da execução de quatro testes distintos, que representam cenários típicos em que a plataforma de controlo pode ser usada. Estes testes cobrem a utilização de um ou mais drones, sendo que as duas primeiras tarefas são executadas apenas por um drone e as últimas duas representam cenários em que vários drones colaboram para alcançar um objectivo comum.Apoio financeiro do POCTI no âmbito do III Quadro Comunitário de Apoio. Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio.Mestrado em Engenharia de Computadores e Telemátic

    Differences in swimming stroke mechanics and kinematics derived from tri-axial accelerometers during a 200-IM event in South African national swimmers

    Get PDF
    Context: Swimming is a highly competitive sport, with elite swimmers and coaches constantly looking for ways to improve and challenge themselves to meet new performance goals. The implementation of technology in swimming has proven to be a vital tool in athlete monitoring and in providing coaches with additional information on the swimmer’s performance. Example of this technology is the use of inertial sensory devices such as tri-axial accelerometers. The accelerometers can be used to provide kinematic information with regards to the swimmer’s stroke rate, stroke length and stroke mechanics. In a typical training session, coaches would have to manually time and count their swimmer’s strokes to be able to gain the kinematic information they require. Hence, the use ofinertial sensory technology, such as accelerometers, would provide the necessary information coaches require, allowing them to concentrate on other performance aspects such as theirswimmer’s technique.Aim and objectives: The aim of this study was to determine the kinematic parameters and swimming stroke mechanics that could be derived from tri-axial accelerometers, during a 200-m individual medley (IM) event in South African national level swimmers. Three objectives were set to meet the aim of the study. The first was to identify and differentiate each of the stroking styles using tri-axial accelerometers. The second was to identify and differentiate the kinematic parametersand stroke mechanicsfor all four strokes using tri-axial accelerometers. The third objective was to implement machine learning to automate the identification and interpretation of the accelerometer data. Method:A quantitative, non-experimental descriptive one group post-test only design was used, in which 15 national level swimmers, of which seven male and eight female (mean ±SD: age: 20.9 ± 2.90 years; height: 173.28 ± 10.61 cm; weight: 67.81 ± 8.09 kg; arm span: 178.21 ± 12.15 cm) were tested. Three anthropometric measures were taken (height, weight and arm span) prior to testing, with two tri-axial accelerometers and Polar V800watch and heart rate belt attached to the swimmers left wrist, upper-back and chest, respectively. All swimmerswere required to perform three main swimming sets: 50-m IM, 100-m variation and 200-mIM. Variousdescriptivestatisticsincluding mean, standard deviation and confidence intervals (95%)were used to describe the data. with further inferential statistics including paired t-test, intra-class correlation and Bland Altman analysis wereused to describe the relationship ivbetween the accelerometer and the manually estimated parameters. Additionally, arepeated measures one-way ANOVA (with post-hoc Tukey HSD test) werealso used in an inter-comparison of the stroke parameters between each of the stroking styles. A confusion matrix wasused to measure the classification accuracy of the machine learning model implemented on the accelerometer data.Results:The accelerometers proved successful in identifyingand discerningthe stroke mechanics for each of the four stroking styles, with the use of video footage to validatethe findings. In the stroke kinematic differentiation, theBland Altman analysisresultsshowed an agreement between themanual method and accelerometer-derived estimates, although a discrepancy was evident for several of the kinematic parameters, with a significant difference found with the estimated lap time, average swimming velocity and stroke rate (paired t-test: p 0.05for all strokes)andbetween freestyle and backstroke for the average stroke rate and stroke length (Tukey:p = 0.0968 andp = 0.997, respectively).Lastly, the machine learning model found a classification accuracy of 96.6% in identifyingand labelling the stroking styles fromthe accelerometer data.Conclusion: It was shown that the tri-axial accelerometers were successful in the identification and differentiation of all the stroking styles, stroke mechanics and kinematics, although a discrepancy was found with the average swimming velocity, stroke rate and lap time estimations. The machine learning model implemented proved the benefits of using artificial intelligence to ease the data process and interpretation by automatically labelling the accelerometer data. Therefore, the use of tri-axial accelerometers as a coaching aid has major potential in the swimming community. However, further research is required to eliminate the time-consuming data processingand to increasetheaccuracy of the accelerometer in the measurement of all the stroke kinematics
    corecore