
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Nuno Humberto

Mendes Gonçalves

Paula

Controlo Multi-drones com Suporte a Missões

Autónomas

Multi-drone Control with Autonomous Mission

Support

“When you are developing a new technique, there are no recipes

to copy, textbooks to consult, or manuals to read to pass on those

little tips and secrets that guarantee success. You end up having to

try any and every permutation of conditions and ingredients. You

are never quite sure which of the many factors is really significant,

how they act with and against one another, and so on. To sort out

all those variables requires carefully designed trials. This is basic

experimentation at its toughest and, if you succeed, at its best.”

— John Craig Venter

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Nuno Humberto

Mendes Gonçalves

Paula

Controlo Multi-drones com Suporte a Missões

Autónomas

Multi-drone Control with Autonomous Mission

Support

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2018

Nuno Humberto

Mendes Gonçalves

Paula

Controlo Multi-drones com Suporte a Missões

Autónomas

Multi-drone Control with Autonomous Mission

Support

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica da Doutora Su-
sana Sargento, Professora Associada com Agregação do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro, e do
Doutor André Braga Reis, investigador do Instituto de Telecomunicações.

Apoio financeiro do POCTI no
âmbito do III Quadro Comunitário
de Apoio.

Apoio financeiro da FCT e do FSE
no âmbito do III Quadro Comuni-
tário de Apoio.

o júri / the jury

presidente / president Prof. Dr. José Luís Costa Pinto de Azevedo
professor auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Universi-

dade de Aveiro

vogais / examiners committee Prof. Dr. Luís Miguel Pinho de Almeida
professor associado do Departamento de Engenharia Eletrotécnica e de Computadores da Fa-

culdade de Engenharia da Universidade do Porto

Prof. Dra. Susana Sargento
professora associada com agregação do Departamento de Eletrónica, Telecomunicações e Infor-

mática da Universidade de Aveiro

agradecimentos /

acknowledgements

Obrigado mãe, pai e Ana. Obrigado a todos os meus amigos pelo apoio e por
estarem presentes, de uma forma ou outra. À professora Susana Sargento,
obrigado pela integração no fantástico grupo que é o NAP e pelo tempo gasto
na orientação e correção deste documento. Um obrigado especial ao Bruno
Areias, André Reis e André Martins, que ajudaram no desenvolvimento deste
trabalho diariamente e não descansaram enquanto não estivesse concluído.
Muito obrigado.

Palavras Chave drones, controlo remoto, vôo autónomo, missões autónomas, multi-drone,
missões colaborativas

Resumo Com os avanços recentes na redução do tamanho dos sensores e instru-
mentos, assim como na redução de custos dos mesmos, a utilização de
drones é cada vez mais comum e abrange um número cada vez superior de
casos de utilização tais como missões de procura e resgate, agricultura e
monitorização ambiental. Contudo, a maior parte das alternativas existentes
para controlo ainda exigem a atenção constante de um piloto, limitando a
conveniência da execução de missões complexas, sobretudo quando nelas
participa mais que um drone.

Os principais fabricantes de drones e controladores de vôo, no entanto,
disponibilizam cada vez mais frequentemente interfaces para a execução de
funções básicas de vôo autónomo, como por exemplo a descolagem, ater-
ragem e a navegação baseada em coordenadas geográficas. A existência
cada vez mais comum destas interfaces permite a integração de drones em
plataformas que têm como objectivo a abstração do seu controlo directo.

Esta dissertação propõe uma solução modular completa para controlo
de um ou mais drones, permitindo a um utilizador inexperiente o plane-
amento, execução e monitorização de missões complexas com vários
participantes, implementando também a funcionalidade necessária para a
colaboração de vários drones na execução de uma missão.

A solução proposta consiste numa plataforma modular, composta por
componentes que são executados de forma independente. Cada compo-
nente é individualmente desenvolvido para executar tarefas específicas como
a comunicação com o controlador de vôo, a aquisição e armazenamento de
telemetria e o planeamento de missões. Os componentes realizam as suas
interações através da utilização de filas de mensagens, enquanto a interação
com o utilizador é realizada através de aplicações intuitivas web ou mobile.

As funcionalidades da solução proposta são avaliadas através da exe-
cução de quatro testes distintos, que representam cenários típicos em que
a plataforma de controlo pode ser usada. Estes testes cobrem a utilização
de um ou mais drones, sendo que as duas primeiras tarefas são executadas
apenas por um drone e as últimas duas representam cenários em que vários
drones colaboram para alcançar um objectivo comum.

Keywords drones, remote control, autonomous flight, autonomous missions, multi-drone,
collaborative missions.

Abstract Recent advancements regarding miniaturization of sensors and instruments,
as well as the reduction of their cost, promoted a growth in the usage of
drones in an increasingly wide range of scenarios such as search and rescue,
agriculture and environmental monitoring. However, most currently available
mechanisms for drone control still require a constantly aware pilot, thus
limiting the convenience of executing complex missions, especially when
more than one drone is involved.

Major drone and flight controller manufacturers, however, are displaying
an increasing interest in providing programming interfaces and development
kits that enable the execution of basic autonomous flight, including commands
such as taking off, landing and waypoint navigation. These interfaces facilitate
the integration of said drones in platforms that aim to abstract manual control
from their users.

This dissertation proposes a complete and modular solution for control-
ling one or more drones, enabling an inexperienced user to plan, execute and
monitor complex missions with various participants, also implementing the
required functionality for the collaboration of a set of drones in the execution
of such missions.

The proposed solution consists in a modular platform composed of loosely
coupled components. Each component is individually designed to handle
specific tasks such as flight control hardware interfacing, telemetry acquisition
and storage, and mission planning. Components accomplish their interactions
by using message brokers, while user interaction is achieved through intuitive
web and mobile applications.

The functionality of the solution is evaluated through the completion of
four experiments, which represent typical scenarios where the control
platform may be used. These experiments cover both single-drone and
multi-drone functionality, with the first two covering tasks carried out by
one drone, while the last two represent scenarios where multiple drones
collaborate towards a common goal.

Contents

Contents i

List of Figures v

List of Tables ix

Acronyms xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Published Results and Prototypes . 2

1.4 Outline . 3

2 Related Work 5

2.1 Drones . 5

2.2 Flight Controllers . 6

2.2.1 Closed Hardware . 6

2.2.2 Community-developed Hardware . 9

2.3 Flight Controller Firmware . 10

2.4 Remote Control Solutions . 11

2.4.1 Open-source Solutions . 11

2.4.2 Commercially Available Solutions . 13

2.5 Related Work . 14

2.5.1 ROLFER . 15

2.5.2 Automated Infrastructure Inspection . 15

2.5.3 Persistent Aerial Surveillance . 15

2.5.4 Continuous Remote Control . 15

2.5.5 Imaging System for Crop Monitoring . 15

2.5.6 MedizDroids . 16

i

2.6 Discussion . 16

3 Architecture 17

3.1 Scenarios and requirements . 17

3.1.1 Internal telemetry acquisition . 17

3.1.2 External sensor reading acquisition . 18

3.1.3 Geographic coordinate based drone control 18

3.1.4 Mission execution . 18

3.1.5 Collaboration . 18

3.1.6 Logging . 19

3.2 Overall architecture . 19

3.3 Drone side . 20

3.3.1 Overview . 20

3.3.2 Component description . 21

3.3.2.1 Flight Controller . 21

3.3.2.2 Drone Controller . 22

3.3.2.3 Gear Manager . 24

3.3.2.4 Fail-safe System . 25

3.3.2.5 Logger . 25

3.3.3 Component connection . 26

3.4 Ground side . 26

3.4.1 Overview . 26

3.4.2 Component description . 27

3.4.2.1 Drone Identifier . 27

3.4.2.2 Drone Manager . 27

3.4.2.3 Telemetry Analyzer . 27

3.4.2.4 Mission Planner . 28

3.4.3 Component connection . 29

3.5 Communication and interaction . 29

3.6 Multi-drone capabilities . 29

3.7 Summary . 29

4 Implementation 31

4.1 Drone side component description . 31

4.1.1 Physical components . 31

4.1.1.1 Drone type . 31

4.1.1.2 Component description . 32

4.1.1.3 Component connections . 37

ii

4.1.2 Drone Controller . 38

4.1.2.1 Flight Controller Interface . 38

4.1.2.2 Navigation Processor . 38

4.1.2.3 Mission Worker . 39

4.1.2.4 Arming Switch . 40

4.1.3 Logger . 43

4.1.4 Gear Manager . 43

4.2 Ground side component description . 44

4.2.1 Drone Identifier . 44

4.2.2 Telemetry Analyzer . 45

4.2.2.1 Time Series Database . 45

4.2.2.2 Broker-to-database Connector . 45

4.2.2.3 Telemetry Dashboard . 46

4.2.3 Drone Manager . 46

4.2.4 Mission Planner . 48

4.3 Communication Mechanisms . 52

4.3.1 Message brokers . 52

4.3.1.1 Drone Internal Broker . 52

4.3.1.2 Ground Broker . 53

4.3.2 Communication between Drone and Ground 54

4.3.3 Communication between Ground and the user 56

4.3.4 Message structure . 58

4.4 Summary . 58

5 Experiments 59

5.1 Panic Button . 59

5.1.1 Objectives . 59

5.1.2 Method . 59

5.1.3 Evaluation Procedure . 60

5.1.4 Results . 62

5.2 Automated Aerial Photography . 64

5.2.1 Objectives . 64

5.2.2 Method . 64

5.2.3 Evaluation Procedure . 68

5.2.4 Results . 68

5.3 Drone Self-Replacement . 71

5.3.1 Objectives . 71

5.3.2 Method . 71

iii

5.3.3 Evaluation Procedure . 72

5.3.4 Results . 73

5.4 Collaborative Sensing . 76

5.4.1 Objectives . 76

5.4.2 Method . 76

5.4.3 Evaluation Procedure . 77

5.4.4 Results . 79

5.5 Conclusions . 82

6 Conclusion and Future Work 83

6.1 Conclusion . 83

6.1.1 Building a drone management platform . 83

6.1.2 Building a drone system . 84

6.1.3 Control abstraction . 84

6.1.4 Mission execution . 84

6.1.5 Drone collaboration . 84

6.2 Future Work . 85

6.2.1 Drone-to-drone communication . 85

6.2.2 Complex mission planning . 85

6.2.3 Fail-safe mechanisms . 85

6.2.4 Broaden flight controller compatibility . 85

References 87

iv

List of Figures

2.1 DJI NAZA-M V2 flight controller with Global Positioning System (GPS) sensor. [28] . . 7

2.2 DJI N3 flight controller with included power management unit and GPS sensor. [29] . . . 7

2.3 Representation of Parrot CHUCK. [38] . 8

2.4 Emlid Edge flight controller. [40] . 8

2.5 Representation of Pixhawk 4. [43] . 9

2.6 OpenPilot Revolution flight controller. [54] . 9

2.7 OpenPilot CC3D flight controller. [60] . 10

2.8 Ardupilot logo. [64] . 10

2.9 PX4 logo. [65] . 10

2.10 dRonin logo. [66] . 10

2.11 Screenshot of the QGroundControl Ground Control Station (GCS). [73] 12

2.12 Screenshot of the dRonin GCS. 12

2.13 Real-time map generation using DroneDeploy Live Map [77] 13

2.14 Screenshot of PrecisionFlight. [80] . 14

3.1 Overall platform architecture . 20

3.2 Overview of the drone side architecture . 21

3.3 Flight Controller interaction supporting telemetry acquisition and sending control commands. 22

3.4 Drone Controller with submodules and internal broker interaction. 23

3.5 Gear Manager featuring sample sensors with commonly used interfaces. 24

3.6 Fail-safe System featuring sample fail-safe mechanisms. 25

3.7 Overview of the ground side architecture . 26

3.8 Telemetry Analyzer depiction . 28

4.1 OpenPilot Revolution representation with connectivity highlights [56]. 32

4.2 DJI Flamewheel F550 frame kit before assembly [89]. 33

4.3 Single DJI 420S electronic speed controller [92]. 34

4.4 Six DJI 2312 motors [95]. 34

4.5 A pair of clockwise and counter-clockwise rotation DJI 9450 propellers [96]. 34

v

4.6 GPS and magnetometer module [99]. 35

4.7 FLYSKY FS-i6 radio transmitter [100]. 35

4.8 FLYSKY FS-iA6B radio receiver [101]. 36

4.9 Raspberry Pi 2 Model B [103]. 36

4.10 Arduino Nano 3 [105]. 37

4.11 Drone physical component connection diagram. 37

4.12 Key for physical component connection types. 37

4.13 Latitude Longitude Altitude (LLA) to North East Down (NED) coordinate conversion . 39

4.14 Internal task queue used for mission execution. 39

4.15 Waypoint tolerance representation. 40

4.16 Sticks arming position representation. 41

4.17 Signal received by the Flight Controller with middle pitch, middle roll, zero throttle and

middle yaw. 42

4.18 Radio Receiver signal diagram. 42

4.19 Frame required for arming and disarming. 43

4.20 Arming Switch Emulator diagram. 43

4.21 Example of the internal data structure kept by the Drone Identifier. 45

4.22 Front-end featured in the Drone Identifier for following the connection status of a drone. 45

4.23 Telemetry Dashboard screenshot. 46

4.24 Drone Manager web interface screenshot. 48

4.25 Example of the internal data structure kept by the Mission Planner. 49

4.26 Mission Planner web interface screenshot. 49

4.27 Mapping feature demonstration in the Mission Planner web interface. 50

4.28 Extensibility parameter depiction. 51

4.29 Mission viewing functionality demonstration. 51

4.30 Topic representation when using the Internal Broker. 52

4.31 Example of a Drone Manager or Mission Planner query to the Drone Identifier. . 54

4.32 Example of a Drone Identifier response to the Drone Manager or Mission Planner

query. 54

4.33 Interaction and bridging example of a UAVObject request initiated from the Drone

Manager and followed by its response from the Drone Controller. 56

4.34 Interaction diagram of an arming request initiated by a user from the Representational

State Transfer (REST) Application Programming Interface (API) and followed by its

response from the Drone Controller. 57

4.35 Example of the message contents inside exchanged messages during an arming request

initiated by the user. 58

5.1 Mobile application for invoking connected drones . 60

vi

5.2 Initial status – drone is disarmed . 60

5.3 First stage – drone is armed . 61

5.4 Second stage – drone is reaching desired altitude . 61

5.5 Final stage – drone attempts to reach the user . 62

5.6 Terminating status – drone holds its position above the user 62

5.7 Path followed during the execution of the panic button experiment with distance information. 63

5.8 Timing representation of each stage of the panic button experiment. 63

5.9 Average network round-trip time between the drone and the user device and average time

taken for the drone to communicate its progress to the ground. 64

5.10 Selecting the desired area for photographing . 65

5.11 Automatically generated sequence of waypoints inside the delimited area 65

5.12 Drone Controller debug console – processing a picture request 66

5.13 Sample picture taken with the GoPro . 66

5.14 Sample picture after distortion correction . 67

5.15 Running OpenDroneMap . 67

5.16 Path followed during the execution of the aerial photography experiment. 69

5.17 Time required for the execution of the first waypoint in comparison to the average time

required for the execution of waypoints. 69

5.18 Time required for the execution of the barrel distortion removal shell script and Open-

DroneMap. 69

5.19 Timing representation of the five waypoint columns of the aerial photography experiment. 70

5.20 Rendering the obtained surface model using MeshLab. 71

5.21 Path to be followed in the drone self-replacement experiment. 72

5.22 Path followed by both drones during the execution of the self-replacement experiment. . . 73

5.23 Time required for the execution of the first waypoint of each drone in comparison to the

average time required for the execution of waypoints in the self-replacement experiment. 73

5.24 Timing representation of the self-replacement experiment. 75

5.25 Sensing scenario with one single drone . 76

5.26 Depiction of the collaborative sensing scenario with three drones after automatic area

reconstruction, showing the location where the alarm occurs, which becomes the center of

the new area. 77

5.27 SprintIR-6S CO2 sensor module . 78

5.28 Waypoint distribution across the proposed area . 78

5.29 Path followed by all drones during the execution of the collaborative sensing experiment. 79

5.30 Timing representation of the collaborative sensing experiment. 81

6.1 Two drones in a disarmed state before execution of the self-replacement experiment. . . . 84

vii

List of Tables

4.1 Payload capacity comparison between a quadcopter and a hexacopter of the DJI Flamewheel

series. 32

4.2 Drone Manager REST API documentation. 47

4.3 Additional control commands supported in missions. 50

4.4 Topics used in interactions which make use of the Internal Broker. 53

ix

Acronyms

ADC Analog-to-Digital Converter

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

BEC Battery Eliminator Circuit

CPU Central Processing Unit

CSI Camera Serial Interface

ESC Electronic Speed Controller

FPV First-Person View

GCS Ground Control Station

GPIO General Purpose Input Output

GPS Global Positioning System

HTTP Hypertext Transfer Protocol

I2C Inter-Integrated Circuit

JSON JavaScript Object Notation

LLA Latitude Longitude Altitude

LXC Linux Containers

LiPo Lithium Polymer

MAC Media Access Control

MCU Microcontroller Unit

MQTT Message Queuing Telemetry Transport

NDIR Nondispersive Infrared

NED North East Down

PID Proportional Integral Derivative

PPM Pulse Period Modulation

REST Representational State Transfer

RTOS Real-Time Operating System

SBC Single-Board Computer

SDK Software Development Kit

UART Universal Asynchronous
Receiver-Transmitter

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

VCP Virtual COM Port

VTOL Vertical Take-off and Landing

XML eXtensible Markup Language

xi

CHAPTER 1
Introduction

This chapter introduces the topics covered in this dissertation. It starts by describing the context

and motivation for this work, followed by what objectives are expected to be accomplished

with it. This chapter also describes the prototypes which resulted from this work. Finally, a

document outline is presented, providing an overview of each chapter.

1.1 Motivation

Since the beginning of aviation, controlling an aircraft without requiring a pilot aboard has

been a difficult challenge. These unmanned vehicles typically go by the name of Unmanned

Aerial Vehicle (UAV), or simply drone.

Although initially developed for usage in military situations during the First World War,

recent miniaturization improvements and cost reductions have made drones affordable for

civil purposes, popularizing their usage in professional photography or even as toys.

Recent research efforts have also promoted the usage of drones in an increasingly wide

range of scenarios such as search and rescue, building inspection, environmental monitoring,

agriculture, area patrolling and surveying.

Drones can be controlled manually, using the sticks of a radio remote control. This is

the most common method of controlling a drone, requiring, however, an experienced pilot.

More advanced control mechanisms allow whole missions to be assigned to a drone. These

missions are composed of several high-level flight commands which are sequentially executed

by a drone. Ideally, these flight commands are executed autonomously, requiring no user

interaction once the mission is initiated.

Most commercially available drones still depend on manual remote control from a limited

distance, requiring a constantly aware pilot dedicated to each drone and thus narrowing the

convenience for execution of complex or repetitive missions, particularly when they require

the participation of more than one drone.

Basic navigation functionality, however, is increasingly being supported by major flight

controller manufacturers. This, along with the increasing availability of APIs and Software

1

Development Kits (SDKs) offered by such manufacturers, enables the integration of drones in

platforms that abstract and simplify their control.

Chaumette (2017) in the chapter “Collaboration Between Autonomous Drones and Swarm-

ing” in “UAV Networks and Communications” [1] suggests following a research direction

which seeks combining the advantages of a single UAV with the advantages of a swarm. These

include the possibility of continuously executing a mission even when an unexpected event

causes one drone to land or cancel its execution, inspiring an autonomous replacement scenario.

Here, the potential for increased mission flexibility is also suggested, in which a set of drones

dynamically adapts to a mission, for example, to increase the area coverage capacity.

In order to overcome the current limitation and lack of abstraction in the control of

one or more drones, this dissertation proposes a modular control solution which enables an

unexperienced user to plan, execute and monitor both simple and complex missions which may

involve one or more participating drones, while also implementing the functionality required

for the collaboration scenarios described above.

1.2 Objectives

With the goal of developing a drone control solution, a series of objectives must be accomplished.

These include:

• Building a drone system which can easily be integrated in the proposed control platform.

• Abstracting drone control through the usage of high-level commands.

• Setting up the communication mechanisms required for monitoring drone status and

delivering high-level control commands.

• Developing mechanisms for mission execution which are not dependent on user interac-

tion.

• Creating collaboration methods which enable more than one drone to participate in a

mission, either simultaneously or in replacement scenarios.

• Providing a set of tools and applications which enable monitoring and controlling

connected drones through the usage of user-friendly graphical interfaces or a REST

API.

This dissertation aims on working towards a platform which implements the functionality

required for each of its objectives. Extensive optimization of each of its capabilities can be

further achieved as a subject for future work.

1.3 Published Results and Prototypes

Three articles were published or submitted with the work described in this dissertation, the

first of which with work carried out before the formal start of this dissertation. These include:

• "Automated Flying Drones Platform for Automatic and Remote Sensing", published

and presented in INForum 2017.

2

• "Towards an Automated Flying Drones Platform", published and presented in VEHITS

2018.

• "Multi-drone Control with Autonomous Mission Support", submitted to UNmanned

Aerial vehicle Applications in the Smart City: from Guidance technology to enhanced

system Interaction (UNAGI) Workshop, IEEE International Conference on Pervasive

Computing and Communication (IEEE PERCOM 2019), and awaiting approval.

Additionally, and as a result of this work, the following prototypes were developed:

• A REST API for issuing high-level commands to any connecting drone, also featuring a

graphical interface.

• A mobile application for both Android and iOS devices that enables a user to summon

a drone to his current location.

• A mission planning web application that allows users to drag-and-drop complex sequences

of commands (e.g. arming, taking off, waypoint navigation, manually request replacement

and collaboration, landing, disarming) and send them to any connected drone.

• A web application that enables a user to monitor the connection status of any drone.

• A mission reviewing web application that enables users to upload log files of previously

executed missions and view the followed path in a map.

• An integrated instance of Grafana configured to store and display telemetry data of

every connected drone, also allowing the review of historical data.

1.4 Outline

This section provides a description of each chapter along this dissertation.

• Chapter 1 - Contains an introduction of the dissertation, including its motivation and

objectives.

• Chapter 2 - Describes the actual advancements in areas that are relevant to this work,

covering drones, flight controllers and flight controller firmware, along with current

remote control solutions.

• Chapter 3 - Contains a description of the proposed architecture, also covering its

scenarios and requirements.

• Chapter 4 - Describes the implementation details of each proposed architecture com-

ponent, also covering the building and wiring of the drone system.

• Chapter 5 - Presents four different experiments that evaluate the performance and

functionality of the platform. For each, the description, methods, evaluation procedure

and results are detailed.

• Chapter 6 - Completes this dissertation providing general conclusions and suggestions

for future work.

3

CHAPTER 2
Related Work

This chapter provides an overview of the research efforts and concepts that are essential

for understanding the topics related to this area and the solution that is proposed in this

dissertation. Firstly, we provide a brief description of drone systems and their usages. A

section dedicated to currently used flight controllers is also provided, covering both proprietary

and community developed flight controllers, along with their capabilities. Next, a section covers

flight controller firmware, including the currently available firmware choices, their usage,

activity and recent progress. Ground control solutions are also featured in a section, covering

existing options for ground control that are in production or active in the market. Despite the

focus on commercially available and community developed platforms, components and systems,

the chapter finishes with a brief overview of a few related research efforts towards drone control

platforms, along with a brief discussion.

2.1 Drones

Drone and UAV are the most popular terms for referring to Unmanned Aerial Systems [2].

These have been a challenge since the beginning of aviation, with the objective of controlling an

aircraft without the necessity of a pilot aboard, for usage in both civil and military situations

[3]. In the last few years the advancements, miniaturization and cost reduction of sensors and

instruments promoted the rapid development and adoption of drones in remote sensing and

mapping scenarios [4].

Mostly used drone types include [5]:

• Multi-rotors, which enable Vertical Take-off and Landing (VTOL) and are easy to

use, but are also limited to short flight times.

• Fixed-wing, which are capable of executing very long flights with great speeds, but

provide no hovering capabilities and require horizontal space when taking off and landing.

5

Becoming increasingly common in a broad range of application areas including urban scenarios

[6]–[8], actual research efforts also include risk assessment and analyzing the impact of drones

on public safety [9]. Application areas which are becoming increasingly assisted by drones

include:

• Search and rescue, in which drones can be used to reach disaster locations and drop

first aid payloads [10], [11].

• Building inspection, in which drones may be used for detection of heat leakage,

evaluating building isolation and rooftop condition [12].

• Area patrolling, in which drones are used to carry out surveillance tasks by police

forces.

• Environmental monitoring, in which drones may be used for monitoring air quality at

high altitudes [13], for inspecting rocky shores [14] or for accessing estuarine environments

[15].

• Agriculture, in which drones acquire aerial imagery for generating soil maps [16], for

estimating positions and heights of tree plantations [17], for accessing forest regeneration

[18] or monitoring agronomic parameters remotely [19].

• Tourism, where video is recorded live by a drone and transmitted to tourists which

may be sitting at home [20].

Nowadays, DJI [21] is the major manufacturer of commercially available drones [22], rep-

resenting 50 percent of the consumer drone market in North America in 2017 [23]. Most

commercially available ready-to-fly drones, however, allow little expandability since they rely

on proprietary, closed-source flight controllers. This aspect is further explored in section 2.2.

2.2 Flight Controllers

The flight controller is a board which is responsible for the low-level processing and operations

of a drone [24]. It implements sensors which enable the attitude estimation of the drone, and is

permanently connected to the Electronic Speed Controllers (ESCs), which enable controlling

the motors. By implementing the control logic which, among commercial solutions, typically

consists of a Proportional Integral Derivative (PID) controller with tunable parameters, the

flight controller is able to keep the drone flying in a stable state. Typically, commercial flight

controllers integrate all sensors and processing components in a single board, which proves

useful when accounting for size and weight limitations of a drone [25].

2.2.1 Closed Hardware

Major drone manufacturers, such as DJI, fabricate their own flight controllers such as NAZA-

M, NAZA-M V2 and NAZA-M Lite [26], which however rely on proprietary firmware and

provide no SDK or any means of remotely issuing control commands, unless the user also

acquires a 2.4GHz Datalink per drone, which only enables issuing pre-flight waypoints [27].

Figure 2.1 shows NAZA-M V2 with a compatible GPS sensor. The latest generation of flight

6

Figure 2.1: DJI NAZA-M V2 flight controller
with GPS sensor. [28]

Figure 2.2: DJI N3 flight controller with included
power management unit and GPS sen-
sor. [29]

controllers developed by DJI, however still relying on closed-source firmware, provide a wider

expandability potential. These include the N3 [30] and the A3 [31]. Although having a high

price tag of 369€ [32] and 1099€ [33], respectively, N3 and A3 can make use of the DJI

Onboard SDK, which enables sending flight control commands such as taking off, waypoints

and landing through the usage of a companion board or computer which connects to the flight

controller using a Universal Asynchronous Receiver-Transmitter (UART) [34]. DJI also has

a Pro version of the A3 available for purchase, featuring triple redundancy of every sensing

module, available for 1699€ [35].

Besides DJI, Parrot has also recently launched a flight controller solution, CHUCK, which

is available for 788€ [36]. CHUCK is part of a subset of flight controllers which can be

programmed with open-source firmware, besides consisting in closed hardware. It relies on

advanced sensors for navigation, featuring a pitot tube as an airspeed sensor. CHUCK, like

the DJI N3, provides an SDK which enables its integration in user-developed applications

[37]. Figure 2.3 shows a representation of CHUCK.

Also belonging to this subset, Edge is the latest flight controller developed by Emlid.

Available for 600€, Edge, shown in Figure 2.4, includes an ARM processor and is able to run

a Debian-like operating system, thus enabling a user to run his applications directly on it

without requiring a companion computer [39].

In spite of their high prices, N3, A3, CHUCK and Edge are all highly capable and expandable

flight controllers which could be integrated in a drone control platform such as the one that is

proposed in this dissertation.

7

Figure 2.3: Representation of Parrot CHUCK. [38]

Figure 2.4: Emlid Edge flight controller. [40]

8

2.2.2 Community-developed Hardware

Along with companies that commercialize flight controllers and drones, several communities

and research projects also work towards the creation of flight controller alternatives [41]. An

example of such alternative is Pixhawk 4. Based on open hardware design, Pixhawk 4 is

an advanced flight controller which uses NuttX as its Real-Time Operating System (RTOS)

[42], [43]. Pixhawk flight controllers are officially supported by Dronecode, a flight stack

project hosted under the Linux Foundation [44]–[46]. Although being available for a price of

approximately 180€ [47], which is high relatively to other open hardware flight controllers,

Pixhawk is one of the most adopted flight controllers for research projects [48]–[52]. For

computationally intensive tasks, however, a separate companion board or computer is still

needed [53]. Pixhawk 4 is shown in Figure 2.5.

Several open hardware alternatives exist which provide navigation capabilities and can be

acquired for lower prices than the Pixhawk 4. An example of one of these alternatives is the

OpenPilot Revolution. Revolution is a flight controller which features an STM32F4 ARM

Microcontroller Unit (MCU). Developed by the OpenPilot community [55], the Revolution

features a gyroscope, an accelerometer, a magnetometer and a barometer, along with compat-

ibility with external GPS sensors and compasses [56]. Revolution is a particularly interesting

choice for a flight controller, since it provides autonomous flight and navigation capabilities for

a reduced price of approximately 47€ [57]. This flight controller also features a Universal Serial

Bus (USB) port which enables using a companion computer to input navigation commands,

making it appropriate for integration in a drone control platform.

Smaller aircraft which do not require GPS navigation may use simpler and less expensive

flight controllers. Among the most popular flight controllers of this type there is the CC3D,

which is also developed by the OpenPilot community [58]. This flight controller is available for

approximately 9€ [59] and, although extremely limited in its autonomous flight functionality,

contains all necessary sensors for manual drone flight, representing an affordable flight controller

option for hobbyists. CC3D is shown in Figure 2.7.

Figure 2.5: Representation of Pixhawk 4. [43]

Figure 2.6: OpenPilot Revolution flight controller.
[54]

9

Figure 2.7: OpenPilot CC3D flight controller. [60]

2.3 Flight Controller Firmware

Community-developed hardware, along with certain closed hardware such as Parrot CHUCK

and Emlid Edge, enable users to install their own flight controller firmware. This is of

particular interest since many open-source flight controller firmware projects are available for

different purposes such as GPS navigation, drone racing and acrobatic flight. This section

covers some of the most used open-source flight controller firmware, starting with the option

which is adopted by both Parrot CHUCK and Emlid Edge, Ardupilot. Ardupilot is one of the

most advanced and reliable open-source flight controller software available. Supporting various

vehicle systems such as planes, multi-rotors, helicopters and boards, Ardupilot is installed in

over 1.000.000 vehicles worldwide [61]. At the time of writing, Ardupilot supports advanced

features such as obstacle avoidance, precision landing and the usage of parachutes and grippers

[62]. Interfacing with Ardupilot is possible using MAVLink, a lightweight messaging protocol

for communicating with drones that is also part of the DroneCode project [63].

Available for Pixhawk flight controllers and also part of the DroneCode project, PX4 is

an open-source project that aims to become the most popular flight controller firmware to

the industrial, academic and enthusiast communities [67]. PX4 is built for aerial robotics,

supporting path planning, obstacle avoidance and GPS based navigation [68]. In a similar

way to Ardupilot, MAVLink can be used to interface with the PX4. Although advanced,

Figure 2.8: Ardupilot logo. [64]

Figure 2.9: PX4 logo. [65] Figure 2.10: dRonin logo. [66]

10

since PX4 only supports a limited subset of flight controller hardware, using it would imply

purchasing flight controllers with a relatively high price, such as the Pixhawk 4.

Also representing an interesting flight controller firmware option, the first release of the

dRonin project was launched in early 2016 [69]. It can be used for both drone racing and

autonomous flight. Among others, dRonin is compatible with flight controllers that belong

to the OpenPilot family, including the OpenPilot Revolution [70]. This means that, using

dRonin, it is possible to build a drone with GPS navigation capabilities using inexpensive

flight controllers. Interfacing with dRonin can be accomplished using UAVTalk, a flexible open

binary protocol designed for communication with drones [71]. When using a flight controller

with a USB port such as the OpenPilot Revolution, dRonin enables the usage of a Python API

to receive telemetry and send control commands to the flight controller using a companion

computer. dRonin also features an autotune mode which enables the ideal constants for the

PID controller to be automatically acquired by the flight controller during its first flight.

2.4 Remote Control Solutions

This section describes existing solutions for the remote control and management of drones

that are currently in production or active in the market.

2.4.1 Open-source Solutions

Flight controller firmware developers usually also produce their own GCS that allows a user

to perform the initial setup and configuration of a drone. These GCSs usually also allow

the monitoring and control of a drone to some extent, using a Bluetooth or Wi-Fi wireless

link. The DroneCode project features an open-source GCS, QGroundControl, which provides

full flight control and vehicle setup for flight controllers running PX4 or Ardupilot [72]. It is

shown in Figure 2.11.

QGroundControl, available for Windows, macOS, Linux, Android and iOS, allows a user

to monitor the position and heading of a drone, while also tracking its flight and showing it

in a map. It also allows sending sequences of commands to a drone prior to its flight and then

requesting their execution. In order to wirelessly connect with a drone, a Wi-Fi adapter or a

SiK telemetry radio may be used, allowing ranges of about 300m when using out-of-the-box

antennas [74].

dRonin also provides its own GCS for Windows, macOS, Linux and Android, which

implements similar functionality to QGroundControl. It is shown in Figure 2.12. Neither one

of these platforms implements any kind of multi-drone collaboration functionality.

11

Figure 2.11: Screenshot of the QGroundControl GCS. [73]

Figure 2.12: Screenshot of the dRonin GCS.

12

2.4.2 Commercially Available Solutions

Several companies also provide their own solution for controlling drones remotely. Each

solution varies in functionality and flight controller compatibility. Some solutions focus on

supporting mapping and surveying use cases while others implement no functionality but

provide an API for the user to create its applications.

As an example of such solution, DroneDeploy is a cloud-based platform that enables

users to create maps and 3D models of large areas. It provides a mobile application for

both Android and iOS which allows creating flight plans with automatic take-off, image

capture and landing, while also providing a First-Person View (FPV) live video stream [75].

DroneDeploy also provides a platform which enables large-scale flight management and map

processing while supporting user management with differentiated role-based access control

[76]. Live Map is another useful tool developed by DroneDeploy, shown in Figure 2.13, which

allows users to generate maps in real-time without the need for a laptop or an Internet

connection [77]. DroneDeploy, however, only supports DJI drones, providing no compatibility

with community-developed flight controllers such as Pixhawk and OpenPilot Revolution [78].

DroneDeploy also provides no support for multi-drone interaction or collaborative missions.

Figure 2.13: Real-time map generation using DroneDeploy Live Map [77]

PrecisionHawk is also a company that provides drone-based solutions for various industry

sectors such as agriculture, construction, energy, government and insurance [79]. Its main

product, PrecisionFlight, provides features that are very similar to the mobile application

developed by DroneDeploy [80]. A screenshot of PrecisionFlight is shown in Figure 2.14.

PrecisionFlight Pro is also available, claiming to enable users to fly a drone remotely and from

anywhere, although providing no details regarding the technologies that are used to accomplish

this [81]. PrecisionFlight, just like DroneDeploy, is compatible with DJI drones only, while

PrecisionHawk claims PrecisionFlight Pro also supports interacting with PX4 and Ardupilot-

13

based flight controllers. Like DroneDeploy, neither PrecisionFlight nor PrecisionFlight Pro

provide support for multi-drone interaction or collaborative missions.

Figure 2.14: Screenshot of PrecisionFlight. [80]

Another interesting control solution is provided by FlytBase, a platform which enables

the deployment of drones in cloud-based business applications [82]. The solution provided by

FlytBase consists of a companion computer running FlytOS, a customized Linux distribution

providing APIs and SDKs for building high-level drone applications [83]. The functionality

provided by FlytBase is very extensive, supporting scenarios such as object tracking, video

streaming and LiDAR integration. FlytBase, however, focuses on developing tools that enable

clients to develop their own applications depending on their needs, instead of providing

ready-made applications. FlytBase also claims to support DJI drones, along with PX4

and Ardupilot-based flight controllers. Although mechanisms to implement collaborative

mission support are provided by FlytBase, multi-drone interaction tasks are not available

out-of-the-box.

2.5 Related Work

This section provides an overview of the current research efforts regarding drone control or

automation, or where drones are actively used to assist real-life tasks. These can either be

generic or focused in specific use cases such as rescue, infrastructure inspection, surveillance

or agriculture. Some examples of these projects are provided below.

14

2.5.1 ROLFER

The ROLFER project [11] proposes a drone control solution which enables swimmers in distress

to call a drone by tapping a button on a smart watch. Communication range limitations are

partially defeated since only a Short Message Service (SMS) message is required to call a

drone. Its telemetry connection to the base station, however, makes use a local radio link

and its range is not specified. Its usage scenarios are also limited since it consists in a rescue

support system, providing no multi-drone support and no mission planning capabilities.

2.5.2 Automated Infrastructure Inspection

A system supporting complex mission planning and execution is proposed in [84]. This project

specializes in providing a platform for infrastructure inspection using multi-rotor drones.

Although it claims to enable a user to define complex missions which can be autonomously

executed, it provides no support for multi-drone interaction and has a limited communication

range due to the usage of a Wi-Fi access point.

2.5.3 Persistent Aerial Surveillance

Recent research (2018) from the Naval Postgraduate School in Monterey, California, resulted

in the development of a platform which enables persistent mobile aerial surveillance [85]. This

solution uses intelligent battery health management and drone swapping to maximize the

time during which a zone may be covered by, at least, one drone without interruption. This

mechanism for autonomous drone replacement enables a set of three quadcopters to take turns

hovering above a location, achieving a total flight time of 98 minutes. Its communication

range, however, is limited to half a mile.

2.5.4 Continuous Remote Control

The work described in [86] proposes an architecture for controlling a drone remotely. Through

the usage of multiple cellular carriers, the authors claim to maintain drone operation even

when one flies outside of the communication area of one cellular carrier. This solution enables a

user to remotely control a drone while reducing the range limitations of typical communication

mechanisms based on Wi-Fi or Bluetooth. The solution provides basic navigation functionality

over IP, which includes waypoints (which must be set before flight), take-off, landing and

camera control. This platform, however, provides no support for multi-drone interaction or

collaborative missions.

2.5.5 Imaging System for Crop Monitoring

For usage in precision agriculture tasks, the work described in [87] presents the development

of a multispectral imaging system. This solution consists of a quadcopter which is equipped

with multiple cameras, which are triggered by an on-board SBC. In this system, drone control

is accomplished by the usage of the Ardupilot flight controller firmware, running on a Pixhawk

15

variant flight controller. The quadcopter can either be controlled manually using a common

remote control or, alternatively, through the usage of a mission planner which enables a user

to select a polygon covering the area to be monitored. This solution provides no support for

multi-drone control.

2.5.6 MedizDroids

MedizDroids is an ongoing project with the goal of researching the affordable use of drones for

mosquito vector control and suppression [88]. This project aims to develop multi-rotors that

can be used to reduce the transmission of infectious diseases such as malaria and dengue fever

through insecticide spraying. Although the authors state that a service oriented architecture

is being created for the purpose, implementation details are not provided. Drone system

details are also not provided, but a price under 500$ is suggested for a ready-to-fly drone.

2.6 Discussion

By analyzing the referred research efforts and commercially available systems for drone

control, we can observe that an increasing amount of solutions are becoming available. These

solutions, however, are often highly specialized in unique tasks, thus lacking support for

generic drone control and mission planning. An example case would be the ROLFER project,

which focuses on payload dropping in search and rescue scenarios. It is also evident that

multi-drone control capabilities are still uncommon among existing commercial or community-

based solutions, with support for multi-drone collaboration being particularly rare. Although

multiple platforms support the execution of real-time complex tasks involving large numbers

of commands, most are severely limited either on drone and flight controller compatibility

or on their communication range. Within this scope, we aim at developing one single drone

control solution which simultaneously features long communication range, real-time high-level

control, complex mission planning, multi-drone support and multi-drone task collaboration.

16

CHAPTER 3
Architecture

This chapter describes the proposed architecture, including components of both drone and

ground systems. As an introduction, sample usage scenarios are provided along with their

requirements. This chapter also covers the communication methods of said architecture, as

well as the automation and multi-drone capabilities that are enabled by it. A global overview

is also presented, showing the interactions among all described components.

3.1 Scenarios and requirements

When aiming for a platform which supports the monitoring and control of an arbitrary number

of drones in a decoupled and abstracted manner, a series of sample scenarios should be taken

into consideration. These are scenarios that, when fully supported by the platform, will show

its ability to execute single navigation commands, as well as relatively more complex tasks,

which require the combined use of one or more components designed for such scenarios.

3.1.1 Internal telemetry acquisition

Flight controllers generally incorporate an array of sensors. These sensors are commonly

integrated in the flight controller board itself, dispensing the need for external connections,

and include the combination of a gyroscope, an accelerometer and a magnetometer. Integrated

sensors are read periodically during flight, providing the drone with crucial data about its

angular velocity, acceleration and heading. Based on these measurements, small adjustments

are continuously and automatically performed to the drone, allowing for its automatic

stabilization, which is critical for autonomous flight. Other flight-related information can also

be provided by the flight controller, including current Central Processing Unit (CPU) and

memory usage, currently activated flight mode, actual position and attitude estimation. The

acquisition of this information must be possible in order to keep track of the actual state of

the drone.

17

3.1.2 External sensor reading acquisition

A drone may carry aboard sensors that are not directly integrated in the flight controller.

These sensors may be required for augmenting navigation capabilities or may simply be carried

by the drone with the goal of obtaining, e.g., aerial imagery or environmental measurements.

As an example of an external sensor which is required in autonomous flight scenarios, a

GPS receiver keeps a permanent, physical connection to the flight controller and enables

the implementation of navigation capabilities. A drone may also carry an environmental

measurement device such as a CO2 sensor module, to provide periodic measurements that are

not necessarily relevant for real-time flight but may later be used as an important factor in

navigation decisions.

3.1.3 Geographic coordinate based drone control

As a fundamental requirement of the proposed solution, a method for positional drone control

must be provided, to allow the user to move a drone to a desired location without manual

control of the drone using a radio controller. Instead of focusing on keeping the drone in

a stable state and manually adjusting its attitude, the user should only be responsible for

issuing high-level commands based on geographic coordinates. Since external sensors may be

subject to variable response times, drones should also be able to hover at a specific location

for a desired duration. Additionally, the solution should allow users to arm or disarm a drone

and also to move it to a position that is relative to its actual location. An example of this

functionality would be to request the drone to move 10 meters heading North or South, or

to simply raise its altitude by 5 meters. When all of the described functionality is achieved,

low-level control requirements are effectively abstracted from the user.

3.1.4 Mission execution

Although a control mechanism based on geographic coordinates can effectively abstract the

details of low-level control from the user, this mechanism can be further extended to support

more complex operations. Besides supporting single control commands, the solution must also

allow the user to prepare large sequences of these commands. As an example of an elementary

mission, a user should be able to, for example, instruct the drone to arm, take-off and then

travel to a specific location. More complex missions could involve large sets of geographic

coordinates to be visited sequentially. The control solution must allow these missions to be

entirely executed in an autonomous manner upon request of the user. Keeping track of the

actual mission completion status is also part of the core functionality, by providing a way of

obtaining the current position of any drone as well as the actual mission step which a drone is

currently executing.

3.1.5 Collaboration

In situations where the complete execution of a mission is not possible (for example, when the

remaining battery capacity is not enough to make any additional progress), the architecture

18

must be capable of automatically replacing the drone that is currently in flight. In these cases,

a new drone should be quickly assigned to complete the remaining steps of the mission. Prior

to resuming the remainder of this mission, the newly assigned drone must first be placed

in the position of the drone that is being replaced. In addition to autonomous replacement

functionality, the platform should provide support for the simultaneous collaboration of

multiple drones when a mission is of increased complexity or is composed by a number of

steps too large for a single drone to execute. Drones connected to the system should be able

to request collaboration at any given time during the execution of a mission and, upon these

requests, one or more new drones should be selected and assigned for collaboration by the

platform.

3.1.6 Logging

It is crucial that modules which are developed for the architecture provide logs describing

details regarding their behavior. In the scenarios described in section 3.1.1 and section 3.1.2,

the logging of telemetry and sensor readings allows one to further analyze the gathered

data, either for debugging purposes or in the event of a crash. Logging, however, should be

present not only in telemetry and sensor reading acquisition scenarios but also when control

mechanisms are employed. For the scenario described earlier in section 3.1.3, every high-level

command issued by a user must be effectively logged. In the mission execution scenario

from section 3.1.4, a wide range of interactions should also be logged. These include mission

decoding and message processing timing measurements, details of each executed mission step,

along with geographic coordinates and step execution duration.

3.2 Overall architecture

Taking into consideration both the drone side and ground side architectures which will be

described, an illustration of the overall architecture is presented in Figure 3.1, featuring

multiple drone systems which are connected to the ground side through broker message

relaying. The usage of message brokers allows component communication to be simplified,

since each component only requires a single connection through which messages are published

and subscribed. This approach also enables components to limit message reception to specific

topics which are required for their functionality by subscribing only to these topics. This

process is further described in section 3.5.

19

Figure 3.1: Overall platform architecture

3.3 Drone side

This section describes the platform architecture on the drone side, containing all components

which must exist in every drone connected to the platform. Initially, an overview of these

components is presented, followed by a brief description of each of them, along with details

regarding their connections.

3.3.1 Overview

Taking into consideration the scenarios described in section 3.1, the drone-side architecture

depicted in Figure 3.2 is established. The purpose and description of each architecture

component is given in section 3.3.2, while details regarding component connections are

described in section 3.3.3.

20

Figure 3.2: Overview of the drone side architecture

3.3.2 Component description

This section describes the motivation for developing each of the proposed architecture compo-

nents, along with their functionality.

3.3.2.1 Flight Controller

Representing an essential piece for drone control, the Flight Controller holds a crucial place

in the drone side architecture of the platform.

With reference to the first scenario, described in section 3.1.1, the architecture should be

designed taking into consideration that it must be possible for internal telemetry information to

be easily exported, providing architecture components which are external to the flight controller

with a means of obtaining this information. If this requirement is fulfilled, it is possible to

afterwards either display the information to the user in a dashboard or autonomously analyze

it to trigger events or alarms.

Sensors such as the GPS receiver, external magnetometers or even battery voltage and

current sensors are typically supported out-of-the-box by flight controllers and – since they

can provide information that is necessary or relevant for flight operations – can be directly

connected to them using commonly accepted communication interfaces such as UART, Inter-

Integrated Circuit (I2C) or even simple Analog-to-Digital Converters (ADCs) in situations

where a sensor provides an analog output. For all these cases, the external flight data

connection displayed in Figure 3.3 can be used to additionally export data regarding these

externally connected sensors.

21

Figure 3.3: Flight Controller interaction supporting telemetry acquisition and sending control com-
mands.

In order to implement the high-level control mechanisms described in section 3.1.3,

section 3.1.4 and section 3.1.5, the Flight Controller will receive control commands that

may either be relative to the actual position of the drone, based on geographic coordinates or

even arming switch commands. These originate from the Drone Controller, as depicted in

Figure 3.3. The Flight Controller also puts the burden of receiving and processing flight

data on the Drone Controller.

3.3.2.2 Drone Controller

Another essential piece for drone control, although now consisting in a completely software-

based component, is the Drone Controller. This component keeps a permanent connection

to the Flight Controller and is responsible for making drone control functionality available

in a high-level basis.

It is composed of several submodules which enable the functionality requested in the

described scenarios. These are shown in Figure 3.4.

� Flight Controller Interface

Since Flight Controllers typically rely on hardware implementations using diversified

or even proprietary communication protocols, the Drone Controller must feature

a layer which enables the abstraction of communication details that are specific to

these implementations. This task is accomplished by the Flight Controller Interface,

which is responsible for keeping direct, bi-directional communication with the Flight

Controller, handling incoming flight data and crafting control commands.

� Navigation Processor

As specified in the scenarios detailed in section 3.1.3, section 3.1.4 and section 3.1.5, low-

level drone control requirements must be abstracted into general, high-level commands

22

Figure 3.4: Drone Controller with submodules and internal broker interaction.

which may be based on geographic coordinates or relative to the current position of

a drone. In order to achieve this functionality, the Drone Controller features the

Navigation Processor, a submodule which is responsible for processing the desired

control actions into commands that can be understood by the Flight Controller.

� Mission Worker

Scenarios detailed in section 3.1.4 and section 3.1.5 imply that the platform must support

the execution of missions, which are chains of control commands that are performed

sequentially. The Mission Worker is a submodule which is responsible for parsing

received mission requests, storing each of the mission steps in memory and sequentially

feed each of them to the Flight Controller, while also keeping track of the progress of

the current mission.

� Arming Switch

Before initiating flight, drones must be placed in an activation state which is usually

named arming state, the value for this state can either be armed or disarmed. A

submodule of the Drone Controller, here named Arming Switch, is responsible

for keeping track of the arming state of the drone and correctly issuing the low-level

commands needed to either arm or disarm the drone.

� Broker Client

23

Every component which keeps a permanent connection to the Internal Broker, requires

a Broker Client, a submodule which handles all broker communication, including

the publishment of messages when requested by other submodules, along with the

subscription and parsing of received messages.

In addition to the described functionality, the Drone Controller will periodically transmit

heartbeats in order to announce its availability. This way, the Drone Identifier, which is a

component specifically designed for this purpose on the ground side, can keep track of which

drones are connected to the platform at a given time.

3.3.2.3 Gear Manager

With respect to the scenario described in section 3.1.2, the acquisition of external sensor data

requires an additional component for interfacing with sensors that provide no compatibility

with the flight controller.

Sensors such as the CO2 module shown as an example in section 3.1.2 or a video camera

may also use the common interfaces exemplified in section 3.3.2.1 or even Camera Serial

Interface (CSI), but provide no integration compatibility with the flight controller. In these

cases, an external component is required to obtain readings from the sensors. Just like internal

telemetry, this information must also be made accessible to architecture components which

are external to the flight controller, since it may contain relevant information for triggering

events or alarms or for further logging purposes.

Figure 3.5: Gear Manager featuring sample sensors with commonly used interfaces.

The Gear Manager, depicted in Figure 3.5, is also responsible for keeping track of

which sensors are connected to the drone at any given time, and must be able to provide

24

this information whenever it is requested. Along with the information regarding currently

connected sensors, the Gear Manager must also possess the knowledge about physical

characteristics of the drone, such as its type (e.g. quadcopter, hexacopter), frame size, battery

capacity and cell count.

3.3.2.4 Fail-safe System

In order to implement the functionality of autonomous drone replacement, the architecture

must feature a component that continuously analyzes drone telemetry.

Figure 3.6: Fail-safe System featuring sample fail-safe mechanisms.

The Fail-safe System is a component that carries out this analysis with the goal of

detecting behavior anomalies or sensor readings that indicate dangerous situations, such as a

low remaining battery capacity. Detecting this kind of events gives in-flight drones the ability

to automatically request a replacement or, upon critical situations such as an imminent crash

due to a physical failure, to deploy on-board fail-safe mechanisms such as a parachute to slow

down the descent of the drone and a loud audible alarm to alert nearby people.

3.3.2.5 Logger

The Logger is a trivial architecture component which keeps a connection to the internal

broker and records every telemetry reading, control command or component interaction. With

this in mind, the Logger does not publish any message back to the internal broker or perform

any direct interaction with other architecture components.

25

3.3.3 Component connection

As shown in Figure 3.2, drone side architecture components accomplish their specified

interactions by means of the Internal Broker, with the Flight Controller being the only

exception to this generalization. The reason for this difference is explained in the Flight

Controller Interface submodule description in section 3.3.2.2. In contrast to the Flight

Controller, all the other described components rely on software implementations which can

be deployed on an Single-Board Computer (SBC). With this in mind, the Internal Broker

can consist of any lightweight implementation of a message broker which can be deployed on

an SBC with diminished resources, to which each drone side component connects.

3.4 Ground side

In contrast to section 3.3, this section describes the platform architecture on the ground side,

containing all components which must exist in a ground-located datacenter which is part

of the platform. Initially, an overview of these components is presented, followed by a brief

description of each of them, along with details regarding their connections.

3.4.1 Overview

Taking into consideration the scenarios described in section 3.1, the ground side architecture

depicted in Figure 3.7 is established.

Figure 3.7: Overview of the ground side architecture

The purpose and description of each component is thoroughly described in section 3.4.2,

while details regarding component connections are described in section 3.4.3.

26

3.4.2 Component description

This section describes the motivation for developing each of the proposed drone side architecture

components, along with their functionality.

3.4.2.1 Drone Identifier

With the purpose of keeping track of which drones are currently connected to the platform,

the Drone Identifier was developed. This component keeps a connection with the message

broker deployed on the ground side and listens for special messages named heartbeats, which

originate from each connected drone. These special messages contain information which can

be useful for either the user or other components of the architecture, including a unique drone

identifier, current geographic coordinates and a timestamp of when a drone was last seen. The

Drone Identifier also keeps detailed information about the physical specifications and gear

that is on-board every drone, which is transmitted by the Gear Manager of each drone.

3.4.2.2 Drone Manager

Although the abstraction of drone control is effectively accomplished in the drone side, a

method for issuing high-level commands must be made available to the user. With this in

mind, the Drone Manager was included on the ground side of the architecture. The Drone

Manager is a component which serves a REST endpoint for high-level drone control. The

existence of this endpoint allows for a high degree of extensibility since it enables any device

with Internet access to achieve drone control through text-based commands. The Drone

Manager additionally features a simple web application which provides the user with a

graphical interface for controlling a drone.

3.4.2.3 Telemetry Analyzer

Telemetry acquisition scenarios described in section 3.1.1 and section 3.1.2 require architecture

components which are capable of storing telemetry data. The storage of this data enables a

user to later have access to flight details which may be important, for example, for debugging

purposes or in case of a crash.

In order to be able to store this data for further access, however, this component requires

a higher level of complexity, since it depends on submodules which must be able to both

provide time series data storage and search over this type of data.

These modules are depicted in Figure 3.8 and are further explained.

� Time Series Database

A database which is optimized for handling time series data. This database stores

incoming telemetry from an arbitrary number of drones.

� Broker-to-database Connector

In order to store telemetry in the database, a connector is developed with the purpose

27

Figure 3.8: Telemetry Analyzer depiction

of continuously receiving drone telemetry from the Ground Broker and writing it to

the Time Series Database on the fly.

� Telemetry Dashboard

In order to attain the functionality requested in the scenarios described in section 3.1.1

and section 3.1.2, the Telemetry Dashboard provides the user with a graphical means

of viewing the obtained drone telemetry. This should include not only real-time telemetry,

but must also enable the user to access the obtained telemetry data of any requested

time frame.

3.4.2.4 Mission Planner

Although the Mission Worker, located in the Drone Controller of each drone, is capable of

parsing mission requests and executing mission steps, mission requests are normally generated

on the ground side and are planned by a user. Replacement and collaboration requests are

exceptions to this behavior, since these happen with no user interaction at all. The main

purpose of the Mission Planner is the generation of mission requests that can be effectively

parsed and executed by the Mission Worker. The Mission Planner, however, interacts

with the Drone Identifier in order to obtain the list of drones which are connected to the

platform, and is also in charge of keeping track of the mission progress of each drone. Knowing

which drones are connected to the platform at a given time proves useful when a drone needs

to be replaced or a collaborative mission should occur. In order to simplify the process of

planning a mission, the Mission Planner also serves a web application which enables users

to graphically prepare and send the chain of commands.

28

3.4.3 Component connection

In a similar way to the drone side, ground side architecture components achieve their interac-

tions by the use of a message broker. This broker is referenced in the architecture description

as the Ground Broker. Components that belong on this side of the architecture are to be

deployed on a ground-located datacenter, which means resource availability should not be as

limited as when deploying components in SBCs. Taking this into account, a wider range of

message brokers which support advanced features such as clustering, plugin development and

web management user interfaces can be considered for deployment on the ground side.

3.5 Communication and interaction

In order to enable communication between drones and ground architecture components, the

Internal Broker of each drone and the Ground Broker share a connection through which

broker messages can be relayed. In such manner, drones may use the Internal Broker

not only for communication among internal components, but also when interaction with the

ground is required. Likewise, this connection between the Internal Broker on board each

drone and the Ground Broker allows ground side architecture components to interact, not

only among themselves, but also with drones connected to the platform. In order to make

this possible, message brokers should be configured so that messages which are published

to specific topics can be automatically bridged to a message broker that is external to the

current system. This represents, for drones, the relaying of messages to the ground side. For

the ground side, this consists in relaying messages to one or more drones.

3.6 Multi-drone capabilities

Although the proposed platform enables the monitoring and control of an arbitrary number

of drones in various scenarios (e.g. geographic coordinate based control, mission execution),

one of its main ambitions is to enable the execution of missions in which more that one drone

take part simultaneously. The proposed platform implements this type of functionality when

adding support for handling self-replacement and mission collaboration situations, already

described in the Collaboration scenario present in section 3.1.5. Drone autonomy, however,

can further be enhanced by implementing drone-to-drone communication mechanisms which

do not necessarily require a connection with the ground. This potential for improvement

allows room for further research and is later proposed for future work in chapter 6.

3.7 Summary

In this chapter, we proposed an architecture for monitoring and controlling multiple drones,

focused on covering scenarios such as telemetry and sensor data acquisition, geographic

coordinate based drone control, mission execution and multi-drone collaboration.

This solution consists of multiple software and hardware modules which can either be deployed

29

on the drone side or on the ground side. These are loosely coupled and achieve their interaction

through the usage of message brokers. Upon implementation, the proposed architecture aims

to effectively abstract drone control from the user, while providing a set of graphical tools

which enable a user to monitor and interact with connected drones.

30

CHAPTER 4
Implementation

This chapter describes the implementation of the proposed control platform. Initially, the

implemented drone system is detailed, including both physical components of the drone and

components which rely on software implementations. A description of each ground side

component is also provided. In the final section, the implemented communication mechanisms

are detailed, covering the interaction between drone and ground components, as well as the

interfaces which are provided to platform users.

4.1 Drone side component description

This section contains the description of every physical or software component used in the

implementation of each drone system.

4.1.1 Physical components

This subsection details the chosen drone type, along with the physical constituents of the

drone system.

4.1.1.1 Drone type

Multi-rotors are proposed as the drone type to be used in the platform implementation. This

drone type is of particular interest since, unlike fixed-wing drones, hovering still above a

desired location is possible. This functionality is required as described in the Geographic

coordinate based drone control requirement in section 3.1.3. Also, in order to allow

for carrying external equipment such as sensors or an SBC, hexacopters have been chosen

as the preferred type of multi-rotor, since they represent an adequate compromise between

price and performance, allowing for higher stability and payload capacity when compared

to quadcopters, while keeping part costs inferior to those of octocopters. A brief payload

capacity comparison between a quadcopter and a hexacopter of the same manufacturer series

31

Frame model DJI F450 (quadcopter) DJI F550 (hexacopter)

Maximum recommended weight 1600g 2400g

Baseline drone system Frame 282g 478g
Electronic Speed Controllers 172g 258g
Motors 240g 360g
Propellers 52g 78g
Battery 488g 488g
Flight Controller 9g 9g
GPS Module 32g 32g
Radio Receiver 15g 15g
Battery Eliminator Circuit 32g 32g

Payload Camera (Go Pro 3) 77g 77g
Single-board Computer (Raspberry Pi) 60g 60g
3G Modem 40g 40g
Arming Switch Emulator (Arduino Nano) 7g 7g

Total weight 1506g 1934g
Remaining payload capacity 94g 466g

Table 4.1: Payload capacity comparison between a quadcopter and a hexacopter of the DJI Flame-
wheel series.

is shown in Table 4.1. This, however, is not an imposed limitation to the supported multi-rotor

type. Any type of multi-rotor can be used in the platform, as long as its Flight Controller

provides support to it.

4.1.1.2 Component description

In order to implement a multi-rotor with the previously described characteristics that can be

integrated in the proposed platform, the following physical components are used.

� Flight Controller

The OpenPilot Revolution was selected as the Flight Controller to use, its represen-

tation in shown in Figure 4.1.

Figure 4.1: OpenPilot Revolution representation with connectivity highlights [56].

This Flight Controller contains all sensors required for autonomous flight, including

32

support for external GPS and magnetometer connection via the Main Port and the Flexi

Port, respectively. This board also includes support for connecting voltage and current

sensors and for external control using a Virtual COM Port (VCP) emulated using the

on-board USB port, while keeping an affordable price of approximately 50€. The Flight

Controller is flashed with the latest version of the dRonin [70] firmware, which is

codenamed Wired, at the time of writing. This open-source flight controller firmware is

of particular interest since it fully supports OpenPilot Revolution, implements basic

navigation capabilities and provides a Python API for interfacing with it using a known

protocol for interfacing with flight controllers, UAVTalk [71].

� Frame

For the main structure of the drone, the DJI Flamewheel F550 frame kit [89] is used.

This frame kit consists of six arms of equal length and two central pieces which act as a

power distribution board, providing power connections for the drone battery and all six

ESCs. A depiction of this frame kit before its assembly is shown in Figure 4.2.

Figure 4.2: DJI Flamewheel F550 frame kit before assembly [89].

� Electronic Speed Controllers

The proposed drone system includes six DJI 420S ESCs [90], depicted in Figure 4.3,

which are part of the DJI E310 Tuned Propulsion System [91].

� Motors and Propellers

The proposed drone system includes six DJI 2312 motors [93] and six DJI 9450 self-

tightening propellers [94], depicted in Figure 4.4 and Figure 4.5, respectively, which are

part of the DJI E310 Tuned Propulsion System.

� GPS and External Magnetometer

Drones feature an external module which contains both a u-blox NEO-M8N GPS receiver

33

Figure 4.3: Single DJI 420S electronic speed controller [92].

Figure 4.4: Six DJI 2312 motors [95].

Figure 4.5: A pair of clockwise and counter-clockwise rotation DJI 9450 propellers [96].

34

[97] and a Honeywell HMC5883L triple-axis magnetometer [98], which is depicted in

Figure 4.6.

Figure 4.6: GPS and magnetometer module [99].

� Radio Receiver and Transmitter

In order to enable manual control of the drone, a 2.4GHz radio control system is used,

which is composed of the FLYSKY FS-i6 transmitter [100], shown in Figure 4.7, and the

FLYSKY FS-iA6B receiver [101], shown in Figure 4.8. During the autonomous flight

operations supported by this platform, the usage of the radio controller is not required,

but it is always present during every platform test, enabling one to take over the drone

if it exhibits an unexpected behavior.

Figure 4.7: FLYSKY FS-i6 radio transmitter [100].

35

Figure 4.8: FLYSKY FS-iA6B radio receiver [101].

� Battery

For powering the electronic speed controllers of the drones, four-cell Lithium Poly-

mer (LiPo) batteries with a capacity of 5500mAh are used. Following the specification

sheet [102] of the used ESCs, these can be driven with up to a maximum voltage of

17.4V, meaning that they can be directly connected to the battery. Other components,

such as the Flight Controller, Radio Receiver, SBC, GPS and External Mag-

netometer, however, must be powered using relatively low voltages (5V). Therefore,

these devices are powered by a simple voltage regulator named Battery Eliminator

Circuit (BEC), which steps down the voltage at the battery terminals to 5V.

� Single-board Computer

Being the most widely used SBC, the Raspberry Pi 2 [103], depicted in Figure 4.9, was

chosen for deploying the software components of the architecture. It runs Raspbian

[104], the operating system which is officially supported by the Raspberry Pi Foundation.

When on-board the drone, the Raspberry Pi is connected to a 3G modem that provides

Internet access.

Figure 4.9: Raspberry Pi 2 Model B [103].

� Arming Switch Emulator

In order to place the drone in the armed or disarmed state without the need of using the

Radio Transmitter, a device is required to send the arming or disarming sequence to

the Flight Controller. An Arduino Nano [105], shown in Figure 4.10, is used for this

purpose. This process is described with greater detail in section 4.1.2.4.

36

Figure 4.10: Arduino Nano 3 [105].

4.1.1.3 Component connections

This section depicts the physical component connections, shown in Figure 4.11, along with

the key for the component connection types, shown in Figure 4.12.

Figure 4.11: Drone physical component connection diagram.

Figure 4.12: Key for physical component connection types.

37

4.1.2 Drone Controller

Developed as a Python 3 application, the Drone Controller is deployed on the Raspberry

Pi. It is the most complex software component located on the drone side, and is comprised

of various submodules. The Drone Controller is automatically launched upon powering

on the Raspberry Pi, when the battery is connected. When this component is launched,

it automatically establishes a connection with the Flight Controller using the USB port.

Subsequently, a connection with the Internal Broker is also established. Once all connections

are established, the Drone Controller will begin transmitting heartbeats every 5 seconds.

These heartbeats contain a unique drone identifier which can be assigned by the user. If no

identifier is assigned by the user, one will automatically be generated using the hexadecimal

representation of the last 3 bytes of the Media Access Control (MAC) address of the network

adapter embedded in the Raspberry Pi. Heartbeats also contain a timestamp and a GPS

coordinate of the actual geographic location of the drone.

4.1.2.1 Flight Controller Interface

The Flight Controller Interface is responsible for establishing direct, bi-directional com-

munication with the Flight Controller, handling incoming flight data and crafting control

commands. This is the first submodule that is launched upon the startup of Drone Con-

troller. If a physical Flight Controller connection is detected, this submodule will establish

a session with it and ensure that no other session is created. Methods for acquiring and

sending data objects to the Flight Controller are then made available by this submodule.

As mentioned earlier, communication with the Flight Controller is achieved using UAVTalk,

an open binary protocol used among various flight controller firmware such as OpenPilot [55],

LibrePilot [106], TauLabs [107] and dRonin [70]. This protocol allows sending and receiving

control and telemetry data to and from the Flight Controller using data containers known

as UAVObjects. These objects can contain a variety of data types and fields which depend

on the object name. For example, the UAVO_Accels object will contain three float values,

each one with a reading for each of the accelerometer axes. Another object of interest is the

UAVO_Waypoint object, to which can be written a set of NED coordinates that the drone

will try to achieve. Names and definitions for each object are loaded at boot time, using

an eXtensible Markup Language (XML) file for each object [108]. The Flight Controller

automatically updates the values contained in each object periodically, with a frequency that

depends on the name of the object. For example, the UAVO_GPSPosition object, which

contains the actual GPS coordinate of the drone, is updated once every two seconds, while

the UAVO_AttitudeActual object, which contains the attitude of the drone expressed in

roll, pitch and yaw degree values, is updated ten times per second.

4.1.2.2 Navigation Processor

The Navigation Processor is a submodule which is essential for coordinate-based flight.

It is responsible for parsing navigation requests that either reach the Internal Broker

38

when a command is sent from the ground side, or are part of a mission that is currently

in progress. Upon parsing the navigation request, the Navigation Processor generates

UAVO_Waypoint objects that are then sent to the Flight Controller by means of the

Flight Controller Interface. Due to a firmware limitation, waypoints sent to dRonin must

always be first converted to the NED coordinate system. In order to obtain coordinates in

this system from an LLA coordinate, a method for coordinate conversion is adapted from the

dRonin GCS source code [109]. It is shown in Figure 4.13.

DegreeToRadian = 0.017453293
EarthRadius = 6378137 meters

N = (HomeAltitude + EarthRadius) ∗ (TargetLatitude − HomeLatitude)

∗ DegreeToRadian

E = cos(HomeLatitude ∗ DegreeToRadian) ∗ (HomeAltitude + EarthRadius)

∗ (TargetLongitude − HomeLongitude) ∗ DegreeToRadian

D = HomeLatitude − TargetAltitude

Figure 4.13: LLA to NED coordinate conversion

The Navigation Processor is also capable of issuing landing and take-off requests to

the Flight Controller, which are essential when performing autonomous missions.

4.1.2.3 Mission Worker

When missions are placed in the Internal Broker, the Mission Worker fetches these

messages and proceeds to extract its mission steps. A mission is transmitted in a single

message which contains all steps, and is encoded using the base64 encoding scheme by the

Mission Planner on the ground side. In order to interpret the mission, the Mission Worker

must first decode the received message. Then, an internal task queue, shown in Figure 4.14,

is filled with the extracted mission steps. Mission steps are executed individually, following

Figure 4.14: Internal task queue used for mission execution.

the order in which they enter the queue. The Mission Worker is responsible for fetching

the next step and handing it over to the component which is responsible for its execution.

When the Mission Worker acknowledges the execution of a mission step, this information is

39

communicated to the Mission Planner on the ground side, which is responsible for keeping

track of the progress of every mission. Upon executing a navigation request, the user may

want the following step to only be executed once the drone reaches its goal. For this purpose,

the Mission Worker features a WAIT_FOR_FLIGHT command. To detect whether a

drone has already reached its target, the position of the drone is periodically acquired and

compared to the goal position.

Algorithm 1: Checking if a drone has reached its goal

VERTICAL_TOLERANCE = 2;

HORIZONTAL_TOLERANCE = 2;

read actual;

read goal;

vertical_error = goal.Down - actual.Down;

horizontal_diff.x = goal.North - actual.North;

horizontal_diff.y = goal.East - actual.East;

horizontal_error = magnitude(horizontal_diff.x, horizontal_diff.y);

vertical_criterion = abs(vertical_error) < VERTICAL_TOLERANCE;

horizontal_criterion = horizontal_error < HORIZONTAL_TOLERANCE;

return vertical_criterion and horizontal_criterion;

Using algorithm 1, the WAIT_FOR_FLIGHT command causes the Mission Worker

to wait until the drone has reached the goal with a customizable vertical and horizontal

tolerance. These tolerances can be represented as a cylinder with its center on the exact

desired position, as shown in Figure 4.15. Once the drone is located inside the cylinder,

Figure 4.15: Waypoint tolerance representation.

the WAIT_FOR_FLIGHT command is marked as completed and the next command is

fetched.

4.1.2.4 Arming Switch

The Arming Switch is responsible for keeping track of the arming state of the drone and is

capable of changing it to either armed or disarmed upon request. As a firmware limitation,

dRonin does not allow changing the arming state of the drone using requests sent by the

40

Figure 4.16: Sticks arming position representation.

USB port. In the typical, manual operation of the drone, this task is normally accomplished

by placing the radio transmitter sticks in the arming position, as shown in Figure 4.16. For

autonomous flight, however, this is not an acceptable method for performing arming state

operations, since user interaction is required before and after every mission or flight in order

to arm and disarm the drone. With this limitation in mind, the communication protocol used

by the Radio Receiver to transmit stick position information to the Flight Controller

was analyzed. The Radio Receiver transmits this information to the Flight Controller

using a single pin output. When sticks are placed in their middle positions with zero throttle

(shown in Figure 4.7), the flight controller receives the signal shown in Figure 4.17. Stick

position information is separated in six channels – pitch, roll, throttle, yaw, one three-position

switch and one two-position switch. This information is transmitted in this order, using

inverted Pulse Period Modulation (PPM). Here, 20 millisecond frames are transmitted which

contain the value of every channel.

As shown in Figure 4.18, the value for each channel is transmitted by keeping the signal line

high for a specific duration. This duration may range from 500 microseconds, corresponding to

the minimum value, up to 1500 microseconds, corresponding to the maximum value. Between

the transmission of each of the channels, the line is kept low for a duration of 500 microseconds.

After all channels are transmitted, the line is kept high for a variable duration, since the

transmission of a new frame begins when 20 milliseconds have elapsed. In order to arm or

disarm the drone, however, the Flight Controller must receive a frame which corresponds

to the stick positions shown in Figure 4.16. This frame is shown in Figure 4.19.

With this in mind, the Arming Switch is complemented with the Arming Switch

Emulator, shown in Figure 4.20, which consists of an Arduino Nano that is programmed to

either forward the frame which is output by the Radio Receiver to the Flight Controller

or, when requested using a General Purpose Input Output (GPIO) pin from the Raspberry

Pi, send the frame required for arming and disarming instead. This GPIO pin is set to high or

41

Figure 4.17: Signal received by the Flight Controller with middle pitch, middle roll, zero throttle
and middle yaw.

Figure 4.18: Radio Receiver signal diagram.

low using software, upon request of the Arming Switch submodule. Using this method, it is

possible for the platform to arm or disarm a drone without the need of a Radio Transmitter,

while also enabling one to be used during flight, in case a drone is not showing the expected

behavior.

42

Figure 4.19: Frame required for arming and disarming.

Figure 4.20: Arming Switch Emulator diagram.

4.1.3 Logger

Every UAVObject, when updated by the Flight Controller, is placed as telemetry in the

Internal Broker by the Drone Controller. The Logger, also consisting of a Python 3

application, stores these objects in a text file for further examination, in the event of an

unexpected behavior or a crash. The Logger also records events that are relative to the

Mission Worker, including message decoding and processing timing measurements, details

of each executed mission step, along with geographic coordinates and step execution duration.

The acquisition of this data is critical to evaluate the procedure of each experiment documented

in chapter 5. Arming Switch interactions are also recorded by the Logger, such as the

exact time a drone was commanded to arm or disarm.

4.1.4 Gear Manager

Also relying in a Python 3 implementation, the Gear Manager is essential for providing

access to sensors which are not directly compatible with the Flight Controller, as previously

described in section 3.3.2.3. It interacts closely with the Drone Controller and is able

43

to provide readings from these sensors when requested. The Gear Manager, for example,

automatically detects when a GoPro camera is available and handles each required step for

establishing a connection to it, enabling users to capture frames, either manually or as a

step in a mission. The Gear Manager is also responsible for keeping track of physical

drone specifications and announcing what sensors are connected to it. Periodically, the

Gear Manager parses JavaScript Object Notation (JSON) files from a customizable path,

providing this information to ground-side components when requested.

Listing 4.1: Drone specifications file

{

"TYPE" : " HEXACOPTER ",

" FRAME_SIZE " : "550" ,

" BATTERY " : {

" CELL_COUNT " : 4,

" CAPACITY " : 5500

}

}

Listing 4.2: Sensor specifications file

{

"GAS" : {

"CO2" : " Sensirion SCD30 "

},

" CAMERA " : " GoPro Hero3 "

}

4.2 Ground side component description

This section contains the description of every component used in the implementation of the

ground system. All ground side components are deployed on Linux Containers (LXC) that

run on a datacenter node. This node consists of a Dell PowerEdge R710 with the following

specifications:

� Processor: Dual Intel Xeon X5670 @ 2.93GHz

� Storage: 6TB of hard disk storage

� Memory: 120GB DDR3

� Networking: Dual Gigabit Ethernet

4.2.1 Drone Identifier

The Drone Identifier is a simple component written in Python 3. It receives heartbeats,

specifications and gear information of every drone that is connected to the platform and

stores this information in an internal structure. Thus, this component always has the

knowledge of which drones are available for usage, sharing it with other ground components

whenever requested, via the Ground Broker. Additionally, the Drone Identifier makes this

knowledge available to the user using the REST endpoint exposed via the Drone Manager

by encoding the internal structure in a JSON object. An example of the internal data structure

kept by the Drone Identifier is shown in Figure 4.21. Fields regarding drone specifications

and connected sensors, however, may vary from drone to drone. In addition to sharing the

connected drones list with other ground components, the Drone Identifier also features a

web application which enables a user to monitor the connection status of a drone in real time.

44

Figure 4.21: Example of the internal data structure kept by the Drone Identifier.

This application proves useful when performing field experiments with the drones. It is shown

in Figure 4.22.

Drone connects to

the platform

Figure 4.22: Front-end featured in the Drone Identifier for following the connection status of a
drone.

4.2.2 Telemetry Analyzer

This component is responsible for storing and presenting telemetry data.

4.2.2.1 Time Series Database

In order to be able to store telemetry data, the Telemetry Analyzer features an installation

of InfluxDB [110], an open-source time series database. Since received telemetry can always be

indexed by time, the usage of a time series database can provide benefits over typical relational

databases such as data summarization over long periods of time and data compression, in

which older data is downsampled as its high precision becomes less relevant.

4.2.2.2 Broker-to-database Connector

To fill the Time Series Database with telemetry entries sent by the drone, a broker-

to-database connector was developed. This connector, written in Python 3, subscribes

to telemetry messages and, whenever one is available, it parses the message, extracts the

UAVObject inside and stores its contents in the database.

45

4.2.2.3 Telemetry Dashboard

Once telemetry reaches the Time Series Database, a method must be provided to access it in

a practical way. For this purpose, an instance of Grafana [111] is deployed as a submodule of the

Telemetry Analyzer. Grafana is an open-source dashboard which allows the visualization

of data stored in various supported databases. It supports using InfluxDB instances as data

sources and allows users to select specific time frames for visualization. Stored data can be

presented to the user in various forms such as graphs, tables, lists and heatmaps. In the

Telemetry Analyzer, Grafana connects to the Time Series Database, where telemetry is

stored, and makes it available to authorized users by means of a web page. Figure 4.23 shows

the Telemetry Dashboard providing barometer, temperature, accelerometer, gyroscope,

CPU load and remaining memory data.

Figure 4.23: Telemetry Dashboard screenshot.

The installation and setup of InfluxDB, Grafana and message brokers, along with the

development of the Broker-to-database connector, was achieved in collaboration with

Bruno Areias and is described in his work [112].

4.2.3 Drone Manager

The Drone Manager consists of a REST endpoint that enables high-level drone con-

trol available to users through Hypertext Transfer Protocol (HTTP) GET and POST

requests. It also enables users to obtain a list of connected drones, their specifica-

tions and connected gear. Commands supported by the REST API are further detailed

in Table 4.2. Example: a drone with the identifier QUAD_REVO2 can be armed

by executing a POST request to https://<endpoint_address>/control with parameters

command=arm&droneID=QUAD_REVO2 .

The Drone Manager also provides a responsive web interface to allow sending most

high-level commands to a drone using a web browser on a computer or mobile device. This

interface is shown in Figure 4.24. Further details regarding the communication method that

46

Method Command Additional Parameters Description

GET discover None.
Routed to the Drone Identifier.
Lists all connected drones.

GET getgear droneID: identifier of the target drone
Routed to the Drone Identifier.
Fetches gear information of a drone.

GET objrequest
droneID: identifier of the target drone
value: name of the UAVObject to request

Routed to the Drone Controller.
Requests a UAVObject from the drone.

POST changeN
droneID: identifier of the target drone
value: distance in meters

Routed to the Drone Controller.
Commands the drone to move North by a
specified number of meters.

POST changeE
droneID: identifier of the target drone
value: distance in meters

Routed to the Drone Controller.
Commands the drone to move East by a
specified number of meters.

POST altitude
droneID: identifier of the target drone
value: distance in meters

Routed to the Drone Controller.
Commands the drone to climb a specified
number of meters.

POST navigate

droneID: identifier of the target drone
lat: target latitude
lon: target longitude
altitude_delta: target altitude (optional)

Routed to the Drone Controller.
Commands the drone to fly to a given
coordinate.

POST land droneID: identifier of the target drone
Routed to the Drone Controller.
Commands the drone to land.

POST takeoff droneID: identifier of the target drone
Routed to the Drone Controller.
Commands the drone to take off.

POST startchain
droneID: identifier of the target drone
mission: mission steps encoded in base64

Routed to the Mission Planner.
Commands the drone to execute a mission.

POST stopchain droneID: identifier of the target drone
Routed to the Mission Planner.
Commands the drone to stop executing the
current mission.

POST arm droneID: identifier of the target drone
Routed to the Drone Controller.
Arms the drone.

POST disarm droneID: identifier of the target drone
Routed to the Drone Controller.
Disarms the drone.
Destructive during flight.

POST takepic droneID: identifier of the target drone
Routed to the Drone Controller.
Commands the drone to take a picture
at the current location, if a camera is present.

POST resetfc droneID: identifier of the target drone
Routed to the Drone Controller.
Commands the drone to reboot its
Flight Controller. Destructive during flight.

POST rebuildtelemetry droneID: identifier of the target drone

Routed to the Drone Controller.
Commands the drone to re-establish the
telemetry connection between the Flight
Controller and the Drone Controller.

Table 4.2: Drone Manager REST API documentation.

this component uses to interact with other drone and ground components are provided in

section 4.3.3. The Drone Manager features a back-end developed in NodeJS [113], chosen for

its rapid prototyping potential and compatibility with the used message brokering solutions.

47

Figure 4.24: Drone Manager web interface screenshot.

4.2.4 Mission Planner

The Mission Planner allows the preparation of missions that can be parsed and executed

by the Mission Worker of a drone. Like other previously described components, it is an

application developed using Python 3. The Mission Planner keeps track of available drones

through interaction with the Drone Identifier, along with the progress of every mission that

is being executed, providing timing logs with this information. An example of the internal

data structure in which mission data is kept is shown in Figure 4.25.

The Mission Planner features a front-end, developed using AngularJS [114], Bootstrap

[115] and Leaflet [116], which allows a user to plan complex missions and choose their target

drone. It is shown in Figure 4.26. Along with the commands described in Table 4.2, three

additional commands can be used in mission environments. These are shown in Table 4.3. The

Mission Planner provides a pragmatic mapping solution to automatically generate a path

that covers a specified area. The execution of the mapping feature is shown in Figure 4.27.

Missions with paths that are generated by this feature can be used in collaboration scenarios.

The area coverage of these missions can be automatically extended when collaboration alarms

48

Figure 4.25: Example of the internal data structure kept by the Mission Planner.

Figure 4.26: Mission Planner web interface screenshot.

are launched. These missions include extensibility parameters which contain all the values

required for the Mission Planner to rebuild the mission with the exact same shape, a new

center and a higher area coverage, without the need for user intervention. As shown in

Figure 4.25, three extensibility parameters are included: intermediate_action, vectors

and step_distance.

� intermediate_action - Optional parameter. Specifies a mission step which is executed

49

Command Additional Parameters Description

wait_for_flight None.

Causes the Mission Worker to wait

until the drone has reached the

previously requested position.

sleep value: number of seconds to wait

Commands the drone to hover above

the actual location for the specified

number of seconds.

virtualalarm

level: alarm level

(CRITICAL or OUT_MEASURE)

message: text message which complements

the alarm

Causes the drone to simulate an alarm.

A CRITICAL alarm will cause an

automatic replacement to occur.

An OUT_MEASURE alarm will cause

the mission to be collaboratively extended.

Table 4.3: Additional control commands supported in missions.

Figure 4.27: Mapping feature demonstration in the Mission Planner web interface.

upon reaching each waypoint.

� vectors - Contains vectors ~v and ~w. Allows the Mission Planner back-end to recover

the shape used in the mission and rebuild it with a higher area coverage and different

center.

� step_distance - Specifies the distance between each waypoint.

A visual representation of step_distance and both vectors contained in vectors is provided

in Figure 4.28. Upon extending a mission, the Mission Planner may also distribute equal

parts of the new area among various drones. Additional drones are selected depending on

their availability and distance to the center of the new mission, meaning that drones which

are closer to the center will have a higher priority in the selection process. The same priority

applies when selecting a drone for replacement, when a CRITICAL alarm is launched. When

the last step of a mission is completed, the mission is marked as finished. At this moment,

the Mission Planner generates a log file that enables a user to visualize the path taken by

the drones that took part in such mission. To make this possible, a simple web application

was developed, allowing the user to drag-and-drop the log file onto a web page. Once the

user drops the log file on the page, the web application decodes it and parses the progress

accomplished by the drones, displaying it in a map. An example of the usage of this tool after

a mapping mission is completed is shown in Figure 4.29.

50

Figure 4.28: Extensibility parameter depiction.

sample_mission_log

sample_mission_log

Drag and drop

Figure 4.29: Mission viewing functionality demonstration.

51

4.3 Communication Mechanisms

This section describes the communication mechanisms used in the platform. It covers the

brokering solutions used on both drone and ground sides, along with the message structure

used in these interactions. It also describes the mechanisms that were implemented in order

to allow a user to interact with drones using the web.

4.3.1 Message brokers

Message brokering solutions which were adopted for both the Ground Broker and the

Internal Broker aboard every drone are described in this section.

4.3.1.1 Drone Internal Broker

Since the Internal Broker must be deployed on a Raspberry Pi, which consists of an SBC

with limited resources, a lightweight message broker solution must be used. For this purpose,

Mosquitto [117] was chosen. It is a project, created in 2014, which belongs to the Eclipse

Foundation [118], which implements the Message Queuing Telemetry Transport (MQTT)

[119] protocol. Mosquitto was chosen for being a very light, open-source message broker. In

this platform, each drone contains an installation of Mosquitto in its Raspberry Pi. Thus,

Mosquitto represents the Internal Broker of each drone. Drone side architecture components

use the Internal Broker to achieve their interactions. Depending on the type of interaction,

components publish and subscribe to different message topics. When using MQTT, a topic

is represented by one or more topic levels separated by a forward slash (/). An example of

this representation is shown in Figure 4.30. This example contains the topic to which the

Drone Controller subscribes. Different topics are used among drone side components, as

Figure 4.30: Topic representation when using the Internal Broker.

shown in Table 4.4. REVOLUTION_94E041 is used as an example of a unique drone

identifier. Whenever ground side components appear on this table, the bridging mechanisms

described in section 4.3.2 are used. Since it subscribes to every topic and is only used for

logging purposes, the Logger is omitted from this table.

52

Topic Is Subscribed By Receives Messages From Message Content

REVOLUTION_94E041/control/in Drone Controller Drone Manager Control commands

REVOLUTION_94E041/control/out Drone Manager Drone Controller Responses to control commands

REVOLUTION_94E041/mission/in Drone Controller Mission Planner Mission requests

REVOLUTION_94E041/mission/out Mission Planner Drone Controller Mission progress information

REVOLUTION_94E041/gear/in Gear Manager
Drone Controller

Drone Identifier

Drone specification queries

Sensor list queries

Sensor reading queries

REVOLUTION_94E041/gear/out
Drone Controller

Drone Identifier
Gear Manager

Drone specifications

Connected sensors list

Sensor readings

REVOLUTION_94E041/heartbeats/out Drone Identifier Drone Controller Drone heartbeats

REVOLUTION_94E041/alarms/out Mission Planner Drone Controller
Replacement alarms

Collaboration alarms

REVOLUTION_94E041/telemetry/out Telemetry Analyzer Drone Controller Drone telemetry

Table 4.4: Topics used in interactions which make use of the Internal Broker.

4.3.1.2 Ground Broker

The Ground Broker is the communication medium used by components which are located

on the ground side. Like other ground components, the Ground Broker is deployed on an

LXC container which runs on the previously described datacenter node. Since the resource

limitations which exist on the Raspberry Pi do not apply on the ground side, the usage

of a lightweight message broker solution such as Mosquitto is not mandatory. With this

in mind, RabbitMQ [120] was chosen. RabbitMQ is an open-source message broker which

implements the Advanced Message Queuing Protocol (AMQP) [121]. Although not used

in the actual development stage of the platform, RabbitMQ supports clustering, which

enables for increased throughput and high availability by connecting multiple nodes together.

RabbitMQ also supports the usage of plugins, such as a web accessible management interface

which simplifies the configuration process and monitoring of the message broker. RabbitMQ

provides compatibility with MQTT clients by means of an MQTT adapter – the usage of

this mechanism is further described in section 4.3.2. In this platform, for interactions among

ground components, each component that receives any type of message has its own dedicated

exchange, and any other component that requires sending requests to it should use that

exchange. Since RabbitMQ does not allow receiving messages directly from an exchange, a

short lived queue which contains its messages is automatically generated for such component

and is destroyed afterwards, once the connection is terminated. The process of a connected

drones query, followed by its reply, is depicted in Figure 4.31 and Figure 4.32.

53

Figure 4.31: Example of a Drone Manager or Mission Planner query to the Drone Identifier.

Figure 4.32: Example of a Drone Identifier response to the Drone Manager or Mission Planner
query.

4.3.2 Communication between Drone and Ground

In order to allow interactions between drone and ground side components, the Internal

Brokers and the Ground Broker share a connection that allows messages to be relayed

from one broker to another. This is accomplished by using the bridging capabilities of

Mosquitto and the MQTT adapter supported by RabbitMQ. Each Internal Broker in-

stance in every drone is configured to connect to the Ground Broker once the Raspberry

Pi boots. An example of the Mosquitto bridging configuration file is shown in Listing 4.3.

54

Listing 4.3: Mosquitto bridging configuration file example

connection rabbitRelay

address <GROUND_BROKER_ADDRESS >:1883

password dronePassword

username droneUsername

clientid droneMosquitto - REVOLUTION_94E041

topic REVOLUTION_94E041 / control /in in "" ""

topic REVOLUTION_94E041 / mission /in in "" ""

topic REVOLUTION_94E041 /gear/in in "" ""

topic +/ control /out out "" ""

topic +/ mission /out out "" ""

topic +/ gear/out out "" ""

topic +/ heartbeats /out out "" ""

topic +/ alarms /out out "" ""

topic +/ telemetry /out out "" ""

In the presence of this configuration, an Internal Broker would request the Ground Bro-

ker to relay every message with the routing keys REVOLUTION_94E041/control/in,

REVOLUTION_94E041/mission/in and REVOLUTION_94E041/gear/in to this

drone. In turn, messages placed in the Internal Broker in topics which are marked out

would be relayed to the Ground Broker. In these topics, one does not need to specify a

drone identifier, since no messages with other drone identifiers would originate from this

drone. The execution of a UAVObject request, followed by its response, is an interaction

example which requires this bridging mechanism to take place. Its representation is shown in

Figure 4.33.

55

Figure 4.33: Interaction and bridging example of a UAVObject request initiated from the Drone
Manager and followed by its response from the Drone Controller.

4.3.3 Communication between Ground and the user

The Drone Manager is the main component which allows web access to drones that are

connected to the platform. In order to achieve this, the Drone Manager is able to translate

HTTP requests into messages that are placed in the Ground Broker. When a user executes

one of the commands described in Table 4.2 using the REST API, the Drone Manager

generates a unique request identifier composed by 16 bytes of cryptographically strong pseudo-

random data and includes it in the message that is placed in the Ground Broker. A response

is only provided to the user once the component that is responsible for the requested command

places a response message on the Ground Broker with the same identifier. An example of

the full sequence of interactions in an arming request is provided in Figure 4.34. Components

which feature web front-ends, such as the Mission Planner, also make use of the REST

API to execute every request and thus also follow the interactions shown in Figure 4.34, with

variations on the request and response message content.

56

Figure 4.34: Interaction diagram of an arming request initiated by a user from the REST API and
followed by its response from the Drone Controller.

57

4.3.4 Message structure

With exception to the messages used when interfacing directly with the Flight Controller,

which must make use of the UAVTalk binary protocol, all exchanged messages are human-

readable and transmitted in the JSON format. An example of the contents in the exchanged

messages during an arming request initiated by a user is shown in Figure 4.35.

Figure 4.35: Example of the message contents inside exchanged messages during an arming request
initiated by the user.

4.4 Summary

In this chapter, we described the implementation of a drone control platform architecture that

fulfills the established requirements. This includes a proposal of the hardware components

of a drone system along with their connections, from which resulted the assembly of three

hexacopters. The end of this chapter also marks the successful development of every proposed

software module that composes both the drone-side and the ground-side architecture, along

with the communication mechanisms required for their interactions. The resulting platform is

ready to support autonomous drone flight in tasks which may range from basic navigation

commands to the automation of complex paths and collaboration of multiple drone systems.

The developed REST API and web applications allow users to plan and execute these tasks

through graphical interfaces, while also monitoring every drone through a telemetry dashboard.

58

CHAPTER 5
Experiments

This chapter describes the objectives, methodology, evaluation and results of four distinct

experiments. The described experiments gradually increase in complexity, ranging from simple

tests to the baseline capabilities of the infrastructure to more sophisticated tasks which require

the automation of full paths and multiple drone collaborative missions. These experiments

provide experimental validations of the implemented functionality.

5.1 Panic Button

5.1.1 Objectives

The implementation of a panic button represents the baseline experiment of the developed

platform. Such an experiment allows testing the platform for the correct implementation

of basic navigation capabilities. In this scenario, a user carries a device with geolocation

capabilities which presents a simple button that, when pressed, calls an available drone to

travel to the location of the user and hover above him at a fixed altitude. If successful,

the experiment shows that not only both the drone-side control components and the server-

side mission assignment components work as expected, but also that the communication

mechanisms in place are also following the expected behavior.

5.1.2 Method

Although the panic button experiment seeks to be as simple and uncluttered as possible, it

is of interest to make use of it to test the broadest range of functionalities in its context.

With this in mind, the scenario was extended to support the automatic arming of the drone,

along with its takeoff and climbing to a predefined altitude. This experiment makes use of

a simple iOS application, developed for this purpose. This application presents the panic

button to the user, who can use his smartphone as a geolocation-capable device which is able

to communicate with the platform and provide location information.

59

Figure 5.1: Mobile application for invoking connected drones

The Call Drone button, as shown in Figure 5.1, allows the user to initiate the panic

button request with a single tap. When the user taps this button, the application will obtain

the current geographic coordinate of the smartphone by using its integrated GPS receiver,

and then include it in a request that is sent to the platform.

5.1.3 Evaluation Procedure

This scenario assumes the drone is at a fixed distance from the user. For this experiment,

the drone is placed approximately 100 meters away from the user. The drone starts at the

ground level, in a disarmed state, as shown in Figure 5.2.

Figure 5.2: Initial status – drone is disarmed

60

At this point, the user makes use of the developed application to initiate the experiment. To

accomplish this, the Call Drone button, shown in Figure 5.1, is tapped. Average round-trip

times can be obtained and logged in this stage.

Figure 5.3: First stage – drone is armed

Once the user taps the Call Drone button, the procedure is initiated. The first stage

consists in placing the drone in an armed state, as shown in Figure 5.3, allowing any following

flight operations. Time spent in this stage can be logged, however, it will not represent a

relevant metric for overall platform quality since arming time is a configurable value at the

Flight Controller level. Upon achieving the armed state, the drone should climb to an

altitude of 10 meters, as shown in Figure 5.4.

Figure 5.4: Second stage – drone is reaching desired altitude

The second stage finishes once the drone reaches the desired altitude. At this point, the

drone can initiate the final stage, which consists in an entirely horizontal flight towards the

position of the calling user, as shown in Figure 5.5.

61

Figure 5.5: Final stage – drone attempts to reach the user

Final flight time metrics for this experiment can be obtained once the drone reaches the

position of the user, as depicted in Figure 5.6. Here, all logging activities are stopped, the

drone hovers above the location of the user and awaits further commands. At the end of

the experiment, timing metrics for message reception and processing, arming, vertical and

horizontal flight, as well as the total time elapsed since the initial request up to its completion,

can be obtained.

Figure 5.6: Terminating status – drone holds its position above the user

5.1.4 Results

After executing this experiment, the Mission Planner produced a mission log file with the

path followed by the drone. This file was imported into the viewing front-end of the Mission

62

Planner, showing the path displayed in Figure 5.7. By observing the path, it is possible to

Figure 5.7: Path followed during the execution of the panic button experiment with distance infor-
mation.

conclude that the drone followed the expected behavior, traveling along an horizontal line of

approximately 100 meters. For each stage of the experiment, timing metrics were acquired.

These are shown in Figure 5.8.

5005 ms

16539 ms

Horizontal Flight (Stage 3)

Vertical Flight (Stage 2)

Arming (Stage 1)

3008 ms

3.008 s
8.013 s

24.552 s

Figure 5.8: Timing representation of each stage of the panic button experiment.

As previously explained, the arming time is a configurable value at the Flight Controller

level. This value defaults to 3 seconds and was not modified during the execution of every

experiment. With this in mind, the time spent in the first stage represents an expected value.

As a safety measure, the maximum climb rate is limited to 2m/s. The maximum horizontal

speed was kept at its default value, 10m/s. Taking these limits into consideration, when the

drone must climb 10 meters during the vertical flight stage, it should never complete this

task in less than 5 seconds. However, flight speed during vertical or horizontal flights may be

affected by external factors such as gusts of wind. The duration of stages 2 and 3 show that

the drone executed its vertical flight with a speed of approximately 1.99m/s and its horizontal

flight with a speed of approximately 6.04m/s, which both correspond to acceptable values.

63

Finally, the obtained timing metrics for each stage show that the platform is able to place an

initially disarmed drone above a user which is 100 meters away in under 25 seconds, even

when including the negligible delay of 3.5 ms required to decode and process the steps of the

mission. During the execution of this experiment, additional timing metrics were obtained.

These are shown in Figure 5.9 and include the average round-trip time, measured between the

drone and the user device which initiates the mission, along with the average time required for

the drone to communicate its progress to the Mission Planner. These values are agnostic to

Figure 5.9: Average network round-trip time between the drone and the user device and average
time taken for the drone to communicate its progress to the ground.

the complexity of the mission that is executed and are identical in every experiment. They are,

however, strongly correlated to the usage of 3G as the communication technology. Progress

communication time is notably high, since it requires interfacing with the Flight Controller

for requesting the actual GPS coordinate and including it in progress messages.

5.2 Automated Aerial Photography

5.2.1 Objectives

The automated aerial photography experiment aims to enable the autonomous acquisition of

aerial images of a specified area with arbitrary dimensions. It serves as a sample scenario of an

autonomous mission which, in contrast to the experiment described in section 5.1, is associated

with a higher complexity and may comprise a large number of commands, depending on

the dimensions of the selected area. The successful completion of this experiment effectively

proves that, when using the proposed infrastructure, drones are not only capable of reaching

automatically assigned waypoints, but also of performing specific tasks upon reaching them.

In this case, such task is the acquisition of a picture at the current location.

Aerial imagery obtained by drones can be processed using external tools which are capable

of generating useful products such as point clouds, surface models and orthorectified images.

An example of such a toolkit is OpenDroneMap [122], which provides a free and open-source

solution for generating such products. In this experiment, OpenDroneMap will be used to

generate a digital surface model using the pictures acquired during the autonomous mission.

5.2.2 Method

In this scenario, a drone travels along an even distribution of waypoints contained inside a

specified quadrilateral area. The placement of these waypoints is automatically calculated

64

once the user delimits the desired area using the Mission Planner front-end described in

section 4.2.4. For delimiting the desired area, the user must select three vertexes of the area

by clicking on the map element, as shown in Figure 5.10.

Figure 5.10: Selecting the desired area for photographing

Upon pressing the Map button, the distribution of waypoints is automatically calculated

for the user. This sequence of waypoints is displayed in Figure 5.11 and shows the path that

will be followed by the drone once the mission is initiated.

Figure 5.11: Automatically generated sequence of waypoints inside the delimited area

Upon reaching each of these waypoints, the vehicle must be able to communicate with a

locally connected camera and issue commands for capturing pictures. For this functionality,

an action camera is used. The available camera for this purpose is a GoPro Hero 3 [123].

This camera has the ability to create a wireless access point which can be especially useful to

take advantage of its API to issue photographing and filming commands. This way, when

reaching a new waypoint, a picture request is automatically executed, causing a photograph

to be taken and saved to the internal storage of the camera.

65

Figure 5.12: Drone Controller debug console – processing a picture request

Figure 5.13: Sample picture taken with the GoPro

When the Gear Manager is launched, it will automatically look for the camera and attempt

to connect to it. This way, no manual connection setup is needed. Once a connection

is successfully established, various types of requests can be sent to the camera, such as

photography taking requests or file downloads.

Pictures taken by the GoPro, however, will present a heavy distortion known as barrel effect,

as shown in Figure 5.13. This distortion can be corrected using an image processing tool such

as ImageMagick. [124]

For each pixel of the output image, ImageMagick calculates the radius (Rdst) from the center

of the image and, to find which source pixel should be copied, it does the following calculation:

Rsrc = A · Rdst
4 + B · Rdst

3 + C · Rdst
2 + D · Rdst (5.1)

Ideal values for parameters A, B, C and D vary greatly depending on the used lens, these

values can be precisely calculated using the Hugin toolset [125] or by trial and error. For the

GoPro model used, the following values provide generally good results [126].

A = 0.10, B = −0.32, C = 0, D = 1.22 (5.2)

In order to use this tool in every captured image, a simple bash script was used, shown in

Listing 5.1.

66

Listing 5.1: Batch Distortion Correction

#!/ bin/bash

numfiles =$(ls -l *. JPG | wc -l | xargs)

echo " Processing $numfiles pictures ..."

mkdir -p out

i=0

for f in *. JPG; do

let "i++"

echo "($i/ $numfiles) - $f"

convert $f -distort barrel '0.1 -0.32 0' out/$f

done

echo " Wrote $numfiles files to 'out /'."

After running the script using the sample image in Figure 5.13 as input, the result is shown

in Figure 5.14. Once every picture has passed through the distortion correction script,

Figure 5.14: Sample picture after distortion correction

OpenDroneMap may be called. The syntax for running the toolkit is shown in Figure 5.15.

The tool will then start the processing, requiring no additional user interaction.

Figure 5.15: Running OpenDroneMap

67

5.2.3 Evaluation Procedure

A single drone is needed for the experiment. It starts with the drone hovering nearby, awaiting

further orders from the user. The mapping mission, including its area delimitation, is prepared

using the front-end of the Mission Planner. For this experiment, a rectangular, open area

located inside the campus of the University of Aveiro will be used. The dimensions of this

area will be of approximately 32 meters per 64 meters and will correspond to the area selected

in Figure 5.10 and Figure 5.11, with each waypoint being placed 8 meters apart from the

previous. Once the mission is prepared, the user is able to execute the mission by pressing

the Send button in the page. Here, the drone should immediately start the photographing

process and timing measurements for the mission may be initiated. The user then waits for the

autonomous mission to finish. Once the drone completes the path, the image acquisition stage

is finished and the user can download the acquired pictures from the camera. Processing time

measurements can now be taken for both the distortion removal script and the OpenDroneMap

execution. After the execution of OpenDroneMap, a digital surface model is ready to be

observed.

5.2.4 Results

Executing this experiment produced a mission log file which contains the path traveled

by the drone. In a similar way to the first experiment, the mission log file was imported

into the viewing front-end of the Mission Planner. The result shown in Figure 5.16 was

obtained. As shown, the drone successfully achieved the approximate position of the 45

different waypoints, meaning that the expected behavior was accomplished. In the followed

path representation, the green marker shows the starting waypoint. This waypoint is included

in the representation with the purpose of showing the initial position of the drone before

reaching the first waypoint of the planned mission. From this initial position to the first

waypoint of the planned mission, approximately 60 meters must be traveled. Thus, reaching the

first waypoint should take more time in comparison to the following waypoints. This difference

is shown in Figure 5.17. In a similar way to the first experiment, a timing representation is

also provided for the image acquisition stage of this experiment. For readability purposes,

the representation shown in Figure 5.19 displays the time elapsed in each set of 9 waypoints,

representing the 5 columns of waypoints which were generated for this path. As expected,

due to the higher execution time of the first waypoint, the first column of waypoints takes

significantly longer to execute in comparison to the other columns, which complete in as low

as 60.351s. The timing representation, however, also shows that the drone is able to map the

entire area in approximately 5 minutes and 31 seconds, with the mission decoding and step

processing still requiring a negligible 6.29ms to take place before mission execution. Once this

image acquisition stage is completed, the shell script for barrel distortion removal shown in

Listing 5.1 is executed, followed by OpenDroneMap, using the command show in Figure 5.15.

The execution time of these stages is shown in Figure 5.18.

68

Figure 5.16: Path followed during the execution of the aerial photography experiment.

14.04 s
Time required to

reach first waypoint

Average time required to

reach next waypoint
7.35 s

Figure 5.17: Time required for the execution of the first waypoint in comparison to the average time
required for the execution of waypoints.

1m 15s
Time required to

remove barrel distortion

Time required to

run OpenDroneMap
42m 44s

Figure 5.18: Time required for the execution of the barrel distortion removal shell script and
OpenDroneMap.

69

W
a

y
p

o
in

ts
 2

-9

6
4

.1
2

2
 s

6
7

.6
8

1
 s

W
a

y
p

o
in

ts
 1

0
-1

8

6
2

.0
2

9
 s

W
a

y
p

o
in

ts
 1

9
-2

7

6
2

.7
0

4
 s

W
a

y
p

o
in

ts
 2

8
-3

6

6
0

.3
5

1
 s

W
a

y
p

o
in

ts
 3

7
-4

5

T
h

ird
 c

o
lu

m
n

 o
f w

a
y
p

o
in

ts

F
o

u
rth

 c
o

lu
m

n
 o

f w
a

y
p

o
in

ts

F
ifth

 c
o

lu
m

n
 o

f w
a

y
p

o
in

ts

S
e

c
o

n
d

 c
o

lu
m

n
 o

f w
a

y
p

o
in

ts

F
irs

t c
o

lu
m

n
 o

f w
a

y
p

o
in

ts

1
4

.0
3

9
 s

W
a

y
p

o
in

t 1

1
4

 s
7

8
.1

6
1

 s
1

4
5

.8
4

 s
2

0
7

.8
7

1
 s

2
7

0
.5

7
5

 s
3

3
0

.9
2

6
 s

F
ig

u
re

5
.1

9
:

T
im

in
g

rep
resen

tation
of

th
e

fi
ve

w
ay

p
oin

t
colu

m
n
s

of
th

e
aerial

p
h
otograp

h
y

ex
p

erim
en

t.

70

Upon finishing its execution, OpenDroneMap produced a surface model. Using MeshLab

[127], an open-source 3D mesh processing software, the surface model can be rendered. The

result is shown in Figure 5.20. The obtained results show that the platform is able to

Figure 5.20: Rendering the obtained surface model using MeshLab.

autonomously handle single-drone missions which comprise large number of automatically

generated waypoints, while also being able to execute tasks, such as taking pictures, upon

reaching each waypoint. In this experiment, a total of 45 waypoints covering an area of

approximately 2048m2 were completed in 5 minutes and 31 seconds.

5.3 Drone Self-Replacement

5.3.1 Objectives

In this experiment, the most basic collaboration functionality of the platform is evaluated.

Here, a single drone participates in a mission, during which self-replacement is triggered.

When this happens, the remaining steps of the mission are assigned automatically to a second

drone, which executes them sequentially until reaching the end of the mission. Besides having

only one drone performing the execution of the mission at a single time, the goal of this

experiment is to test if the platform is able to quickly replace an in-flight drone and have a

second drone resume its execution.

5.3.2 Method

In a similar way to what is done in the aerial photography experiment in section 5.2, the Mis-

sion Planner front-end is used to generate a sequence of waypoints that cover a quadrilateral

area. However, in this experiment, the drone which is executing the mission will simulate a

CRITICAL alarm after executing approximately half of the steps of the mission, causing

71

the Mission Planner to replace the in-flight drone with the closest available drone which

is connected to the platform at that time. Figure 5.21 displays the path that is sent to the

drone, along with the waypoint in which the alarm will be triggered.

Alarm is

sent here

Figure 5.21: Path to be followed in the drone self-replacement experiment.

5.3.3 Evaluation Procedure

Two drones are required for this experiment. Before executing the experiment, the mission

path is selected using the front-end of the Mission Planner, covering an area which is similar

to the one used in the aerial photography experiment in section 5.2, but using waypoints

that are 10 meters apart instead of 8 meters since, in contrast to the aerial photography

experiment where the number of taken pictures may influence the outcome, waypoint density

is not relevant for evaluating the self-replacement performance. A total of 28 waypoints are

generated. The drone which is initially assigned to execute the mission is already hovering

nearby, awaiting orders from the user, while the drone which will be used to replace the first

drone is located at ground level, in a disarmed state. Upon initiating the mission, the first

drone is expected to travel to the first waypoint of the delimited area, successively flying

towards the following waypoints until it reaches the waypoint in which the alarm is triggered.

This waypoint is shown in Figure 5.21. When this alarm is triggered, the Mission Planner

should instruct the in-flight drone to cancel its current mission and perform a controlled

descent until it reaches the ground. While this happens, the Mission Planner is expected

to assign a new mission to the second drone, which contains only the remaining steps of the

mission which was being executed by the first drone. Since the second drone is in a disarmed

state when the mission is executed, preparation steps which include arming and vertical

ascension are required before resuming the mission of the first drone. Once the second drone

reaches the final step of the mission, the viewing interface of the Mission Planner can be

used to evaluate the path executed by both drones. Timing metrics can also be acquired for

both mission execution and mission handover.

72

5.3.4 Results

As with previous experiments, executing this mission produced a log file which contains the path

traveled by both drones. Importing this file to the viewing interface of the Mission Planner

produced the results shown in Figure 5.22.

Figure 5.22: Path followed by both drones during the execution of the self-replacement experiment.

8.91 s

7.5 s

Time required for first drone

to reach its first waypoint

Time required for second drone

to reach its first waypoint

Average time required to

reach next waypoint

11.03 s

Figure 5.23: Time required for the execution of the first waypoint of each drone in comparison to the
average time required for the execution of waypoints in the self-replacement experiment.

The green line represents the path taken by the first drone, while the blue line represents

the path taken by the second drone. By observing Figure 5.22, it is possible to conclude that

the two drones have collaborated successfully in the experiment. The first drone achieved

13 mission waypoints, while the second drone completed 15 waypoints. Adding together the

progress achieved by both drones, every one of the 28 generated waypoints was completed.

The timing representation shown in Figure 5.24 contains the time required for each stage

of this experiment, including the waypoint flight and landing of the first drone, along with

the preparation (arming and vertical flight) and waypoint flight of the second drone. Since

both the first and the second drones are, respectively, 17 meters and 40 meters away from

73

their first waypoint when executing their part of the mission, its execution time is expected

to be greater than the remaining waypoints, in a similar way to what happens in the aerial

photography experiment in section 5.2. Figure 5.23 shows the difference between the time

taken to execute the first waypoint of each drone and the average time required to execute a

waypoint.

74

W
a

y
p

o
in

ts
 2

-1
3

8
1

.4
5

3
 s

1
0

.3
3

6
 s

P
re

p
a

ra
ti

o
n

1
1

.0
2

9
 s

W
a

y
p

o
in

t
1

4

1
0

1
.6

4
7

 s

W
a

y
p

o
in

ts
 1

5
-2

8

S
e

c
o

n
d

 d
ro

n
e

 a
c
ti
o

n
s

F
ir
s
t
d

ro
n

e
 a

c
ti
o

n
s

8
.9

0
6

 s

W
a

y
p

o
in

t
1

2
1

.6
2

4
 s

L
a
n

d
in

g

8
.9

 s
9

0
.3

6
 s

1
1

1
.9

8
 s

1
0

0
.7

 s 1
1

1
.7

2
 s

2
1

3
.3

7
 s

F
ig

u
re

5
.2

4
:

T
im

in
g

re
p
re

se
n
ta

ti
on

of
th

e
se

lf
-r

ep
la

ce
m

en
t

ex
p

er
im

en
t.

75

5.4 Collaborative Sensing

5.4.1 Objectives

This experiment seeks to demonstrate and evaluate the accomplishment of a task which involves

the collaboration of multiple drones that are simultaneously connected to the platform. In

contrast to the previously described experiment in section 5.3, which aimed to quickly replace

an in-flight drone and carry on with its active mission, here the goal is to have more than one

drone working on the same task at a given time while each of them provides relevant progress

to the mission.

5.4.2 Method

As an example of the specified interaction, a collaborative sensing task is proposed. In this

scenario, a drone is actively acquiring data from a set of environmental sensors carried aboard.

In order to accomplish this task, the Mission Planner calculates a series of evenly distributed

waypoints inside the area of interest and subsequently travels along them, obtaining data from

the connected sensors upon reaching each waypoint. This scenario is shown in Figure 5.25.

Figure 5.25: Sensing scenario with one single drone

The flight time of a drone, however, is a very limited resource, thus restricting the possible

area coverage that can be accomplished with the usage of a single drone. With this limitation

in mind, the usage of multiple drones becomes particularly helpful. In a situation where a drone

is continuously sensing a delimited area, a request for collaboration has been implemented.

For this request to be triggered, the user can set a higher or lower threshold value for each

sensor. This way, when the drone acquires an environmental measure which is above or below

the expected values, a request for collaboration can be automatically issued. As shown in

Figure 5.26, upon receiving this request, the Mission Planner automatically selects available

drones from the ones that are currently connected to the platform. For this situation, the

nearest drones with high remaining battery life are prioritized. A new, wider area centered on

the location in which the alarm was triggered is then calculated along with its set of interior

76

Figure 5.26: Depiction of the collaborative sensing scenario with three drones after automatic area
reconstruction, showing the location where the alarm occurs, which becomes the center
of the new area.

waypoints. For each new drone that joins a mission for collaboration, its area is expected to

increase by 50%. Finally, these waypoints are evenly distributed among the participating

drones, and the new sensing task is initiated.

5.4.3 Evaluation Procedure

For this experiment, a single drone is commanded to monitor a delimited area. This will be

an open area with a rectangular shape and will be located inside the campus of the University

of Aveiro. The dimensions of this area will be of approximately 28 meters per 35 meters,

meaning that the drone is initially instructed to cover an area of 980m2.

Since the description of this particular scenario uses the acquisition of data from environmental

sensors as a task example, the experiment will be carried out providing attention to the

properties and limitations of a real environmental sensor. For this purpose, the specifications of

a modern sensor module - the SprintIR-6S, will be taken into consideration. The SprintIR-6S,

77

Figure 5.27: SprintIR-6S CO2 sensor module

Figure 5.28: Waypoint distribution across the proposed area

shown in Figure 5.27, is a high-speed Nondispersive Infrared (NDIR) CO2 sensor which also

provides humidity and temperature sensing capabilities. The datasheet of the sensor module

[128] specifies that CO2 measures are provided with a response time of up to 2 seconds,

varying with the gas flow rate. Regarding this information, a drone must hold its position for,

at least, 2 seconds in each waypoint while acquiring a CO2 measure, before proceeding to the

next waypoint. In the proposed area, the waypoints will be distributed 7 meters apart from

each other. This way, the entire area can be covered by a total of 30 waypoints, as shown in

Figure 5.28.

The request for collaboration is launched by issuing an OUT_MEASURE alarm once the

initial drone reaches approximately half of the originally assigned waypoints. This simulates

the occurrence of an environmental reading which is out of the expected range of values.

78

During this experiment, three drones will be connected to the platform, all of them on the

ground and disarmed. The mission, including the command to simulate abnormal sensor

readings, will be prepared and executed using the Mission Planner front-end, resembling

the initiation mechanism used in section 5.2 and section 5.3.

5.4.4 Results

By feeding the generated logs to the Mission Planner viewing interface, it is possible to

review the path followed by the first drone before a collaboration request occurred, along with

the paths taken by all drones when simultaneously collaborating in the mission. These paths

are shown in Figure 5.29.

A

B

CC

A

B

(a) (b) (c)

Figure 5.29: Path followed by all drones during the execution of the collaborative sensing experiment.
In step (a), drone A executes the initially planned mission until the alarm waypoint
is reached. Next, in step (b), a new mission is generated and drones A, B and C
simultaneously reach the first waypoint of their part of the mission. Finally, in step (c),
all drones collaboratively execute their parts of the mission.

As can be seen in the step c) of Figure 5.29, the mission now includes 56 waypoints instead

of 30, covering an area of 2058m2 which corresponds to an area increase of 110%. Since

two drones have joined the mission for collaboration and each one is expected to provide an

area increase of 50%, the new generated area should ideally only be 100% larger than the

initial area. However, since the distance between waypoints remains unchanged when missions

are extended, if the new generated mission was one row or column shorter, its area would

only be, respectively, 80% or 75% larger than the initial mission. Thus, the new mission

generated by the Mission Planner is the alternative which is closer to the expected area

increase of 100%. It is also possible to observe that the new mission was successfully and

collaboratively executed by the three drones, since every generated waypoint was achieved.

The timing representation shown in Figure 5.30 contains the time required for each stage of

this experiment. The collaboration alarm was launched by drone A once it reached waypoint

15 of the initial mission, after approximately 2 minutes had passed. Once the alarm was

launched, drones B and C initiated their preparation stages, which include arming, take-off and

vertical flight to an altitude of 10 meters. Since drone A was already in flight, no preparation

stage was required when the alarm was launched, and thus it proceeded to execute the first

waypoint of its part of the mission, waypoint 1. When it finished its preparation stage, drone

79

B proceeded to execute waypoint 19, while drone C proceeded to execute waypoint 37. After

approximately 2 minutes and 34 seconds had passed since the mission expansion, all drones

successfully had completed their parts of the mission, meaning that an area of 2058m2 with

waypoints placed 7 meters apart from each other can be collaboratively covered in this period

of time when using three drones.

80

W
a

y
p

o
in

t
1

1
2

.0
8

 s

W
a

y
p

o
in

ts
 2

-1
5

9
7

.5
1

7
 s

W
a

y
p

o
in

ts
 2

-1
8

1
2

8
.7

2
7

 s

1
3

.2
2

3
 s

P
re

p
a

ra
ti

o
n

1
5

.0
5

4
 s

W
a

y
p

o
in

t
1

9

1
2

0
.2

4
3

 s

W
a

y
p

o
in

ts
 2

0
-3

6

1
2

.9
1

2
 s

P
re

p
a

ra
ti

o
n

9
.1

6
2

 s

W
a

y
p

o
in

t
3

7

1
3

1
.4

4
9

 s

W
a

y
p

o
in

ts
 3

8
-5

6

D
ro

n
e

 A
 a

c
ti
o

n
s

E
x
te

n
d

e
d

 m
is

s
io

n

D
ro

n
e

 B
 a

c
ti
o

n
s

E
x
te

n
d

e
d

 m
is

s
io

n

D
ro

n
e

 C
 a

c
ti
o

n
s

E
x
te

n
d

e
d

 m
is

s
io

n

D
ro

n
e

 A
 a

c
ti
o

n
s

In
it
ia

l
m

is
s
io

n

1
0

.1
8

5
 s

P
re

p
a

ra
ti

o
n

1
0

.0
6

9
 s

W
a

y
p

o
in

t
1

1
0

.1
9

 s2
2

.2
7

 s

1
1

9
.7

8
 s

2
7

3
.3

1
 s

1
3

8
.8

 s

1
4

8
.5

2
 s

1
5

3
.5

2
 s

C
o

o
p

e
ra

ti
o

n
 a

la
rm

 l
a

u
n

c
h

e
d

N
e

w
 m

is
s

io
n

 g
e

n
e

ra
te

d

F
ig

u
re

5
.3

0
:

T
im

in
g

re
p
re

se
n
ta

ti
on

of
th

e
co

ll
ab

or
at

iv
e

se
n
si

n
g

ex
p

er
im

en
t.

81

5.5 Conclusions

The execution of the described experiments allows us to evaluate the functionalities of the

platform, ranging from the most basic tasks to its most complex capabilities. The results

obtained in each of the experiments are able to validate the platform in respect to different

levels of functionality, as follows:

� First experiment - Confirms that the platform is able to move a drone to the location

of a caller who is using the button of a mobile application. This evaluates the geographic

coordinate based navigation capabilities of the platform, along with the autonomous

take-off of a drone.

� Second experiment - Demonstrates that the platform is able to have a drone au-

tonomously survey an area selected by the user, while taking pictures upon reaching

each waypoint. This evaluates the mission planning and execution capabilities of the

platform, covering the automatic generation of waypoints based in an area selected by

the user and the autonomous execution of a mission composed of several waypoints and

actions.

� Third experiment - Displays the most basic drone collaboration functionality which

was implemented, showing that the platform is able to autonomously replace an in-flight

drone. This evaluates the self-replacement capabilities of the platform, including the

autonomous landing of the in-flight drone and the assignment of the remaining workload

to a new drone.

� Fourth experiment - Shows that the platform is able to support multiple drones

collaborating in a mapping mission simultaneously, allowing larger dimension areas to be

autonomously surveyed by a set of drones. This evaluates the multi-drone simultaneous

collaboration capabilities of the platform, including the autonomous assignment of

similar workloads among multiple connected drones.

Obtaining results for each of the experiments also required the usage of the developed

reviewing tools such as the Logger, for timing measurements, and the viewing interface of the

Mission Planner, for displaying a representation of the followed paths, thus also effectively

evaluating the mission reviewing capabilities of the platform.

82

CHAPTER 6
Conclusion and Future Work

This final chapter completes the dissertation providing general conclusions and suggestions for

future work.

6.1 Conclusion

This dissertation described the design, implementation and validation of a modular platform

for autonomously controlling aerial drones. This platform enables control details to be

completely abstracted, enabling an inexperienced user to plan, execute and monitor complex

missions with one or more participating drones, while also enabling their collaboration in

the execution of these missions. Through a comprehensive set of real-life experiments, it is

possible to conclude that the proposed platform is able to meet with every objective that was

put forward initially. Additionally, the modular nature of the developed platform allows its

expandability for new scenarios, for increased drone and flight controller compatibility and for

its scalability. A brief summary of the achieved objectives is provided below.

6.1.1 Building a drone management platform

The core of this dissertation relies on the development of a drone management platform. This

platform is composed of a set of software and hardware modules that make up the drone-side

and ground-side architecture, along with message broker based communication mechanisms

required for their interactions. The modularity of the platform is justified with the loose

coupling of each software module, allowing new modules to be developed and implemented

with little knowledge of existing modules. The resulting platform is ready to support drone

monitoring and autonomous drone flight in tasks ranging from basic navigation commands to

the automation of complex paths and collaboration of multiple drone systems.

83

6.1.2 Building a drone system

A crucial part of this work involved building a drone system which could easily be integrated

in the control platform. The result is a reliable drone system, shown in Figure 6.1, which can

easily be replicated if a higher number of mission participants is required. The usage of a

hexacopter allows for an increased take-off weight, providing a high flexibility in the usage of

different sensor payloads.

Figure 6.1: Two drones in a disarmed state before execution of the self-replacement experiment.

6.1.3 Control abstraction

As one of the main objectives of this work, the resulting platform provides mechanisms

for high-level control, abstracting flight details from the user. The best example of this

functionality is described in the panic button experiment in section 5.1, in which the platform

was successfully able to command a drone to arm, take-off, and fly towards a user with a

single tap of a button.

6.1.4 Mission execution

The successful completion of the proposed experiments shows that the platform is able to

correctly handle the execution of missions containing large sequences of commands and

waypoints. This enables to conclude that, not only the mechanisms developed to implement

mission execution work as expected, but also the set of tools that enable planning missions

and evaluating mission results.

6.1.5 Drone collaboration

Executing the final two experiments involves the participation of more than one drone in the

same mission. The obtained results in the self-replacement experiment described in section 5.3

show that the platform is able to autonomously replace an in-flight drone and hand-off its

work load to a newly assigned drone. The successful execution of the collaborative sensing

84

scenario described in section 5.4 shows that the platform supports three drones collaborating

in a mission simultaneously, covering an area of 2058m2 in approximately 2 minutes and 34

seconds.

6.2 Future Work

Given that the possible usage scenarios of this platform are vast and apply to a broad range

of sectors, it leaves wide room for improvement and future work. Some suggestions for future

work are provided as follows.

6.2.1 Drone-to-drone communication

In the actual state of the platform, drones make use of ground side components for every

interaction. Implementing collaboration mechanisms which do not constantly rely on a

connection to ground but instead take place using drone-to-drone communications could be

interesting, for instance, to avoid collisions or in the scenario of ground connection loss. This

could also promote drone differentiation, where drones in a swarm that do not carry a 3G

modem aboard relay ground communication to a drone with such capability.

6.2.2 Complex mission planning

Mission planning and execution could be further improved by adding the possibility of creating

conditional steps and fallbacks. A suggestion would be to represent each mission as a finite

state machine, in which states represent mission steps and state transitions depend on the

result of the execution of each step. This would enable missions to execute differently according

to obtained sensor measurements or in case of a failure.

6.2.3 Fail-safe mechanisms

As a safety measure, devices such as parachutes or sirens could be added to drones. Further

improvements in telemetry analysis could enable a drone to recognize its own anomalous

behavior and automatically deploy these devices in case of an imminent crash.

6.2.4 Broaden flight controller compatibility

At the present time, only flight controllers which implement the UAVTalk protocol are

supported by the platform. Extending this support, for example, to the MAVLink protocol or

to DJI flight controllers would make the platform compatible with a new set of devices. In

order to accomplish this, additional capabilities should be added to the Flight Controller

Interface submodule of the Drone Controller.

85

References

[1] S. Chaumette, “Collaboration Between Autonomous Drones and Swarming”, in UAV Networks and Com-
munications, Cambridge University Press, 2017, pp. 177–193. doi: 10.1017/9781316335765.009. [On-
line]. Available: https://www.cambridge.org/core/product/identifier/CBO9781316335765A060/

type/book%7B%5C_%7Dpart.

[2] I. Colomina and P. Molina, “Unmanned aerial systems for photogrammetry and remote sensing:
A review”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 92, pp. 79–97, Jun. 2014,
issn: 0924-2716. doi: 10 . 1016 / J . ISPRSJPRS . 2014 . 02 . 013. [Online]. Available: https : / / www .

sciencedirect.com/science/article/pii/S0924271614000501.

[3] D. Gonzalez-Aguilera and P. Rodriguez-Gonzalvez, “Drones-An Open Access Journal”, Drones, 2017.
doi: 10.3390/drones1010001. [Online]. Available: www.mdpi.com/journal/drones.

[4] N. Mohd Noor, A. Abdullah, and M. Hashim, “Remote sensing UAV/drones and its applications
for urban areas: a review”, IOP Conference Series: Earth and Environmental Science, vol. 169,
no. 1, p. 012 003, Jul. 2018, issn: 1755-1315. doi: 10 . 1088 / 1755 - 1315 / 169 / 1 / 012003. [On-
line]. Available: http : / / stacks . iop . org / 1755 - 1315 / 169 / i = 1 / a = 012003 ? key = crossref .

ff09c78b4233f15a0e590f58ca43f99d.

[5] A. Chapman, “Types of Drones: Multi-Rotor vs Fixed-Wing vs Single Rotor vs Hybrid VTOL”, DRONE
magazine, issue 3, Jun. 2016. [Online]. Available: https://www.auav.com.au/articles/drone-types/.

[6] Q. Feng, J. Liu, J. Gong, Q. Feng, J. Liu, and J. Gong, “UAV Remote Sensing for Urban Vegetation
Mapping Using Random Forest and Texture Analysis”, Remote Sensing, vol. 7, no. 1, pp. 1074–1094,
Jan. 2015, issn: 2072-4292. doi: 10.3390/rs70101074. [Online]. Available: http://www.mdpi.com/2072-

4292/7/1/1074.

[7] G. Salvo, L. Caruso, and A. Scordo, “Urban Traffic Analysis through an UAV”, Procedia - Social
and Behavioral Sciences, vol. 111, pp. 1083–1091, Feb. 2014, issn: 1877-0428. doi: 10 . 1016 / J .

SBSPRO.2014.01.143. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S187704281400144X?via%7B%5C%%7D3Dihub.

[8] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “UAVs for smart cities: Opportu-
nities and challenges”, in 2014 International Conference on Unmanned Aircraft Systems (ICUAS),
IEEE, May 2014, pp. 267–273, isbn: 978-1-4799-2376-2. doi: 10.1109/ICUAS.2014.6842265. [Online].
Available: http://ieeexplore.ieee.org/document/6842265/.

[9] R. Clarke and L. Bennett Moses, “The regulation of civilian drones’ impacts on public safety”,
Computer Law & Security Review, vol. 30, no. 3, pp. 263–285, Jun. 2014, issn: 0267-3649. doi:
10.1016/J.CLSR.2014.03.007. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0267364914000594.

[10] D. Mardiansyah and A. H. S. Budi, “UAV Vision System for Rescue Payload Delivery”, IOP Conference
Series: Materials Science and Engineering, vol. 384, p. 012 005, Jul. 2018, issn: 1757-8981. doi:
10.1088/1757-899X/384/1/012005. [Online]. Available: http://stacks.iop.org/1757-899X/384/i=

1/a=012005?key=crossref.11cf7898e5e2258a325c953ebddb7894.

[11] E. Lygouras, A. Gasteratos, K. Tarchanidis, and A. Mitropoulos, “ROLFER: A fully autonomous
aerial rescue support system”, Microprocessors and Microsystems, vol. 61, pp. 32–42, Sep. 2018, issn:
0141-9331. doi: 10.1016/J.MICPRO.2018.05.014. [Online]. Available: https://www.sciencedirect.

com/science/article/pii/S0141933118301224?via%7B%5C%%7D3Dihub.

87

[12] H. Kayan, R. Eslampanah, F. Yeganli, and M. Askar, “Heat leakage detection and surveiallance
using aerial thermography drone”, in 2018 26th Signal Processing and Communications Applications
Conference (SIU), IEEE, May 2018, pp. 1–4, isbn: 978-1-5386-1501-0. doi: 10.1109/SIU.2018.8404366.
[Online]. Available: https://ieeexplore.ieee.org/document/8404366/.

[13] M. Abarca, C. Saito, A. Angulo, J. A. Paredes, and F. Cuellar, “Design and development of an
hexacopter for air quality monitoring at high altitudes”, in 2017 13th IEEE Conference on Automation
Science and Engineering (CASE), IEEE, Aug. 2017, pp. 1457–1462, isbn: 978-1-5090-6781-7. doi: 10.

1109/COASE.2017.8256309. [Online]. Available: http://ieeexplore.ieee.org/document/8256309/.

[14] I. Gomes, L. Peteiro, J. Bueno-Pardo, R. Albuquerque, S. Pérez-Jorge, E. R. Oliveira, F. L. Alves, and
H. Queiroga, “What’s a picture really worth? On the use of drone aerial imagery to estimate intertidal
rocky shore mussel demographic parameters”, Estuarine, Coastal and Shelf Science, vol. 213, pp. 185–
198, Nov. 2018, issn: 0272-7714. doi: 10.1016/J.ECSS.2018.08.020. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S0272771418303214?via%7B%5C%%7D3Dihub.

[15] P. Gray, J. Ridge, S. Poulin, A. Seymour, A. Schwantes, J. Swenson, D. Johnston, P. C. Gray, J. T.
Ridge, S. K. Poulin, A. C. Seymour, A. M. Schwantes, J. J. Swenson, and D. W. Johnston, “Integrating
Drone Imagery into High Resolution Satellite Remote Sensing Assessments of Estuarine Environments”,
Remote Sensing, vol. 10, no. 8, p. 1257, Aug. 2018, issn: 2072-4292. doi: 10.3390/rs10081257. [Online].
Available: http://www.mdpi.com/2072-4292/10/8/1257.

[16] J. Huuskonen and T. Oksanen, “Soil sampling with drones and augmented reality in precision
agriculture”, Computers and Electronics in Agriculture, vol. 154, pp. 25–35, Nov. 2018, issn: 0168-1699.
doi: 10.1016/J.COMPAG.2018.08.039. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0168169918301650?via%7B%5C%%7D3Dihub.

[17] P. Surový, N. Almeida Ribeiro, and D. Panagiotidis, “Estimation of positions and heights from UAV-
sensed imagery in tree plantations in agrosilvopastoral systems”, International Journal of Remote
Sensing, vol. 39, no. 14, pp. 4786–4800, Aug. 2018, issn: 0143-1161. doi: 10.1080/01431161.2018.

1434329. [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/01431161.2018.

1434329.

[18] T. R. Goodbody, N. C. Coops, T. Hermosilla, P. Tompalski, and P. Crawford, “Assessing the status of
forest regeneration using digital aerial photogrammetry and unmanned aerial systems”, International
Journal of Remote Sensing, vol. 39, no. 15-16, pp. 5246–5264, Aug. 2018, issn: 0143-1161. doi:
10.1080/01431161.2017.1402387. [Online]. Available: https://www.tandfonline.com/doi/full/10.

1080/01431161.2017.1402387.

[19] M. Schirrmann, A. Giebel, F. Gleiniger, M. Pflanz, J. Lentschke, K.-H. Dammer, M. Schirrmann, A.
Giebel, F. Gleiniger, M. Pflanz, J. Lentschke, and K.-H. Dammer, “Monitoring Agronomic Parameters
of Winter Wheat Crops with Low-Cost UAV Imagery”, Remote Sensing, vol. 8, no. 9, p. 706, Aug.
2016, issn: 2072-4292. doi: 10.3390/rs8090706. [Online]. Available: http://www.mdpi.com/2072-

4292/8/9/706.

[20] D. Mirk and H. Hlavacs, “Virtual Tourism with Drones”, in Proceedings of the First Workshop on
Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use - DroNet ’15, New York,
New York, USA: ACM Press, 2015, pp. 45–50, isbn: 9781450335010. doi: 10.1145/2750675.2750681.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2750675.2750681.

[21] DJI - The Future Of Possible. [Online]. Available: https://www.dji.com/ (visited on 09/17/2018).

[22] D. Joshi, Top Drone Manufacturers & Companies To Watch & Invest In 2017, Jul. 2017. [Online].
Available: https://www.businessinsider.com/top- drone- manufacturers- companies- invest-

stocks-2017-07.

[23] A. Glaser, “DJI is running away with the drone market”, Recode, p. 5, 2017. [Online]. Available: https:

//www.recode.net/2017/4/14/14690576/drone-market-share-growth-charts-dji-forecast.

[24] P. Akademia Baru, S. Sabikan, and S. W. Nawawi, “Open-Source Project (OSPs) Platform for Outdoor
Quadcopter”, Tech. Rep. 1, 2016, pp. 13–27. [Online]. Available: http://www.akademiabaru.com/doc/

ARDV24%7B%5C_%7DN1%7B%5C_%7DP13%7B%5C_%7D27.pdf.

[25] H. Chao, Y. Cao, and Y. Chen, “Autopilots for small unmanned aerial vehicles: A survey”, International
Journal of Control, Automation and Systems, vol. 8, no. 1, pp. 36–44, Feb. 2010, issn: 1598-6446. doi:

88

10.1007/s12555-010-0105-z. [Online]. Available: http://link.springer.com/10.1007/s12555-

010-0105-z.

[26] What‘s difference of NAZA-M Lite/NAZA-M V1/NAZA-M V2. [Online]. Available: https://www.

dji.com/newsroom/news/whats-difference-of-naza-m-litenaza-m-v1naza-m-v2 (visited on
09/18/2018).

[27] DJI - The World Leader in Camera Drones/Quadcopters for Aerial Photography. [Online]. Available:
https://www.dji.com/2-4g-bluetooth-datalink (visited on 09/18/2018).

[28] DJI Naza-M V2 Multirotor Gyro System w/ GPS - HeliPal. [Online]. Available: http://www.helipal.

com/dji-naza-m-multirotor-gyro-system.html (visited on 09/18/2018).

[29] DJI N3 Naza Flight Controller and GPS | professional-multirotors. [Online]. Available: https://

www.professional-multirotors.com/product/dji-n3-naza-flight-controller-gps/ (visited on
09/18/2018).

[30] N3 - Specs, FAQ, Tutorials, Downloads and DJI GO - DJI. [Online]. Available: https://www.dji.

com/n3/info%7B%5C#%7Dspecs (visited on 09/18/2018).

[31] A3. [Online]. Available: https://www.dji.com/a3/info%7B%5C#%7Dspecs (visited on 09/18/2018).

[32] Buy N3 - DJI Store. [Online]. Available: https://store.dji.com/product/n3?from=menu%7B%5C_

%7Dproducts (visited on 09/18/2018).

[33] Buy A3 - DJI Store. [Online]. Available: https://store.dji.com/product/a3?from=menu%7B%5C_

%7Dproducts (visited on 09/18/2018).

[34] DJI Developer. [Online]. Available: https : / / developer . dji . com / onboard - sdk/ (visited on
09/18/2018).

[35] Buy A3 Pro - DJI Store. [Online]. Available: https://store.dji.com/product/a3-pro (visited on
09/18/2018).

[36] Parrot C.H.U.C.K. | Official Parrot® site. [Online]. Available: https://www.parrot.com/eu/business-

solutions/parrot-chuck%7B%5C#%7Dparrot-chuck (visited on 09/18/2018).

[37] Parrot C.H.U.C.K. | Official Parrot® site. [Online]. Available: https://www.parrot.com/eu/business-

solutions/parrot-chuck%7B%5C#%7Dtechnicals (visited on 09/18/2018).

[38] Parrot PF070251 Disco C.H.U.C.K. Unit Replacement autopilot module for Parrot Disco drone at
Crutchfield.com. [Online]. Available: https://www.crutchfield.com/S- x8MaU53RmBn/p%7B%5C_

%7D333PF70251/Parrot-PF070251-Disco-C-H-U-C-K-Unit.html (visited on 09/18/2018).

[39] Emlid Edge — Advanced drone controller with HDMI video input. [Online]. Available: https://emlid.

com/edge/ (visited on 09/19/2018).

[40] Edge docs. [Online]. Available: https://docs.emlid.com/edge/ (visited on 09/19/2018).

[41] E. Ebeid, M. Skriver, and J. Jin, “A Survey on Open-Source Flight Control Platforms of Unmanned
Aerial Vehicle”, in 2017 Euromicro Conference on Digital System Design (DSD), IEEE, Aug. 2017,
pp. 396–402, isbn: 978-1-5386-2146-2. doi: 10.1109/DSD.2017.30. [Online]. Available: http://

ieeexplore.ieee.org/document/8049816/.

[42] NuttX Real-Time Operating System - NuttX Real-Time Operating System. [Online]. Available: http:

//nuttx.org/ (visited on 09/19/2018).

[43] Pixhawk 4 · PX4 User Guide. [Online]. Available: https://docs.px4.io/en/flight%7B%5C_

%7Dcontroller/pixhawk4.html (visited on 09/19/2018).

[44] Hardware - Dronecode. [Online]. Available: https://www.dronecode.org/hardware/ (visited on
09/19/2018).

[45] Dronecode - The Open Source UAV Platform. [Online]. Available: https://www.dronecode.org/

(visited on 09/19/2018).

89

[46] The Linux Foundation – Supporting Open Source Ecosystems. [Online]. Available: https://www.

linuxfoundation.org/ (visited on 09/19/2018).

[47] Buy Pixhawk 4. [Online]. Available: https://shop.holybro.com/pixhawk-4%7B%5C_%7Dp1089.html

(visited on 09/19/2018).

[48] S. Debnath and J. Nayak, “Visual odometry data fusion for indoor localization of an unmanned aerial
vehicle”, in 2017 IEEE International Conference on Power, Control, Signals and Instrumentation
Engineering (ICPCSI), IEEE, Sep. 2017, pp. 279–284, isbn: VO -. doi: 10.1109/ICPCSI.2017.8392247.
[Online]. Available: https://ieeexplore.ieee.org/document/8392247/.

[49] W. Liu, C. Yu, X. Wang, Y. Zhang, and Y. Yu, “The Altitude Hold Algorithm of UAV Based
on Millimeter Wave Radar Sensors”, in Proceedings - 9th International Conference on Intelligent
Human-Machine Systems and Cybernetics, IHMSC 2017, vol. 1, IEEE, Aug. 2017, pp. 436–439, isbn:
9781538630228. doi: 10.1109/IHMSC.2017.106. [Online]. Available: http://ieeexplore.ieee.org/

document/8047665/.

[50] M. Beul, N. Krombach, M. Nieuwenhuisen, D. Droeschel, and S. Behnke, “Autonomous navigation
in a warehouse with a cognitive micro aerial vehicle”, in Studies in Computational Intelligence,
vol. 707, 2017, pp. 487–524. doi: 10.1007/978- 3- 319- 54927- 9_15. [Online]. Available: http:

//link.springer.com/10.1007/978-3-319-54927-9%7B%5C_%7D15.

[51] R. Opromolla, G. Fasano, G. Rufino, M. Grassi, and A. Savvaris, “LIDAR-inertial integration for UAV
localization and mapping in complex environments”, in 2016 International Conference on Unmanned
Aircraft Systems, ICUAS 2016, IEEE, Jun. 2016, pp. 649–656, isbn: 9781467393331. doi: 10.1109/

ICUAS.2016.7502580. [Online]. Available: http://ieeexplore.ieee.org/document/7502580/.

[52] G. Crespo, G. Glez-de-Rivera, J. Garrido, and R. Ponticelli, “Setup of a communication and control
systems of a quadrotor type Unmanned Aerial Vehicle”, in Proceedings of the 2014 29th Conference on
Design of Circuits and Integrated Systems, DCIS 2014, IEEE, Nov. 2014, pp. 1–6, isbn: 9781479957439.
doi: 10.1109/DCIS.2014.7035590. [Online]. Available: http://ieeexplore.ieee.org/document/

7035590/.

[53] Pixhawk Series · PX4 User Guide. [Online]. Available: https://docs.px4.io/en/flight%7B%5C_

%7Dcontroller/pixhawk%7B%5C_%7Dseries.html (visited on 09/19/2018).

[54] OpenPilot CC3D Revolution Revo 10DOF STM32F4 Flight Controller Staight Pin | Alexnld.com.
[Online]. Available: https://alexnld.com/product/openpilot- cc3d- revolution- revo- 10dof-

stm32f4-flight-controller-staight-pin/ (visited on 09/19/2018).

[55] Welcome to LibrePilot/OpenPilot Wiki — LibrePilot/OpenPilot Wiki 0.1.4 documentation. [Online].
Available: https://opwiki.readthedocs.io/en/latest/index.html (visited on 09/19/2018).

[56] Revolution Board Setup — LibrePilot/OpenPilot Wiki 0.1.4 documentation. [Online]. Available: https:

/ / opwiki . readthedocs . io / en / latest / user % 7B % 5C _ %7Dmanual / revo / revo . html (visited on
09/19/2018).

[57] OpenPilot CC3D Revolution (Revo) 32bit F4 Based Flight Controller w/Integrated 433Mhz OPLink.
[Online]. Available: https://hobbyking.com/en%7B%5C_%7Dus/openpilot-cc3d-revolution-revo-

32bit-flight-controller-w-integrated-433mhz-oplink.html?%7B%5C_%7D%7B%5C_%7D%7B%5C_

%7Dstore=en%7B%5C_%7Dus (visited on 09/19/2018).

[58] CopterControl / CC3D / Atom Hardware Setup — LibrePilot/OpenPilot Wiki 0.1.4 documentation.
[Online]. Available: https://opwiki.readthedocs.io/en/latest/user%7B%5C_%7Dmanual/cc3d/

cc3d.html (visited on 09/20/2018).

[59] Buy OpenPilot CC3D Flight Controller. [Online]. Available: https://www.banggood.com/OpenPilot-

CC3D-Flight-Controller-STM32-32-bit-Flexiport-p-937044.html (visited on 09/20/2018).

[60] OpenPilot CC3D Flight Controller (Right Angle Pins). [Online]. Available: https://www.getfpv.com/

openpilot-cc3d-flight-controller-right-angle-pins-3876.html (visited on 09/20/2018).

[61] ArduPilot :: About. [Online]. Available: http://ardupilot.org/about (visited on 09/20/2018).

90

[62] Optional Hardware — Copter documentation. [Online]. Available: http://ardupilot.org/copter/

docs/common-optional-hardware.html (visited on 09/20/2018).

[63] Introduction · MAVLink Developer Guide. [Online]. Available: https://mavlink.io/en/ (visited on
09/20/2018).

[64] Trademark — Dev documentation. [Online]. Available: http://ardupilot.org/dev/docs/trademark.

html (visited on 09/20/2018).

[65] Introduction · PX4 User Guide. [Online]. Available: https : / / docs . px4 . io / en/ (visited on
09/20/2018).

[66] Advanced flight control - dRonin. [Online]. Available: https://dronin.org/ (visited on 09/20/2018).

[67] L. Meier, T. Gubler, D. Agar, J. Oes, B. Küng, D. Sidrane, A. Babushkin, Px4dev, M. Charlebois, R.
Bapst, A. D. Antener, J. Goppert, A. Tridgell, P. Riseborough, D. Mannhart, M. Whitehorn, M. Grob,
S. Wilks, K. Mohammed, S. Smeets, P. Kirienko, ChristophTobler, JohanJansen, D. Gagne, B. Siesta,
J. R. de Souza, L. D. Marchi, F. Achermann, J. Lecoeur, and S. Guscetti, “PX4/Firmware: v1.8.0
Stable Release”, Jun. 2018. doi: 10.5281/ZENODO.1292429. [Online]. Available: https://zenodo.org/

record/1292429%7B%5C#%7D.W6KBNf5KiRc.

[68] Technology - PX4 Open Source Autopilot. [Online]. Available: http://px4.io/technology/ (visited
on 09/20/2018).

[69] M. Lyle, dRonin 2016-01-20 release ("renatus"), 2016. [Online]. Available: https://github.com/d-

ronin/dRonin/releases/tag/Release-20160120.3.

[70] Advanced flight control - dRonin. [Online]. Available: https://dronin.org/ (visited on 09/20/2018).

[71] TauLabs, Development of the UAVTalk Protocol, 2014. [Online]. Available: https://github.com/

TauLabs/TauLabs/wiki/Development-UAVTalk-Protocol.

[72] QGC - QGroundControl - Drone Control. [Online]. Available: http://qgroundcontrol.com/ (visited
on 09/21/2018).

[73] Virtual Joystick (PX4) · QGroundControl User Guide. [Online]. Available: https : / / docs .

qgroundcontrol.com/en/SettingsView/VirtualJoystick.html (visited on 09/21/2018).

[74] SiK Telemetry Radio — Copter documentation. [Online]. Available: http://ardupilot.org/copter/

docs/common-sik-telemetry-radio.html (visited on 09/21/2018).

[75] Mobile App | DroneDeploy. [Online]. Available: https://www.dronedeploy.com/product/mobile/

(visited on 09/21/2018).

[76] Enterprise Drone Mapping Software | DroneDeploy. [Online]. Available: https://www.dronedeploy.

com/product/platform/ (visited on 09/21/2018).

[77] Live Map | DroneDeploy. [Online]. Available: https://www.dronedeploy.com/product/live-map/

(visited on 09/21/2018).

[78] Supported Drones. [Online]. Available: https://support.dronedeploy.com/docs/supported-drones

(visited on 09/21/2018).

[79] Industry Agnostic Drone Technology Applications. [Online]. Available: https://www.precisionhawk.

com/industries (visited on 09/21/2018).

[80] PrecisionFlight | UAV & Drone Flight Planner. [Online]. Available: https://www.precisionhawk.com/

precisionflight (visited on 09/21/2018).

[81] PrecisionFlight Pro | UAV Tracking & Flight Planner for Professionals. [Online]. Available: https:

//www.precisionhawk.com/precisionflight-pro (visited on 09/21/2018).

[82] FlytBase: Build Smart and Scalable Drone Applications. [Online]. Available: https://flytbase.com/

(visited on 09/21/2018).

[83] FlytOS: Operating System for Drones. [Online]. Available: https://flytbase.com/flytos/ (visited
on 09/21/2018).

91

[84] J. Besada, L. Bergesio, I. Campaña, D. Vaquero-Melchor, J. López-Araquistain, A. Bernardos, J. Casar,
J. A. Besada, L. Bergesio, I. Campaña, D. Vaquero-Melchor, J. López-Araquistain, A. M. Bernardos, and
J. R. Casar, “Drone Mission Definition and Implementation for Automated Infrastructure Inspection
Using Airborne Sensors”, Sensors, vol. 18, no. 4, p. 1170, Apr. 2018, issn: 1424-8220. doi: 10.3390/

s18041170. [Online]. Available: http://www.mdpi.com/1424-8220/18/4/1170.

[85] A. Williams and O. Yakimenko, “Persistent mobile aerial surveillance platform using intelligent battery
health management and drone swapping”, in Proceedings - 2018 4th International Conference on
Control, Automation and Robotics, ICCAR 2018, IEEE, Apr. 2018, pp. 237–246, isbn: 9781538663387.
doi: 10.1109/ICCAR.2018.8384677. [Online]. Available: https://ieeexplore.ieee.org/document/

8384677/.

[86] N. Yamamoto and K. Naito, “Proposal of Continuous Remote Control Architecture for Drone Op-
erations”, in, Springer, Cham, Jun. 2019, pp. 64–73. doi: 10.1007/978-3-319-92231-7_7. [Online].
Available: http://link.springer.com/10.1007/978-3-319-92231-7%7B%5C_%7D7.

[87] A. M. de Oca, L. Arreola, A. Flores, J. Sanchez, and G. Flores, “Low-cost multispectral imaging system
for crop monitoring”, in 2018 International Conference on Unmanned Aircraft Systems (ICUAS),
IEEE, Jun. 2018, pp. 443–451, isbn: 978-1-5386-1354-2. doi: 10.1109/ICUAS.2018.8453426. [Online].
Available: https://ieeexplore.ieee.org/document/8453426/.

[88] J. T. Amenyo, D. Phelps, O. Oladipo, F. Sewovoe-Ekuoe, S. Jadoonanan, S. Jadoonanan, T. Tabassum,
S. Gnabode, T. D. Sherpa, M. Falzone, A. Hossain, and A. Kublal, “MedizDroids Project: Ultra-low cost,
low-altitude, affordable and sustainable UAV multicopter drones for mosquito vector control in malaria
disease management”, in Proceedings of the 4th IEEE Global Humanitarian Technology Conference,
GHTC 2014, IEEE, Oct. 2014, pp. 590–596, isbn: 9781479971930. doi: 10.1109/GHTC.2014.6970343.
[Online]. Available: http://ieeexplore.ieee.org/document/6970343/.

[89] DJI - The World Leader in Camera Drones/Quadcopters for Aerial Photography. [Online]. Available:
https://www.dji.com/flame-wheel-arf (visited on 09/24/2018).

[90] Buy E310 420S ESCs - DJI Store. [Online]. Available: https://store.dji.com/product/e310-420s-

esc (visited on 09/24/2018).

[91] DJI, DJI - The World Leader in Camera Drones/Quadcopters for Aerial Photography, 2018. [Online].
Available: https://www.dji.com/e310 (visited on 09/24/2018).

[92] Original DJI E310 420S ESC para RC Multicopter - RcMoment.com. [Online]. Available: https:

//www.rcmoment.com/pt/p-rm6052.html (visited on 09/24/2018).

[93] Buy E310 2312 Motor (CCW&CW) - DJI Store. [Online]. Available: https://store.dji.com/

product/e310-motor (visited on 09/24/2018).

[94] Buy 9450 Self-tightening Propellers (Composite Hub, Gray) - DJI Store. [Online]. Available: https:

//store.dji.com/product/9450-plastic-hub-props-gray (visited on 09/24/2018).

[95] DJI E310 Tuned Propulsion System Quadcopter Build Your Own Drone. [Online]. Available: https:

//www.buildyourowndrone.co.uk/dji-e310-tuned-propulsion-system-quadcopter (visited on
09/24/2018).

[96] DJI E300, E310 & E305 9450 Self Tightening Propellers Grey Build Your Own Drone. [Online].
Available: https://www.buildyourowndrone.co.uk/dji-e310-e305-9450-self-tightening-grey-

propellers (visited on 09/24/2018).

[97] NEO-M8 series | u-blox, 2017. [Online]. Available: https://www.u-blox.com/en/product/neo-m8-

series (visited on 09/24/2018).

[98] Magnetic Sensors and Transducers. [Online]. Available: https://aerospace.honeywell.com/en/

products/navigation-and-sensors/magnetic-sensors-and-transducers (visited on 09/24/2018).

[99] Ublox Neo-M8N GPS with Compass. [Online]. Available: https://store.nerokas.co.ke/index.php?

route=product/product%7B%5C&%7Dproduct%7B%5C_%7Did=1297 (visited on 09/24/2018).

[100] FlySky FS-i6. [Online]. Available: http : / / www . flysky - cn . com / products % 7B % 5C _ %7Ddetail /

productId=36.html (visited on 09/24/2018).

92

[101] FlySky FS-iA6B. [Online]. Available: http://www.flysky- cn.com/products%7B%5C_%7Ddetail/

productId=51.html (visited on 09/24/2018).

[102] DJI - The World Leader in Camera Drones/Quadcopters for Aerial Photography. [Online]. Available:
https://www.dji.com/e310/spec (visited on 09/24/2018).

[103] Raspberry Pi 2 Model B - Raspberry Pi. [Online]. Available: https://www.raspberrypi.org/products/

raspberry-pi-2-model-b/ (visited on 09/24/2018).

[104] Download Raspbian for Raspberry Pi. [Online]. Available: https://www.raspberrypi.org/downloads/

raspbian/ (visited on 09/24/2018).

[105] Arduino Nano. [Online]. Available: https://store.arduino.cc/usa/arduino- nano (visited on
09/24/2018).

[106] LibrePilot – Open – Collaborative – Free. [Online]. Available: https://www.librepilot.org/site/

index.html (visited on 09/24/2018).

[107] Tau Labs. [Online]. Available: http://taulabs.org/ (visited on 09/24/2018).

[108] DRonin, UAV Object Definition files. [Online]. Available: https://github.com/d-ronin/dRonin/

tree/next/shared/uavobjectdefinition.

[109] ——, Coordinate Conversion Methods. [Online]. Available: https : / / github . com / d - ronin /

dRonin / blob / 3a866925d6148e33e0620c94c5940413574a7247 / ground / gcs / src / libs / utils /

coordinateconversions.cpp.

[110] InfluxDB | The Time Series Database in the TICK Stack | InfluxData. [Online]. Available: https:

//www.influxdata.com/time-series-platform/influxdb/ (visited on 09/24/2018).

[111] Grafana - The open platform for analytics and monitoring. [Online]. Available: https://grafana.com/

(visited on 09/24/2018).

[112] B. Areias and S. Sargento, “Modular Event-Driven Unmanned Aerial Vehicles Control Platform”,
PhD thesis, Universidade de Aveiro, 2017.

[113] Node.js. [Online]. Available: https://nodejs.org/en/ (visited on 09/24/2018).

[114] AngularJS — Superheroic JavaScript MVW Framework. [Online]. Available: https://angularjs.org/

(visited on 09/24/2018).

[115] Bootstrap · The most popular HTML, CSS, and JS library in the world. [Online]. Available: http:

//getbootstrap.com/ (visited on 09/24/2018).

[116] Leaflet - a JavaScript library for interactive maps. [Online]. Available: https://leafletjs.com/

(visited on 09/24/2018).

[117] R. A. Light, “Mosquitto: server and client implementation of the MQTT protocol”, doi: 10.21105/

joss.00265. [Online]. Available: http://joss.theoj.org/papers/10.21105/joss.00265.

[118] Eclipse Foundation | The Eclipse Foundation. [Online]. Available: https://www.eclipse.org/org/

foundation/ (visited on 09/24/2018).

[119] MQTT. [Online]. Available: https://mqtt.org/ (visited on 09/24/2018).

[120] Messaging that just works — RabbitMQ. [Online]. Available: https://www.rabbitmq.com/ (visited on
09/24/2018).

[121] Home | AMQP. [Online]. Available: https://www.amqp.org/ (visited on 09/24/2018).

[122] Drone Mapping Software - OpenDroneMap. [Online]. Available: https://www.opendronemap.org/

(visited on 09/24/2018).

[123] GoPro Official Website - Capture + share your world - HERO3. [Online]. Available: https://gopro.

com/update/hero3 (visited on 09/24/2018).

93

[124] Convert, Edit, Or Compose Bitmap Images @ ImageMagick. [Online]. Available: https : / / www .

imagemagick.org/script/index.php (visited on 09/24/2018).

[125] Hugin Overview. [Online]. Available: http://hugin.sourceforge.net/tutorials/overview/en.shtml

(visited on 09/24/2018).

[126] A. Gibson, “De-barrel distortion”, [Online]. Available: http://im.snibgo.com/debarrel.htm.

[127] MeshLab. [Online]. Available: http://www.meshlab.net/ (visited on 09/24/2018).

[128] “SprintIR 6S 5% to 100% CO2 Sensor Ultra-fast response Carbon Dioxide Sensor”, Tech. Rep. [Online].
Available: http://www.co2meters.com/Documentation/Datasheets/DS-GC-0028-SprintIR6S.pdf.

94

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Published Results and Prototypes
	Outline

	Related Work
	Drones
	Flight Controllers
	Closed Hardware
	Community-developed Hardware

	Flight Controller Firmware
	Remote Control Solutions
	Open-source Solutions
	Commercially Available Solutions

	Related Work
	ROLFER
	Automated Infrastructure Inspection
	Persistent Aerial Surveillance
	Continuous Remote Control
	Imaging System for Crop Monitoring
	MedizDroids

	Discussion

	Architecture
	Scenarios and requirements
	Internal telemetry acquisition
	External sensor reading acquisition
	Geographic coordinate based drone control
	Mission execution
	Collaboration
	Logging

	Overall architecture
	Drone side
	Overview
	Component description
	Flight Controller
	Drone Controller
	Gear Manager
	Fail-safe System
	Logger

	Component connection

	Ground side
	Overview
	Component description
	Drone Identifier
	Drone Manager
	Telemetry Analyzer
	Mission Planner

	Component connection

	Communication and interaction
	Multi-drone capabilities
	Summary

	Implementation
	Drone side component description
	Physical components
	Drone type
	Component description
	Component connections

	Drone Controller
	Flight Controller Interface
	Navigation Processor
	Mission Worker
	Arming Switch

	Logger
	Gear Manager

	Ground side component description
	Drone Identifier
	Telemetry Analyzer
	Time Series Database
	Broker-to-database Connector
	Telemetry Dashboard

	Drone Manager
	Mission Planner

	Communication Mechanisms
	Message brokers
	Drone Internal Broker
	Ground Broker

	Communication between Drone and Ground
	Communication between Ground and the user
	Message structure

	Summary

	Experiments
	Panic Button
	Objectives
	Method
	Evaluation Procedure
	Results

	Automated Aerial Photography
	Objectives
	Method
	Evaluation Procedure
	Results

	Drone Self-Replacement
	Objectives
	Method
	Evaluation Procedure
	Results

	Collaborative Sensing
	Objectives
	Method
	Evaluation Procedure
	Results

	Conclusions

	Conclusion and Future Work
	Conclusion
	Building a drone management platform
	Building a drone system
	Control abstraction
	Mission execution
	Drone collaboration

	Future Work
	Drone-to-drone communication
	Complex mission planning
	Fail-safe mechanisms
	Broaden flight controller compatibility

	References

