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ABSTRACT 

A COMPREHENSIVE VALIDATION OF ACTIVITY TRACKERS FOR 
ESTIMATING PHYSICAL ACTIVITY AND SEDENTARY BEHAVIOR IN 

FREE-LIVING SETTINGS 
 

SEPTEMBER 2017 
 

ALBERT R. MENDOZA, B.S., SAN FRANCISCO STATE UNIVERSITY 
 

M.S., SAN FRANCISCO STATE UNIVERSITY 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Patty S. Freedson 
 

 

The aim of study one of this dissertation was to compare consumer activity 

trackers (ATs) with the research-grade ActiGraph™ GT3X-BT accelerometer (AG) in 

estimating energy expenditure (EE) and steps during orbital shaking at different 

frequencies. To address this aim, we utilized an electronic orbital shaking protocol 

(twenty-four, 3-minute trials; 2-hour trials). For all comparisons, the AG served as the 

reference measure.  In the 3-min protocol, we showed that on average, the NL-1000 

pedometer (NL) produced the lowest error (-9 steps/3-min) at 0.9 Hz (corresponding to 

moderate intensity). The magnitude of the error for the NL was 14 steps/3-min at a 3.0 

Hz frequency (corresponding to very vigorous intensity).  For the 2-hr protocol, estimates 

from all others were equivocal, with some overestimating steps (bias range: 1,331 

steps/2-hrs for the Misfit Shine to 1,921 steps/2-hrs for the Misfit Flash [MFF]). For 

estimated EE bias ranged from26.6 kcals/2-hrs for the MFF to 45.8 kcals/2-hrs for the 

Misfit Shine.  For other ATs, steps were underestimated (bias range: -5,770 steps/2-hrs 

for the Garmin Vivofit [GV] to -570 steps/2-hrs for the NL). For EE, the bias ranged 
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from -436.8 kcals/2-hrs for the GV to -261.7 kcals/2-hrs for the Fitbit Flex [FBF]). This 

study provides evidence about the differences in prediction algorithms by device across a 

broad range of oscillation frequencies that corresponded to different PA intensity levels. 

For study two, we sought determine the accuracy and precision of activity 

trackers (ATs) in estimating steps, EE, activity minutes and sedentary time compared to 

direct observation (DO)-derived measures (criterion measures) in free-living settings.  

We also validated commonly used research-grade devices (e.g. hip-worn AG (AGhip), 

wrist-worn AG (AGwrist). Thirty-two healthy men and women (50% female, 37.5% 

minority; mean ± SD: Age = 32.3 ± 13.3 years; BMI = 24.4 ± 3.3 kg·m-2) were directly 

observed while completing three, 2-hour visits on different days while wearing ten ATs, 

three research-grade devices and a biometric shirt. A validated DO system was used to 

derive criterion measures for activity and sedentary time (ST) outcomes.  ATs were 

accurate with varying precision in estimating physical activity (PA) behaviors in free-

living settings.  Additionally, ATs and research-grade accelerometers performed similarly 

(e.g. more accurate in estimating steps and less accurate in estimating moderate-to-

vigorous PA [MVPA] minutes).  For all devices, step estimates were accurate and 

strongly correlated (r range: 0.91 for the Apple iWatch to 0.97 for the AGhip) with 

criterion measures but EE and MVPA estimates were less accurate and more variable 

(EE: r = 0.32 [GV] to r = 0.85 [AGhip]; MVPA: r = 0.2 [NL] to r = 0.75 [AGhip]).  For 

ATs, estimates of sedentary time were the least accurate and weakly correlated (r=0.06 

Fitbit One [FBO] and FBF) with criterion measures derived from DO. Implications from 

this study are that consumers and the research community using ATs such as Fitbit (FB) 

to track steps can be confident in estimating steps but less confident in estimating 
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sedentary time.  This study advances our understanding of the performance 

characteristics of ATs in free-living natural settings using a validated DO method to 

derive PA and ST measures. This work significantly advances the field of activity 

monitor validation that should set the standard for future work. 

The aims of study three were: 1) to examine the ability of ATs to detect change in 

PA and ST in free-living settings and 2) to examine the ability of research-grade 

accelerometers to detect change in PA and ST in free-living settings. To address these 

aims, we used an innovative approach to analyze data from study two.  We defined 

change as a visit-to-visit difference that was greater than the within-subject standard 

deviation of the criterion measure (estimated by a linear-mixed model). Confusion 

matrices were used to examine percent agreement between DO visit-to-visit change and 

device visit-to-visit change.  Key findings were focused on the widely used FBO and 

FBF and research-grade devices.  We showed that, there was similar agreement between 

the hip-worn FBO and FBF with AGhip and AGwrist in estimates of change in steps 

(89.1% FBO, 88.8% FBF and 88.3% AGwrist, 91.4% AGhip correct classification), EE 

(73.4% FBO, 70.6% FBF and 77.0% AGhip correct classification) and MVPA minutes 

(accept FBF) (79.7% FBO, 65.2% FBF and 71.2% AGwrist, 77.0% AGhip correct 

classification) with criterion measured change.  However, change in ST was more 

difficult to detect for the FB and AGhip (46.8% FBO, 42.3% FBF, 53.1% AGhip and 

72.7% AGwrist correct classification).  This novel study provides evidence that as an 

alternative to research-grade accelerometers, researchers may employ FB to measure step 

accumulation pre- and post-intervention and have a satisfactory level of confidence in FB 

change detection.   
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This work significantly advances the field of activity monitor validation research 

and informs intervention practices that should set the standard for future work.  This body 

of work provides the first comprehensive validation of ATs from highly controlled orbital 

shaker testing to directly-observed free-living settings. This translational research which 

has broad applications for using ATs for surveillance and intervention research and by 

the consumer. 
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CHAPTER 1 

INTRODUCTION 

Statement of the Problem 

 
Lack of physical activity (PA) is strongly implicated in virtually all leading causes 

of chronic disease morbidity and mortality. To attenuate the prevalence of these 

preventable chronic diseases and promote health benefits, the U.S. Government 

recommends that Americans engage in at least 150 minutes of moderate PA per week, 1 

increase daily expenditure approximately 150 kilocalories (kcals) per day (equivalent to 

about 1,000 kilocalories/week) 2 and/or accumulate at least 10,000 steps/day. 3  

Additionally, sedentary behavior (SB) recommendations from Australia state that adults 

should minimize the amount of time spent in prolonged sitting and break up long periods 

of sitting. 4  Dissemination of these recommendations has led to a heightened awareness 

of the importance of PA monitoring as a strategy for chronic disease management. Tools 

such as wearable devices to track personal PA provide a mechanism to be more informed 

about activity behavior. As a result, consumer devices that track PA behavior are 

increasingly popular for researchers, the general public, and developers and 

manufacturers of activity trackers (ATs). 

According to a recent report, the global wearable technology market will grow 

from over $30 billion in 2016 and should reach over $150 billion in 2026. 5  Activity 

trackers such as, the Fitbit (Fitbit Inc., San Francisco, CA) provide estimates of activity 

minutes, sedentary time (sitting), energy expenditure (EE) and steps.  According to a 

recent report, Fitbit remained the leading brand in ATs in 2015, accounting for 79 percent 

of sales. 6  This expanding market for ATs is driven in part by lower cost, longer battery 
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life, more memory (e.g. to store data for days or weeks. However, growth of the market 

and advances in consumer device technology far outpace our knowledge about the 

validity of such devices. This gap is of major concern since it is not clear if these devices 

provide accurate information. Therefore, to address this problem, it is essential to 

improve our understanding of the accuracy and precision of the activity output measures 

of consumer devices.   

Our group 7-9 and several other research teams 10-14 have conducted research to 

improve our understanding of the accuracy and precision of research-grade activity 

monitors to estimate PA intensity (e.g. minutes of moderate-to-vigorous physical activity 

[MVPA]) and activity EE. The vast majority of this validation work has been performed 

in laboratory settings where specific activities are performed over pre-determined and 

fixed time intervals where EE is measured with portable metabolic measurement 

equipment. 7,9,15  This calibration work on research-quality activity monitors uses signals 

from the monitors to generate simple (e.g. linear regression) to complex (e.g. machine 

learning) algorithms to estimate activity intensity, activity type, and EE that are freely 

available to apply to data collected with these research-quality devices.  In contrast, the 

consumer monitors use proprietary algorithms that provide users with estimates of steps, 

EE, activity minutes, sedentary time, and other related measures.  The accuracy and 

precision of the AT output (e.g. steps, PA EE, minutes of activity) in free-living settings, 

is not well understood.  

To date, most AT validation studies have been performed under controlled 

laboratory conditions. This is a reasonable first step, but to truly understand the accuracy 

and precision of consumer ATs, validation studies must be performed in free-living 
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settings while people are engaged in natural behaviors.  In addition, ATs are often 

implemented to monitor improvements in PA behaviors, thus, exploring and 

understanding the accuracy of ATs in detecting change in PA and ST 16 is needed. 

Four output variables have been studied in the investigations that have tested the 

accuracy of ATs: number of steps, EE, activity minutes (moderate-to-vigorous activity), 

achievement of PA recommendations and sedentary time. The results of these studies are 

equivocal.  Activity trackers under- or overestimate these measures with substantial 

between-subject variability.    For step counts, seven studies showed, ATs overestimated 

steps in laboratory settings 17-23 and thirteen studies showed ATs underestimated steps. 17-

20,23-31  In free-living settings, four studies showed that ATs overestimated steps and lack 

precision, 21,32-34 and two studies showed that ATs underestimated steps. 31,32 For EE, six 

studies showed ATs overestimated kcals, 18,25,30,35-37  and 12 studies showed that ATs 

underestimated kcals 18,24-27,30,35-40 with variable precision and are most accurate for 

during locomotion and in lab-setting testing conditions 18,25-27,30,36,38,39 compared with 

non-locomotive activities 18,26,35,36,38,40 and free-living settings. 31,32,37 For activity 

minutes, one study reported, ATs overestimated MVPA in free-living settings, 32 and two 

studies reported, ATs underestimated MVPA in free-living settings. 31,33 For sedentary 

time, only one study has shown, ATs overestimated sedentary time and lack precision in 

free-living settings. 41 

Based on this evidence, we sought to expand our understanding of the accuracy 

and precision of ATs in estimating steps, EE, activity minutes and sedentary time in free-

living settings using a validated direct observation (DO) system as the criterion 

measure.42  Previous free-living studies employed accelerometers as a surrogate for gold-
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standard criterion measures (e.g. DO, doubly labeled water) to assess PA. 32-34,43-46 

Limitations in using accelerometers as criterion measure to assess PA in free-living 

settings include 1) the inability to validate compliance (e.g. wear-time, wear-location) 

and 2) substantial variability in prediction equations used to convert accelerometer data 

into meaningful PA outcomes (e.g. moderate intensity activity, metabolic equivalents 

[METs]). 47-49  The use of DO as a criterion measure in free-living settings address these 

limitations and will attenuate the sources of error inherent in previous free-living studies. 

The evidence from this novel study will inform consumers, researchers, clinicians and 

interventionists about the utility of ATs as intervention tools and potentially, assessment 

tools for research.  This dissertation addressed three knowledge gaps in assessing activity 

tracker performance.  The first study addressed differences in ATs outputs compared to 

research-grade accelerometers in a tightly controlled environment.  The second study 

validated consumer and research-grade activity monitors in estimating PA and ST 

compared to criterion measured PA and ST in free-living settings.  The third study 

examined the ability of ATs to detect change in PA and ST in free-living settings.  We 

also examined this question for commonly used research-grade devices. 
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Aims of Dissertation Studies 

Study One: A Comparison of Consumer Activity Tracker Accelerometer Output 

and a Research-Grade Accelerometer Output During Orbital Shaking 

 
The ActiGraph (AG)(ActiGraph, LLC, Pensacola, FL) accelerometer provides an 

objective estimate of human PA and is used in many research and clinical applications. 50-

52  Standardized electronic validation and reliability testing of the AG have been 

performed on the GT3X+, GT3X, GT1M, 7164 and 71256 models.  In these studies, 

electronic devices such as wheels, 53,54 a table, 55 and orbital shaking 56-58 were employed 

in controlled laboratory settings. In general, ActiGraph accelerometers are valid and 

reliable during electronic oscillation testing.  Validity and reliability are improved with 

the low frequency extension filter at lower frequency oscillations (e.g. ≤ 0.6 Hz) and 

plateau beyond its bandpass filter limit of 2.5 Hz. 54,56,59-61 

The benefits of electronic orbital shaker testing are that it allows us to: (1) expose 

activity trackers (ATs) to different oscillation frequencies to simulate different movement 

intensities and (2) vary oscillation frequencies to simulate variation in free-living whole 

body acceleration.  Orbital shaker testing removes human variation.  As a result, observed 

differences would be due to technological features of the devices – not impacted by 

human variation.  The electronic orbital shaker informed us of how ATs perform under 

highly controlled conditions.  

Recently, our lab employed an electronic orbital shaker to assess the validity of 

several consumer ATs compared to the AG GT3X+ accelerometer (unpublished 

observations). 62  We found that AT output was highly correlated with oscillation 
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frequency (r range: 0.92 to 0.99).  Activity trackers output variables increased as 

oscillation frequency increased (p range: < 0.001 to 0.04).   

The objective of this study was to examine estimates of EE and steps from 

commercially available consumer ATs, compared to the research-grade GT3X-BT 

accelerometer using an electronic orbital shaker as the standardized motion detector.   

Therefore, the first dissertation study addressed the limitations in the current 

literature by exposing ATs to known frequencies and durations and comparing their 

output to research-grade accelerometer output. 

1. Specific Aim: To compare consumer ATs with the research-grade ActiGraph™ 

GT3X-BT (GT3X-BT) accelerometer in estimating energy expenditure (EE) and 

steps during orbital shaking at different frequencies. 

a. Hypothesis: Energy expenditure and step estimates from consumer ATs 

will be similar to the EE and step estimates of the research grade GT3X-

BT accelerometer during standardized testing using an electronic orbital 

shaker. 
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Study Two: Validation of Consumer and Research-Grade Monitors in Free-Living 

Settings 

We evaluated the performance of consumer ATs in free-living settings using DO 

as the criterion measure for steps, EE, MET-minutes and time spent in different 

intensities of activity. 63-65  Our lab has validated DO in estimating PA and ST 42,65 using 

indirect calorimetry as the criterion measure.  

Several studies have validated ATs in free-living settings, however, none have 

employed DO as the criterion measure for steps, EE, activity minutes or sedentary time.  

Therefore, the aim of this study was to validate AT estimates of steps, PA and ST in free-

living settings compared to criterion measures. 

 

2. Specific Aim: to determine the accuracy and precision of ATs in estimating steps, 

EE, activity minutes and sedentary time compared to direct observation-derived 

measures (criterion measures) in free-living settings.  We also validated 

commonly used research-grade devices. 
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Study Three: Activity Trackers Sensitive to Change in Physical Activity and 

Sedentary Behaviors in Free-Living Settings 

 
Tools such as wearable devices to track personal physical activity (PA) provide a 

mechanism to be more informed about activity behavior. Consumer devices that track PA 

behavior are increasingly popular for consumers and for researchers, clinicians and of 

interest to National Institutes of Health66 who recognize the value of using sensor-based 

wearable monitors to assess PA behaviors. Currently, there are at least 149 active or 

recruiting clinical trials funded by NIH that are employing consumer ATs to measure 

(estimate) change in PA behaviors such as energy expenditure (EE) and/or steps. 67  

The research and clinical communities have rapidly adapted ATs, however, their 

utility within these communities has yet to be realized.  Moreover, unlike research-grade 

devices that have been utilized by the research and clinical communities in the past, ATs 

have yet to undergo rigorous testing in both laboratory and free-living settings.  In 

particular, there is no evidence examining the effectiveness of ATs for detecting change 

in PA behaviors in free-living settings.  This knowledge gap is of major concern since 

ATs are widely used to monitor change in PA behaviors.  Therefore, the aim of this study 

was to examine the ability of ATs to detect change in PA and ST in free-living settings.  

We also examined this question with research-grade accelerometers. 

From study 2, we calculated criterion measured and AT estimated visit-to-visit 

change in steps, EE, activity minutes and sedentary time.  The objective of this 

exploratory study was to examine AT estimates of change in comparison to the criterion 

measure estimates of change. 
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3. Specific Aim one: To examine the ability of ATs to detect change in PA and ST 

in free-living settings. 

4. Specific Aim two: To examine the ability of research-grade accelerometers to 

detect change in PA and ST in free-living settings. 
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Significance of Dissertation Studies 

Americans suffer from preventable chronic diseases such as heart disease, stroke, 

obesity and type 2 diabetes mellitus. 68 Current recommendations for PA and ST seek to 

use positive changes in these behaviors to improve chronic disease morbidity and 

mortality.  These recommendations have led to increased public awareness of the 

importance of engaging in daily PA and the negative consequences of not engaging in 

daily PA.  Tools such as, ATs to monitor PA behaviors are emerging as a valuable 

mechanism to be more informed about PA and ST. 

  Technological advancements such as, improved battery life, affordability and 

personalized feedback capabilities have helped lead the general public and researchers to 

use ATs as a PA behavior measurement instrument.  However, unlike previous 

measurement instruments used by researchers, ATs have not been scrupulously tested for 

the validity of the estimates they provide in the natural environment where they are used.  

Several lab-based validation studies have been performed comparing activity tracker PA 

estimates (e.g. EE) to criterion measured PA (e.g. indirect calorimetry).  To our 

knowledge, no studies validating activity tracker PA estimates compared to DO-criterion 

measured PA in free-living settings have been performed. 

In two recent projects, our lab successfully employed lab-based protocols to 1) 

validate an AT in estimating EE compared to indirect calorimetry and 2) a DO system in 

estimating PA and ST.  We expanded and integrated these two protocols to include ten of 

the most popular ATs currently on the market and compare their estimates of PA and ST 

to DO measured PA and ST in free-living settings.  This study setting and criterion 

measure are superior to lab-based and comparison measures (e.g. accelerometer-based).  
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We directly observed participants while wearing ATs in their natural environment, which 

allowed us to capture and quantify PA, and ST where activity type and duration were not 

regulated. We chose an ecologically valid study setting and criterion measures, which 

advanced our understanding of AT performance under conditions in which they are used. 

This information is beneficial to both the general public and research community.  

Providing the evidence of the accuracy and precision of ATs in estimating PA and ST 

improves the general public and researchers ability to make evidence-based decisions 

regarding selection of devices for their specific needs.  Activity tracker estimates of PA 

and ST have been validated in free-living settings using research-grade accelerometers. 

However, validating ATs employing DO as a criterion measure for PA and ST in free-

living settings is unexplored.  A comprehensive understanding of activity tracker PA and 

ST estimates and associated errors are important for the general public and researchers 

seeking to understand the dose-response relationships between activity, ST and health. 
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CHAPTER 2 

REVIEW OF THE LITERATURE 

 

Accurate measurement of physical activity (PA) and sedentary time (ST) is 

important to improve our understanding of the dose-response relationship between these 

lifestyle behaviors and risk of numerous chronic diseases.  The U.S. relies on large-scale 

surveillance studies (e.g. National Health and Nutrition Examination Survey [NHANES], 

Women’ Health Study [WHS]) to quantify, analyze and interpret PA and ST.  In part 

these data are used to 1) inform the public, 2) update existing and/or design new public 

health policies, 3) publish PA and ST statistics and recommendations, and 4) evaluate 

trends in PA over time.  

The NHANES and WHS began using accelerometers in 2003 69 and 2011, 70 

respectively.  For several decades accelerometers have been employed to objectively 

measure PA and are currently the device of choice for researchers. Accelerometers have 

been well received by the research community, as they are relatively low burden on 

participants and researchers.  Advancements in technology have led to increased memory 

capacity, reduction in size of the devices, and improved filtering capabilities. 

Advancements in software and firmware provide greater user autonomy (e.g. 

initialization/download options) so that accelerometer sensors are easy to use in lab and 

field-based settings.  

 

Advancements in accelerometer sensor technology coupled with the lower costs 

of accelerometer sensors led to the development and marketing of consumer-grade 
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activity trackers (ATs).  However, unlike research-grade accelerometers, ATs have yet to 

undergo rigorous and comprehensive testing to understand the benefits and limitations of 

the PA and ST estimates they produce.  The evidence of ATs’ accuracy and precision in 

estimating PA and ST is limited and there is no evidence about how well these consumer 

devices detect activity changes in these behaviors.  This knowledge gap is of major 

concern since these devices are often used to monitor PA and ST improvements (i.e. 

detect change).  This review of the literature will describe the main areas of research that 

were addressed in this dissertation. First, describing what is known about the accuracy 

and precision in estimating ST and PA from research-grade accelerometers. Second, 

describing and analyzing what is known about consumer ATs regarding accuracy and 

precision.  Lastly, presenting current knowledge of ATs and detection of change in PA 

behaviors. 

 

Study One: A Comparison of Consumer Activity Tracker Accelerometer Output 

and a Research-Grade Accelerometer Output During Orbital Shaking 

 
Calibration of Research-Grade Monitors 

Since the early 1930s, accelerometers have been employed to assess PA 

parameters such as gait 71 and whole body movement. 72-74 Originally, accelerometers 

were used to estimate steps, 75 energy expenditure (EE) 76 and determining external 

mechanical work during locomotion. 73 These and other initial studies demonstrated the 

capacity of accelerometers to objectively estimate PA, giving rise to the first generation 

(in the1980’s) of accelerometers, which were developed to estimate PA and EE. 
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Laboratory Studies  

Calibration and validation.  Accelerometer calibration and validation studies have 

been performed in laboratory and free-living settings. A strength of a laboratory setting is 

that it allows easy replication of experimental protocols.   

There are limitations to this method for testing accelerometers. Evaluating 

accelerometers in estimating PA EE in a laboratory is scripted and structured in 

comparison to PA behavior in free-living settings where behaviors are random, sporadic, 

and variable.  As a result, laboratory-based study results do not directly translate to study 

results obtained from free-living settings.  Unlike laboratory settings, free-living settings 

allow researchers to capture and measure “real-world” PA behavior.  Another strength is 

enhanced generalizability over laboratory-based studies.   

 

Unit Calibration of Wearable Accelerometers: Machine Testing. 

Unit calibration of accelerometers is performed by comparing the direct 

acceleration signals to a “gold standard.” Typically, this is accomplished by spinning the 

accelerometer in an electronic oscillator with a known radius and frequency (RPM), 

intra- and inter-unit variability and can be determined and also one can verify that values 

are within the manufacturer's stated tolerance limits. 63 

Several groups have calibrated accelerometers using electronic methods.  In 1987, 

Bassey et al.75 employed an electronic turntable to test the stability, range (e.g. threshold 

accelerations) and reproducibility of the Yamasa Digiwalker when exposed to different 

acceleration frequencies. They reported an acceleration threshold below which the 

Digiwalker does not respond. Sensitivity increases linearly and rapidly (1-4 m/s) until 
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reaching a plateau response.  Next, Brage et al. (2003) 54 employed an electronic wheel to 

examine the intra- and inter-instrument reliability; influence of movement frequency and 

filtering on validity of the ActiGraph (AG) 7164 accelerometer when exposed to varying 

radii (22.0, 35.5, 49.0 mm), oscillation frequencies (Range 0.5-4.0 Hz ) and oscillation 

frequency increments (0.25 Hz and 0.125 Hz). They reported large relative variability at 

very low and very high oscillation frequencies. Mean intra-instrument coefficient of 

variation, which is a measure of variability, was 4.4% for all units in all trials.  Excluding 

two lowest frequencies, max intra-instrument coefficient of variation was 18%. Detection 

of changes in oscillation frequencies varied between units, with larger errors at the lowest 

oscillation frequencies, and for each frequency and across radius settings between unit 

correlation coefficients ranged from 0.92-1.00.  Lastly, in 2008, Rothney, M.P. et al. 56 

employed an electronic oscillator to characterize dynamic responses and inter-monitor 

and inter-generational variability of several AG accelerometer models (7164, 71256, and 

GT1M) when exposed to varying radii at a constant frequency (150 rpm) and varying 

frequencies with a fixed radius (46.6 mm).  A linear relationship between counts and 

radius for all measured values, all generations were significantly different from each 

other at frequencies >160 rpm.  For example, at the lowest frequencies the 7164 and 

71256 responded similarly but GT1M required greater accelerations to detect changes, 

suggesting differences in sensitivity or filtering approach used in different models. 

From these studies, and others, 54,56,59-61 it can be concluded that these 

accelerometers are valid and reliable based on electronic oscillation testing.  Validity and 

reliability are higher if a low frequency extension filter is used at lower frequency 
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oscillations (e.g. ≤ 0.6 Hz) and does not continue to increase beyond its bandpass filter 

limit of 2.5 Hz.   

 

Value Calibration of Wearable Accelerometers: Human Studies 

Value calibration of wearable accelerometers is described as converting 

accelerometer signals into estimates of EE, time spent in various intensity categories, 

and/or activity type while simultaneously collecting criterion data (e.g. indirect 

calorimetry). 63 Several accelerometers have been developed and calibrated for research 

on quantifying PA and EE.  Examples include, the AG,77-81 Tritrac,82 Actical,78,83 and the 

GENEA 55 accelerometers.  Two laboratory based and two free-living setting calibration 

studies laid the groundwork for subsequent accelerometer research, discovery and 

development. 

First, in 1983, Montoye et al. 76 examined if the waist-worn Caltrac accelerometer 

and the Large-Scale Integrated Motor Activity Monitors, ‘LSI’ mounted at the waist and 

wrist could estimate oxygen consumption during various activities, including locomotion.  

It was reported that the standard error of estimate for the EE algorithm used in the Caltrac 

was ± 6.6 ml/kg/min. Further, the reproducibility of the waist-worn Caltrac output during 

locomotion and various activities was high (r=0.94). 76 These findings demonstrated the 

ability of a waist-worn device to estimate EE during specific activities in a lab setting. 

In a study of another accelerometer sensor, Freedson et al. 77 estimated PA 

intensity categories and EE from treadmill walking and running. The criterion measure 

was indirect calorimetry and the data revealed a linear relationship (r=0.88) between 

counts per minute from the accelerometer and EE (METs).  A linear regression model 
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was developed to predict point estimates of EE.  Accelerometer count cut-points were 

also created to classify PA as light (< 3 METs), moderate (3-5.99 METs), vigorous (6-

8.99 METs) and very vigorous ≤ 9 METs).  Though this linear regression model was 

built from only controlled treadmill walking and running, the simple regression remains a 

primary tool to translate activity counts from an AG accelerometer into minutes of 

activity in different absolute intensity levels and EE. 

Laboratory based calibration studies were a good first step, but to advance this 

knowledge base, accelerometers were also tested in free-living settings.  Several free-

living accelerometer studies have been conducted and this review will highlight two 

studies executed by Pfeiffer et al. 83 and Pate et al. 84  Both investigators sought to 

calibrate and cross-validate accelerometers in estimating PA for use with 3-5 year old 

children compared to indirect calorimetry (criterion).  Both studies employed structured 

and unstructured sedentary (e.g. sitting), locomotive (e.g. overgound brisk walk) and non-

locomotive (e.g. sports/play) activities while simultaneously collecting metabolic data.  

Pfeiffer et al. employed a right hip-worn Actical accelerometer and Pate et al. employed a 

right hip-worn AG 7164 accelerometer.  It was reported that the Actical and AG counts 

strongly correlated with the criterion EE (r=0.89 and r=0.82, respectively).  Cut-points 

for the Actical and AG were established for moderate intensity activity (20 mL/kg/min), 

715 counts/15 seconds and 420 counts/15 seconds, respectively.  Cut-points for vigorous 

intensity activity (30 mL/kg/min), were 1411 counts/15 seconds and 842 counts/15 

seconds for the Actical and AG, respectively. Cross-validation of structured to 

unstructured activities revealed that both the Actical and AG 7164 accelerometers are 

valid and appropriate tools for measuring PA in young children.  These data demonstrate 
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the ability of accelerometers to estimate PA energy expenditure over a broad range of 

activities (e.g. sedentary to vigorous) in children, and underscores device-specific 

differences in absolute count values even though the EE is the same.  

Many other accelerometer calibration studies that included a variety of 

sedentary/lifestyle activities, 8,78-80 locomotion 8,78,81,82,85 and/or sports, 8,78,85 have been 

published.  The evidence indicates that an accelerometer worn on the hip or wrist is a 

good tool to estimate features about PA and EE in children and adults. 

 

Algorithms to Quantify Physical Activity Behaviors 

Originally, simple regression models to quantify PA intensity were constructed 

using accelerometer counts to generate cut-points, such as, sedentary, moderate and 

vigorous intensity using indirect calorimetry as the criterion measure of intensity. 

77,52,78,84,86-91  This was an important first step, however, a single regression cannot 

accurately estimate EE across a wide range of activities and intensities. 92  For example, 

the Freedson model was derived from the count-EE relationship during treadmill walking 

and running.  Thus, this model may under- or over-estimate EE for non-locomotive 

activities and/or free-living PA.  In 2000, Hendelman et al.79 applied a linear regression 

model developed from locomotion activities to a data set of locomotive and non-

locomotive activities yielded a modest relationship between hip monitor counts and EE of 

r = 0.59. These results led researchers to include non-locomotion activities in model 

development 49,80,93,94 and use of additional accelerometers positioned at various wear-

locations. 80,95-97  In general, the addition of output from several wear locations (e.g. hip- 

and wrist worn accelerometer) into models improved EE estimations.  A two-regression 
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model using the standard deviation of counts/min to identify the appropriate regression 

model to predict EE from accelerometers have also been developed. 98-101    These 

methods improved EE estimates across a wider range of activity types and intensities and 

led to advanced techniques (e.g. pattern recognition) for conducting accelerometer value 

calibration.  Employing machine-learning pattern recognition techniques uses the activity 

counts 94,102-104 or raw acceleration patterns 13,105 within the accelerometer signal to 

estimate activity type and intensity. Signal features (e.g. time- and frequency-domain) are 

used to predict PA measures.  For example, Staudenmayer et al. 9 developed pattern 

recognition methods to estimate PA energy expenditure and activity type during a wide 

range of activity intensities and activity types in a lab-based setting using the AG 7164.  

They reported that a neural network pattern recognition prediction of METs root mean 

squared error was 1.22 METs and correctly classified activity type 88.8% of the time.  

This method was an improvement over previous methods for estimating EE and activity 

type.  Recently, Lyden et al. 102 broadened the scope of machine-learning by applying it 

to a free-living setting.  The Sojourn-1 Axis (soj-1x) and Sojourn-3 Axis (soj-3x) were 

shown to be more accurate at estimates of MET-hours (soj-1x: % bias = 1.9 [-2.0 to 5.9], 

root-mean-squared error (RMSE) = 1.0 [0.6 to 1.3]; soj-3x: % bias = 3.4 [0.0 to 6.7], 

RMSE = 1.0 [0.6 to 1.5]) and activity minutes (soj-1x: % bias = 8.8 (sedentary), -18.5 

(light), and -1.0 (MVPA); soj-3x: % bias = 0.5 (sedentary), -0.8 (light), and -1.0 (MVPA) 

compared to previous methods.  These and other studies employing pattern recognition/ 

machine-leaning techniques such as, Hidden Markov Methods, 106 artificial neural 

networks (ANNs), 11-13,103,104,107 and support vector machines 108,109 are superior 
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compared to simple linear regression modeling and offer the advantage of identifying 

activity type in addition to activity intensity.  

 
Study Two: Validation of Consumer and Research-Grade Activity Monitors in 

Free-Living Settings 

 
Validation of Research-Grade Monitors 

 
The purpose of validating accelerometers against gold standard methods is to 

evaluate the accuracy and precision in estimating the specific outcome(s) such as steps, 

EE, activity intensity and activity type.  Gold standard methods for EE include direct and 

indirect calorimetry, doubly labeled water (DLW) and DO.  Direct observation is also the 

gold standard method for measuring steps.  Validation studies of accelerometers are 

device, population, protocol and outcome specific.  For example, the AG GT3X+ 

accelerometer has been shown to be valid in estimating minutes spent in MVPA during 

treadmill walking/running in a group of men and women ages 21 to 39 years may not be 

valid for minutes of MVPA in free-living older adults. 

 

Laboratory Studies  

Validation studies date back to the early 1980s when Montoye et al.76 tested the 

Caltrac accelerometer for estimating EE compared to indirect calorimetry in a laboratory 

setting.  In 1995, Melanson et al.97 conducted a validation study of the Computer Science 

and Applications, Inc. (CSA) accelerometer in assessing PA during treadmill walking and 

running at varying grades compared to indirect calorimetry.  The CSAs were worn on the 

hip, wrist and ankle.  The most accurate prediction of EE was obtained when body mass 
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and CSA ankle, hip, and wrist activity counts were used as predictors.  This model 

predicted mean EE within 1%, but had a relatively large SEE of 0.85 kcals per min 

(11.4%).  The CSA counts from any location were significantly correlated with EE 

(r=0.77-0.89).  The main findings of Montoye et al. and Melanson et al., were that on 

average accelerometer(s), 1) estimated EE was highly correlated with speed and 2) 

underestimated EE during graded treadmill exercise.  These results were confirmed by 

Nichols et al. 82 who validated the Tritrac accelerometer in estimating EE compared to 

indirect calorimetery during treadmill walking and running.  The Tritrac was found to be 

highly correlated with speed (r=0.97, p<0.0001), the relationship between vector 

magnitude and EE across all speeds (1.9, 3.9, and 6.0 mph) was highly linear (R2 = 0.90, 

SEE = 0.014 kcal/kg/min), and underestimated EE at 5% grade (Mean difference at 

6.4km/h=-0.0107 kcal/kg/min).  These studies and others 52,110,111 supported that 

generally, accelerometers correlated with criterion EE and activity type during 

locomotion.   

The relationship between EE and counts during non-locomotive activities such as 

activities of daily living (ADLs) and cycling is less linear and more variable.  For 

example, during non-weight bearing exercise a waist-worn accelerometer underestimates 

EE.  Puyau et al. 86 employed a room calorimeter to validate accelerometers during 

locomotion, sedentary behaviors, ADLs and sport.  Dissociation between EE and 

accelerometer counts was observed during weight lifting and stair climbing as well.  

Hickey at al.112 compared step output from several different research-grade 

accelerometers during ST, locomotion and ADLs compared to manually counted steps 

(DO).  The largest errors reported were during ADLs (mean difference range: -178 to 78 
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steps/5-minutes) and the highest accuracy was during rhythmic/ anterior-posterior 

movements (percent error range: 0.2 to 15.0%) compared to non-rhythmic movements 

(percent error range: 6.5 to 78.0%).  These and other lab-based studies, 113-116 showed that 

in general during rhythmic locomotion accelerometers were valid in estimating EE and 

activity type, and that the relationship between EE and accelerometer counts is influenced 

by factors such as intensity and activity type.   

Device Location 

Device location influences estimates of PA and ST. There are differences in 

output from hip and wrist locations depending on activity type and intensity and 

environment (i.e. lab-based or free-living).  Generally, hip-worn accelerometers 

underestimate EE during non-weight bearing activities (e.g. cycling) and graded 

locomotion (e.g. ascending stairs).  The wrist-worn accelerometers tend to overestimate 

EE during overground walking, some ADLs (e.g. vacuuming) and SB (e.g. computer 

work).  Trost el al.105 employed the AG GT3X+ to develop an activity recognition 

algorithm and compared rates of activity classifiers trained on the raw triaxial 

acceleration signal collected from accelerometers worn on the wrist and hip.  They 

reported that wrist-worn accelerometers misclassify upright, non-ambulatory activities 

with significant arm movement (e.g. sweeping the floor) compared to hip-worn 

accelerometers.  Several other investigators also reported differences in hip and wrist 

output.  For example, McMinn et al.114 reported that both EE and steps were different 

between the hip and wrist worn AG (GT3X+) accelerometer during self-selected 

treadmill walking and running compared to indirect calorimetry and manually counted 

steps.  For example, the mean difference between GT3X+ steps for hip and wrist 
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locations for the medium and fast walk were 2 and 7, and 1 and 14 steps, respectively.  

The authors concluded that wrist-mounted device outputs were not comparable to waist-

mounted outputs.  Mahar et al. 117 examined output from hip and wrist worn GT3X+ from 

treadmill walking and running and 2-days of free-living time.  They reported minutes of 

moderate (hip: 46 ± 21 min; wrist 143 ± 51 min; r = .52) and vigorous (hip: 4 ± 6; wrist 

16 ± 14 min; r = .83) PA were higher (p < .05) for the wrist worn than for the hip worn 

monitors.  Later, Hildebrand et al.118 found significantly higher output from wrist 

monitors than hip observed for children and adults during treadmill and simulated free-

living activities.  

 

Free-Living Studies 

 
Validation studies of accelerometers in estimating EE and activity type in free-

living settings are integral to building a comprehensive knowledge base of accelerometer 

accuracy and precision.  Free-living accelerometer validation studies have relied upon 

indirect calorimetry, DLW or DO as criterion measures for EE and each of these criterion 

measures have its limitations.  Limitations include 1) indirect calorimetry is expensive 

and impedes numerous free-living activities, 2) DLW is expensive and only provides a 

measure of total EE and 3) DO is highly dependent on observer training and requires 

observer judgment of intensity.  Because of these limitations, it is imperative that 

researchers choose the appropriate criterion measure for validating wearable 

accelerometers in free-living settings.  For example, if quantification of MET-minutes of 

activity is required, DLW is not the appropriate criterion measure.  However, DLW has 

been used extensively as a criterion measure of EE for validating wearable accelerometer 
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estimates of EE in free-living settings.  The DLW technique is an isotope-based method 

that measures the EE of subjects based on the difference in enrichments of 2 isotopes: 

hydrogen and oxygen. 119  In 1991, Heyman et al.120 validated the Caltrac activity 

monitor compared to DLW in estimating EE in free-living young adult men over 10-days.  

They found that though the total EE estimates from the Caltrac were strongly correlated 

with DLW (r=0.87, p<0.05), it underestimated total EE by %22 (r=0.87, p<0.001).  

These results were not surprising as all of the participants had full time sedentary jobs 

and the Caltrac was worn on the waist.  Thus, most upper body movements and 

associated energy costs performed while seated could not be detected.  In an effort to 

capture upper body movement and more accurately estimate EE, devices such as the 

Sensewear Armband (BodyMedia L.L.C., Pittsburgh, PA) have been designed to be worn 

on the upper arm. 

The Sensewear Armband is worn over the left tricep, and integrates motion data 

from a triaxial accelerometer along with several other physiological sensors (heat flux, 

skin temperature, and galvanic skin response).  These data are applied to proprietary 

algorithms to estimate EE.  Free-living validation studies of the Sensewear Armband 

compared to DLW have shown that in youth a total error 44 kcals/day and mean absolute 

percent error (MAPE)=11.7%, 121 in adults a total error 22 kcals/day and MAPE=8.3%,122 

and in older adults a total error -21.5 kcals/day and MAPE=8.0%.123  The MAPE is a 

common metric used by researchers to allow for comparisons of error between monitors 

and should be approached with caution, as the MAPE provides no information pertaining 

to device bias or individual errors. Instead, the MAPE indicates the absolute, average 

group error.  These are only a few examples to illustrate the use of DLW as a criterion 
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measure for EE in free-living settings, and though considered a “gold standard” many 

limitations are noted.  For example, the high cost of isotopes (e.g.18O) sum to about 

$1,000 to 1,500 per subject and sophisticated equipment is required for analysis.  More 

importantly, the DLW method does not allow for quantification of minutes of MVPA, PA 

bouts (i.e. ≥ 10 min) and steps.  Of course, in science, the methods are driven by the 

question(s) being asked.  Thus, in some cases DLW should be the criterion measure of 

choice, in other cases, alternative criterion measures such as DO should be the method of 

choice.  

Direct Observation 

 Direct observation as the criterion in free-living validation studies of 

accelerometers in estimating PA energy expenditure date back to the mid 1980s.  Klesges 

et al.124 were the first to employ DO as a criterion measure to validate the Caltrac 

accelerometer in free-living adults (N=50) and preschoolers (N=30).  Another aim was to 

compare the Caltrac to the then widely used, Large Scale Integrated Moving Activity 

Counter (LSI).  The LSI houses a ball of mercury with a mercury switch that registers an 

internal counter when exposed to a 3% incline or decline. The Caltrac, uses a 

piezoelectric accelerometer that measures vertical dynamic changes in accelerations and 

converts them to voltages.  Briefly, participants were observed for 1-hour using focal 

sampling (10-seconds observed, 10-seconds record) and activity type (e.g. sitting, 

walking, running) and intensity (e.g. minimal, moderate, extreme) were recorded.  The 

DO training included rigorous quality control and reliability assessments to insure that 

the observational data were collected accurately.  For example, a trained observer 

designation required inter-rater correlations of at least r = 0.90.  By the end of observer 
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training period inter-rater reliability was 97%.  For adults, it was reported that, on 

average, the accelerometer was strongly correlated with DO for activity type (r=0.70, 

p<0.001) and intensity (r=0.76, p<0.001) and with the LSI (r=0.83, p<0.001).  For 

preschoolers on average, the accelerometer was moderately correlated with DO for 

activity type (r=0.39, p<0.05) and the LSI (r=0.42, p<0.001) but weakly correlated with 

intensity (r=0.25).  The inability of either device to estimate PA levels of preschoolers 

was attributed in part to not adequately detecting and quantifying “short burst” activities.  

These data provided the first evidence that the Caltrac accelerometer is a valid tool for 

estimating activity levels in adults but not preschoolers in free-living settings. 

Recently, Lyden et al. 42 were the first to validate DO as a criterion in estimating 

PA and ST compared to indirect calorimetry.  Briefly, participants were observed for 

three, 2-hour sessions in the laboratory while engaging in sedentary (reading, writing, 

computer use) and PA behaviors (walking, treadmill use, cycling) while simultaneously 

collecting metabolic data.  Though this was a laboratory setting, participants’ behaviors 

were designed to resemble the free-living nature of behaviors.  Behaviors (activities) 

were observed and recorded by a trained researcher.  A hand-held personal digital 

assistant (PDA) with custom software (The Observer, Noldus Inc., Wageningen, 

Netherlands) was used to record participant behavior (e.g. activity type and associated 

MET value).  They reported that DO accurately and precisely estimated MET-hours [% 

bias (95% Cl) =-12.7% (-16.4, -7.3), ICC = 0.98], time in low intensity activity [% bias 

(95% Cl) = 2.1% (1.1, 3.2), ICC = 1.00] and time in moderate to vigorous intensity 

activity [% bias (95% Cl) -4.9% (-7.4, -2.5), ICC = 1.00].  This study provided the first 

evidence to support the use of DO as a criterion for PA and ST in free-living settings.  
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The same DO system validated by Lyden et al.42 was employed as the criterion in 

several validation studies of accelerometers in free-living settings.  First, Kozey et al.65 

employed DO to validate the activPAL (AP; Physical Activity Technologies, Glasgow, 

Scotland) and the AG (GT3X) in estimating ST in free-living settings.  Participants were 

observed for two (1, normal behavior; 1, less sitting) 6-hour sessions while wearing the 

AP on mid-thigh of the right leg and the GT3X on the right hip.  They noted that the 

correlation between the AP and DO was R2 = 0.94, and the AG 100 counts per minute 

threshold for sedentary and DO sedentary minutes was R2 = 0.39. Only the AP was able 

to detect reductions in sitting time. The ActiGraph 150-counts-per-minute threshold 

demonstrated the lowest bias (1.8%) of the ActiGraph cut-points.  These data provided 

the evidence that the activPAL is a valid tool for quantifying ST and detecting change in 

ST in free-living settings.  Next, Lyden et al.125 extended this work by using DO to 

validate the AP and AG (GT3X) in estimating breaks from sedentary behaviors, absolute 

number of breaks and break-rate in free-living settings.  Participants were observed for 

two, 10-hour conditions (1, normal daily activity; 1, reduced and intermittent sedentary 

time).  The AP produced valid estimates of all ST measures and was sensitive to changes 

in break-rate between conditions (baseline: 5.1 [2.8 to 7.1] brks.sed-hr−1, treatment: 8.0 

[5.8 to 10.2] brks.sed-hr−1). Additionally, the GT3X was not accurate in estimating 

break-rate or absolute number of breaks and were not sensitive to changes between 

conditions.  These results further support the utility of expressing break-rate from 

sedentary time as a metric specifically relevant to free-living behavior, and that the AP is 

a valid tool for measuring ST in free-living environments.  Lastly, Lyden et al.102 

compared artificial neural network (ANN) techniques “sojourn methods” estimates of 
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active and ST from a waist-worn GT3X to DO in free-living settings.  As previously 

discussed, both novel ANNs (soj-1x and soj-3x) improved the accuracy and precision in 

estimating free-living MET-hours, sedentary time, and time spent in light-intensity 

activity and MVPA compared to a previously developed 9 and validated 7 ANN method.  

Further, the soj-3x was found to be the superior method for differentiating ST from light-

intensity activity.  Together, these studies 1) serve as the foundation that DO is a valid 

criterion for estimating PA and sedentary time in free-living settings, and 2) further 

support and underscore the utility of wearable accelerometers’ in estimating PA and 

sedentary time in free-living settings. 

 

Summary 

Both unit machine oscillation calibration studies and several human studies have 

shown that accelerometers are valid and reliable in estimating features of activity and SB. 

53,55,57,75  In addition, the relationship between EE and counts per minute is not linear for a 

wide range of activity types and intensities.  As a result, a single regression model will 

not sufficiently estimate EE and other measures of activity and ST.  Also, accurate 

detection of high intensity activity accelerometer signals plateau (~6.2 to 7.4 mph, 

~10,000 counts per minute). 59,81  There is a rich set of signal features within the 

accelerometer that is captured but not analyzed.  The detailed features of the signal are 

used with pattern recognition techniques for estimating PA energy expenditure and 

activity type.  These techniques improve estimates by utilizing more signal information, 

such as time and or frequency domain features. 
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The differences in output by monitor location is significant as large surveillance 

studies have transitioned from hip-worn to wrist-worn accelerometers in an effort to 

increase compliance. For example, the National Health and Nutrition Examination 

Survey (NHANES) 2011-2014 data collection cycle has implemented a new protocol 

where wrist-worn accelerometers are being used for objective assessment of PA. This 

protocol was initiated based on evidence of increased adherence to monitor use 126 and 

for the measurement of sleep.  Unfortunately, compliance is increased at the expense of 

data analysis. To date, there is no uniform decision from the PA community of how to 

analyze the data.  Recently, Staudenmayer et al. addressed this issue.  Specifically, wrist-

worn accelerometer data were used to build machine-learning and regression models that 

estimated 1) MET-hours, 2) time in different activity intensity categories (light, 

moderate, and vigorous), 3) the amount of time the wearer is sedentary or not, and 4) the 

amount of time the wearer is locomoting or not.  The wrist models estimated METs with 

a RMSE of 1.21 METs, and classified: activity intensity 75% correct, sedentary time 96% 

correct, and locomotion time 99% correct.  These methods offer a validated technique 

with which to analyze NHANES accelerometer data.  

Over the past several decades significant advances have been made toward a 

comprehensive understanding of the strengths and limitations accelerometers’ possess in 

estimating PA and sedentary time.  The advances in objective measurements of PA and 

ST have provided a blueprint of how to 1) ask poignant scientific questions related to PA 

and health, 2) design and execute meaningful accelerometer experiments, 3) develop 

simple and complex methods to analyze accelerometer data, 4) identify limitations of 

accelerometer data and suggest methods to for improvement, and 5) provide evidence of 
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the relationships of accelerometer-based activity and sedentary time estimates for 

quantification of dose of exposures of these behaviors and health outcomes 

Activity Trackers: Introduction 

In contrast to research-grade accelerometers, ATs have largely bypassed rigorous, 

scientific testing and proceeded directly to the consumer market. 

Validation of four monitor output variables have been reported by studies that 

have tested the accuracy of activity trackers: step counts, EE, activity minutes (analogous 

to MVPA) and sedentary time.  The following section of this literature review will 

summarize the current state of the evidence regarding the validity of ATs in estimating 

each of these output variables. 

Producers of ATs have promoted self-monitoring PA and ST by providing output 

to users that allow self-tracking and inform users about successful achievement of U.S. 

PA recommendations and/or Australian SB recommendations.  For example, Fitbit 

provides output in “active minutes.”  According to Fitbit, active minutes are defined by 

activities at or above about 3 METs.  To satisfy the Center for Disease Control's “10 

minutes at a time is fine” concept, minutes are only awarded after 10 minutes of 

continuous moderate-to-intense activity. 127 Given the importance and public awareness 

of meeting PA and SB recommendations, steps, EE, activity minutes and sedentary time 

are a critical metrics to provide users of wearable devices    

Researchers are testing the relationship between AT output with criterion and/or 

comparison measures and the accuracy of ATs in estimating steps, EE, activity minutes 

and sedentary time compared to criterion/comparison measures.  Preliminary results from 

this body of research reveal moderate to strong relationships between AT estimates of 
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steps, EE and activity minutes in both lab and free-living settings (range: r= .52 to .99).  

However, many AT estimates of PA and ST lack accuracy and precision.   

In this review, ATs will be identified by location of wear.  For example, hip-worn 

AT.  Tables 1 and 2 summarize the results from AT validation studies.  Activity trackers 

with corresponding output and data extraction method and features are provided in Table 

4 and Appendix E.   

Validation of Activity Trackers 

Laboratory Studies 

Steps 

In general, ATs are accurate and precise in step estimates during locomotion.  Not 

surprisingly, differences in step estimations between lab and free-living settings and, the 

hip and the wrist location have been reported.   

To date, thirteen studies have validated ATs in estimating steps in lab-based 

settings.  All but three of these studies employed DO as the criterion measure for steps.  

From these studies, two protocol trends have emerged: simulated free-living and 

locomotion only. 

Simulated free-living.  Simulated free-living protocols include long and short 

durations engaged in varying activity types and intensities, either or both self-selected 

and predetermined.  A total of four studies have been published validating ATs in 

estimating steps in lab settings.  All have employed DO (step counting) as the criterion 

measure for steps. 

Chen et al. 20  validated wrist-worn ATs during locomotive and non-locomotive 

(e.g. ADL’s) activities.  They reported an absolute percent error (APE) ranging from 
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1.5% to 9.6% during treadmill walking and running.  In addition, accuracy was improved 

at faster speeds (4.9 mph) for all the monitors (APE < 2.5%).  Mean bias (±SD) for 

locomotive activities ranged from -13.5 (±2) to -35.4 (±2.4) steps.  For non-locomotive 

activities, mean bias (±SD) ranged from 2.9 (±45.5) to -65.9 (±25.8) steps and significant 

differences between dominant and non-dominant were also reported.  Mammen et al. 17 

validated hip-, pocket- and collar-worn ATs during overground walking (20 steps), 

treadmill walking and running and while driving.  They reported that all ATs estimated 

steps within ±5%, only one AT (pedometer) detected steps while driving, and statistically 

significant differences were found between the criterion and steps detected by two hip-

worn ATs (p<0.001, p<0.05) at 1.2 mph and by a hip-worn AT at 1.8 mph (p<0.05).  All 

ATs were accurate at normal walking speeds (2.7 and 3.7 mph).  Nelson et al. 18 

examined the accuracy of  hip- and wrist-worn ATs in estimating steps for specific 

activities and activity categories.  Results showed that for the household activity 

category, MAPE ranged from 54% to 79%. In contrast, for the ambulatory category, 

MAPE ranged from 3% to 6%. For walking and jogging, hip- and wrist worn ATs 

produced MAPEs of 2% to 3%, and 8% to 11%, respectively.  For cycling, all ATs 

displayed large MAPEs ranging from 70% to 93%. 

Differences in AT step estimates during non-locomotive activities have also been 

reported by Stackpool et al. 26  Employing a protocol that included self-selected walking 

and running and sports. They found that during locomotion, ATs were accurate within 

10% of total steps, and collectively they averaged 4% underestimation.  During sport 

activities, the errors in step counts were systematically less than the criterion measure, 

ranging from 3-24%, and averaging 18%. 
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In summary, on average, hip-worn ATs are more accurate and precise in 

estimating steps as compared to wrist-worn ATs during simulated free-living 

activities/behaviors.  Especially during locomotion, hip-worn ATs produce errors that are 

within 5% of criterion measured, which is within the generally acceptable range of less 

than 5%. 128-131 As expected, this trend has been consistent throughout the literature.  

 

Locomotion only.  Twelve studies have validated ATs in estimating steps during 

locomotion.  Of these, nine have employed DO as the criterion for steps and three have 

employed secondary measures as the step criterion.  Regardless of which step criterion 

was employed, findings from all studies are in agreement. 

In general, ATs are accurate and precise in estimating steps during locomotion.  

However, differences between hip- worn and wrist-worn ATs exist.  Case et al. 29 

evaluated the step count accuracy of hip- and wrist-worn ATs during treadmill walking at 

3.0 mph for 500 and 1500 steps.  Compared with DO, the relative difference in mean step 

count ranged from −0.3% to 1.0% for hip-worn ATs, and −22.7% to −1.5% for wrist-

worn ATs.     Storm et al. 22 tested the accuracy of hip- and wrist-worn ATs in estimating 

steps during indoor and outdoor walking and descending and ascending stairs.  They 

reported step underestimations of -15±18 (MAPE=1.6±1) by hip-worn ATs and -

253±156 (MAPE=24±14) by wrist-worn ATs.   Several other groups have reported 

similar findings from wrist-worn AT estimates during locomotion.  21,22,24,25,30,31   

Diaz et al. 25 sought to validate hip- and wrist-worn ATs in estimating steps 

during treadmill walking and jogging.    They found that the wrist-worn AT significantly 

underestimated steps.  Mean differences ranged from -26 to -3 steps.  No significant 
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differences in step estimates were observed between the hip-worn AT and the criterion.  

Recently, Diaz et al. 30 employed the same treadmill protocol to validate hip-wrist- and 

bra-worn ATs.  They reported that the wrist-worn AT significantly underestimated steps 

(mean bias: -11 steps) for all treadmill walking and running speeds (range: 1.9 to 5.2 

mph), and produced large errors ranging from 16±28% to 2±6%.  In contrast, percent 

error for step estimates for the hip- and bra-worn ATs were ≤3% for all walking and 

running speeds.  In both studies, the step estimates from the hip-worn AT was more 

accurate (e.g. mean difference range: -0.7 to 2.0 steps) and precise (e.g. mean percent 

error = -0.8±2.0), as compared to the wrist-worn AT (e.g. mean difference range: -15.5 to 

3.4 steps; mean percent error -4.0±15.2).  

At slower walking speeds (e.g. ≤ 1.9 mph), hip-worn ATs have been shown to 

produce relative errors as great as 40% with large variation.  For example, Beevi et al. 28 

evaluate the step count accuracy of hip-worn ATs during slow walking at 0.6, 1.2, and 

1.8 mph.  All ATs underestimated steps.  Mean biases (±SD) ranged from -37.5 (±16.1) 

to -52.0 (±26.6), and the error rate of all ATs decreased with the increase of speed.  

These data provide evidence that in general: 1) hip-worn ATs are accurate and 

precise in estimating steps during locomotion that is ≥ 1.9 mph 2) wrist-worn ATs 

significantly underestimate steps during locomotion, 3) differences are market at slower 

speeds (e.g. 3.0 mph), and 4) hip-worn ATs estimates of steps are more precise (less 

variable) as compared to wrist-worn AT estimates of steps.   ATs are less valid in 

estimating steps is in free-living settings as compared to lab settings. 
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Energy Expenditure 

A total of twelve validation studies evaluating AT estimates of EE have been 

performed using one either a room calorimeter or breath-by-breath metabolic 

measurement systems as the criterion measure.   

Criterion: room calorimetry.  Two studies have evaluated AT estimates of EE 

compared to room calorimeter.  Both study protocols included locomotion, lifestyle 

activities and ST; one included cycling.  Dannecker et al. 40 tested the accuracy of a hip-

worn AT during 4-hours of data collection.  Briefly, participants performed a series of 

randomly assigned postures (e.g. sitting) and activities (e.g. treadmill walking) for 3-

hours.  The last hour of data collection consisted of self-selected free-living activities.   

They found that the hip-worn AT significantly underestimated EE by 143.2 kcal 

compared criterion kcals.  The large underestimation may have resulted from activities 

with movement not detected by the hip-worn ATs such as cycling and computer work.  

Recently, Murakami et al. 37 extended this idea to include more time in the room 

calorimeter, more ATs and meals.  They sought to validate ten ATs worn at various 

locations including the wrist, waist and pocket in estimating EE over 24-hours.  For this 

study, participants completed a standardized protocol simulating normal daily life, which 

included 3 meals, deskwork, watching TV, housework, treadmill walking, and sleeping.  

Results showed that despite strong correlations with criterion measured kcals (rho range= 

.71 to .93).  Three wrist-worn ATs significantly underestimated kcals ranging from -278 

to -249 kcals.  A waist- and a pocket-worn AT significantly overestimated kcals by 175 

and 205 kcals respectively.   
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Criterion: indirect calorimetry.  A total of ten studies have been published 

validating ATs estimate of EE compared to indirect calorimetry.  From these studies, two 

protocol trends have emerged: simulated free-living and locomotion only. 

 

Simulated free-living.  Simulated free-living protocols include long and short 

durations engaged in varying activity types and intensities, either or both self-selected 

and predetermined.  Lee et al. published the first large-scale (N=60) validation study of 

ATs in 2014. 35  The purpose of this study was to examine the validity of EE estimates 

from a variety of ATs (chest-, hip-and wrist-worn) under free-living conditions.  To 

simulate free-living conditions, the protocol consisted of 13 different activities and SBs 

that were performed for 5-minutes each (3-minutes each for treadmill activities) for a 

total of 69-minutes.  Total EE estimated from the ATs was compared to criterion EE.  

The results showed differences between ATs and AT location.  The MAPEs for hip-worn 

ATs were 10.1% and 10.4%, wrist-worn ATs ranged from 12.2% to 23.5% and 12.8% for 

chest-worn ATs.  Mean biases for hip-worn ATs were -26.0 and 13.2, wrist-worn ATs 

ranged from -85.5 to -6.7 and      -23.1 kcals/69-minutes for chest-worn ATs.  It was 

concluded that the majority of the ATs yielded reasonably accurate estimates of EE 

compared with the criterion values (i.e. within 10% – 15% error).  

In 2016, Bai et al. 36 conducted a validation study of ATs during large time-blocks 

of activities.  For this study, participants performed semi-structured periods (25 minutes 

each) of self-selected sedentary activity, aerobic exercise, and resistance exercise while 

wearing several wrist monitors for a total of 80-minutes.  Mean absolute percent error (all 
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activities) ranged from 16.8% to 30.4%.  Mean biases (SD) ranged from -72.4 (87.2) to 

42.3 (55.1) kcals/80-minutes.   

Three studies have validated ATs in estimating EE during simulated free-living 

activities such as locomotion, sports, lifestyle and SBs.  First, Sasaki et al. 38 validated a 

hip-worn AT in estimating EE compared to criterion measured EE and found that the 

mean bias across all activities was -4.5 ± 1.0 kcals/6-min. with 95% limits of agreement 

(LOA) ranging from -25.2 to 15.8 kcals/6-min.  Also, the hip-worn AT significantly 

underestimated EE during household activities and graded locomotion.  Differences in 

estimates by activity were also reported by Nelson et al. 132 whom examined the accuracy 

of hip- and wrist-worn ATs in estimating EE for specific activities and activity 

categories.  They reported that all ATs predicted EE within 8% of criterion measured EE 

for sedentary activity but overestimated activity EE by 16%–40% during ambulatory 

activity. Similar to the findings of Sasaki et al., all ATs significantly underestimated EE 

for cycling by 37%– 59% (p=0.025–<0.001).  Lastly, for all activity categories 

(sedentary, household, and ambulatory), all ATs displayed high MAPE (>10% of 

criterion) for EE estimation, ranging from 13% to 35%.  In agreement with other studies, 

overall EE estimates may be interpreted differently if analyzed by activity type.  

Differences in hip-worn AT energy expenditure estimates during non-locomotive 

activities have also been reported by Stackpool etl al. 26 The protocol included 

locomotion and sports. They found that the hip-worn AT significantly underestimated EE 

during non-locomotive activities and no significant differences in EE during locomotive 

activities. 
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 These data provide evidence that in general: 1) hip-worn ATs significantly 

underestimate EE during cycling, upper-body activities of daily living and inclined 

locomotion, 2) wrist-worn ATs significantly overestimate EE during locomotion and 

some sedentary activities, 3) differences are less striking if data are averaged across 

activities, and 4) hip-worn ATs estimates of EE are more precise (less variable) as 

compared to wrist-worn AT estimates of EE.   Differences in AT estimates during 

simulated free-living activities and ST extend to locomotion only. 

 

Locomotion only.  Five studies have validated ATs in estimating EE during 

locomotion and the results are equivocal.  For example, Diaz et al. 25 sought to validate 

hip- and wrist-worn ATs in estimating EE during treadmill walking and jogging.    They 

found that the wrist-worn AT significantly overestimated EE during moderate (3.0 mph) 

and brisk (4.0 mph) walking by 52.4% and 33.3%, respectively.  No significant 

differences in EE estimates were observed between the hip-worn AT and the criterion.  

Recently, Diaz et al. 30 employed the same treadmill protocol to validate hip-wrist- and 

bra-worn ATs.  They reported that the wrist-worn AT significantly overestimated EE for 

all treadmill walking and running speeds (range: 1.9 to 5.2 mph), and produced large 

errors ranging from to 24.5±28.0% to 83.4±45.2%.  In contrast, the hip-worn AT 

significantly underestimated EE during slow walking (1.9 mph) and the bra-worn AT 

outperformed the wrist-worn AT; errors ranged from 9 to 19%.   In both studies, the 

estimates of EE from the hip-worn AT were more accurate (e.g. mean difference range: -

0.8 to 0.4 kcals) and precise (e.g. mean percent error 5.15±0.97), as compared to the 

wrist-worn AT (e.g. mean difference range: -0.2 to 2.6 kcals; mean percent error 
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51.4±34.0).  Different from these findings, Alsubheen et al. 24 validated a wrist-worn AT 

in estimating EE during self-selected walking at varying grades (0, 5 and 10%).  They 

found that the wrist-worn AT significantly underestimated kcals by 29% (mean bias: -

20.2 kcals) across all conditions.  These findings were supported by Dondzila et al. 39   In 

this study, participants walked and ran at speeds ranging from 3.0 to 6.0 mph.  Results 

showed that, the wrist-worn AT overestimated EE during walking (3.0 mph) and 

significantly (p<0.05) underestimated EE, overall.  Lastly, Noah et al. 27 validated a hip-

worn AT during flat and graded walking, running and stairs.  They found that the hip-

worn AT significantly (p<0.001) underestimated EE during inclined walking and stairs 

by an average of 40%.  It was concluded that the hip-worn AT is valid for monitoring 

overground EE. 

These data provide evidence that in general: 1) hip-worn ATs significantly 

underestimate EE during slow waling and inclined locomotion, 2) wrist-worn ATs 

significantly overestimate EE during locomotion and significantly underestimate EE 

during graded locomotion, 3) bra-worn ATs are less accurate and precise than hip-worn 

ATs but outperform wrist-worn ATs, and 4) hip-worn ATs estimates of EE are more 

precise (less variable) as compared to wrist-worn AT estimates of EE.  Differences in 

hip- and wrist-worn AT estimates of EE have also been reported in free-living 

environments.  
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Free-Living Studies 

Steps 

Seven studies have validated ATs in estimating steps in free-living settings and 

the results are equivocal.  All have employed research-grade accelerometers (i.e. 

secondary measures) as the step comparison measure.  Several studies have shown that in 

free-living settings, wrist-worn ATs tend to significantly underestimate steps. 21,31,32  

However, in cardiac patients significant step overestimations as great as 1,038 steps per 

day have been reported. 43 

The trend in significant underestimation is extended to hip-worn ATs as well.  

However, the accuracy and precision of step estimates from hip-worn ATs is superior to 

step estimates from wrist-worn ATs.  Studies have reported mean absolute differences 

ranging from 6.3% to 7.4% for hip-worn ATs compared to 8.1% to 25.6% for wrist-worn 

ATs. 32  In contrast, studies have reported significant overestimation of steps from hip-

worn a ATs (e.g. 7,477 steps/d).34 Lastly, pocket-worn ATs show promise yet tend to 

overestimate (not significantly) steps even when compared to the thigh-worn ActivPAL. 

21 

These data provide evidence that in general: 1) hip-worn ATs underestimate and 

overestimate steps, 2) wrist-worn ATs underestimate and overestimate steps, and 3) hip-

worn ATs are more accurate and precise in estimating steps in free-living compared to 

wrist-worn ATs.   
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Energy Expenditure 

Three studies have validated ATs in estimating EE in free-living settings, and 

each differs in criterion measure and duration.  One study employed DLW, a criterion 

standard method for measuring total EE. 

Murakami et al. 37 validated several ATs (hip-, wrist- and pocket-worn) in 

estimating EE during 15-days of free-living time compared to DLW.  They found that all 

ATs underestimated total kcals.  Mean biases ranged from -590.2 to -171.9 kcals/d (wrist-

worn), -280.0 to -69.2 kcals/d (hip-worn) and -220.0 to -93.1 kcals/d (pocket-worn) 

compared to DLW.  It was concluded that most ATs do not produce a valid measure of 

total EE.  The authors speculated that underestimation might be due to periods of not 

wearing the devices.  Ferguson et al. 32 validated several ATs (hip- and wrist-worn) in 

estimating EE compared to the BodyMedia SenseWear during 48-hours of free-living 

time.  Similar to previous findings, all ATs underestimated total kcals and the wrist-worn 

ATs produced the greatest bias and least precision compared to hip-worn ATs.  For total 

kcals, mean biases ranged from -533 to -475 (hip-worn) and from -898 to -479 (wrist-

worn).   The mean absolute differences ranged from 11.6% to 16.1% (hip-worn) and from 

to 15.6% to 28.8% (wrist-worn).   It was concluded that hip-worn ATs outperformed 

wrist-worn ATs in estimating total EE in free-living settings.  Sushames et al. 31  

examined the validity of a wrist-worn AT in estimating EE compared to the hip-worn AG 

(GT3X+) accelerometer during an unspecified time (“several hours”) in free-living 

settings.  Data from the ActiGraph accelerometer were post-processed and EE was 

estimated via a previously validated equation 52 in ActiLife.  In contrast to findings in 

previous free-living studies, the results showed that the wrist-worn AT recorded 
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consistently higher estimated EE by 50% higher (808.1±282.9 kcals) compared to the AG 

(GT3X+)(538.9±194.0 kcals), with a mean bias (95% CI) of 269.2 (182.6, 355.8) kcals. 

Activity Minutes 

To date, four studies have reported on ATs in estimating activity minutes (e.g. 

active time), all were performed in free-living settings.  In 2015, Gomersall et al. 33 

compared active minutes from a hip-worn AT to a the hip-worn AG (GT3X-BT) 

(standard using Troiano cut-points) during 14-days free-living time.  The AT was found 

to be strongly correlated rho=0.80 (0.73-0.85; p<0.01) with the GT3X-BT but 

underestimated MVPA by 18±9 minutes per day.  Underestimations of MVPA ranged 

from -189 to -77 minutes per week, which may misclassify a person as not meeting PA 

recommendations and negatively influence their health.  Applying the Freedson 1998 cut-

points, 77 Ferguson et al. 32 reported only moderately-to-strong correlations of MVPA 

(r=0.52-0.91) between ATs and the AG (GT3X+).  This study compared several hip- and 

wrist-worn ATs in estimating activity minutes to a hip-worn ActiGraph (standard 

measure) during 48-hours of free-living time.  They observed large median absolute 

differences between the AT estimate of activity minutes and the ActiGraph ranging from 

26% (wrist-worn) to 298% (hip-worn).  For minutes of MVPA, mean biases ranged from 

65.9 to 190.4 and -5.2 to 22.7 for hip- and wrist-worn ATs, respectively.  Recently, 

Sushames et al. 31 examined the validity of a wrist-worn AT in estimating MVPA 

compared to the hip-worn GT3X+ during unspecified (“several hours”) free-living time.  

Utilizing the Freedson 1998 cut-points, they found that the wrist-worn AT produced a 

mean bias of -35.4 minutes of MVPA.  Lastly, Alharbi et al. 43 compared minutes of 

MVPA from a wrist-worn AT to a hip-worn GT3X-BT in cardiac rehabilitation patients 
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during 4-days of free-living time.  Significant correlations (r=.74) between the wrist-worn 

AT and AG were found for MVPA.  However, the wrist-worn AT significantly 

overestimated MVPA by 10 minutes per day.  It was further reported that the wrist-worn 

AT had high sensitivity (1.00 CI: 91.96, 100) and lower specificity (0.67 CI: 9.43, 99.16) 

in classifying participants who achieved ≥150 minutes of MVPA per week thereby 

meeting the recommended PA guidelines using the ActiGraph as the ground truth 

measure.   

The results of these studies are equivocal.  Two studies reported ATs 

underestimated MVPA in free-living settings,31,33 one study reported ATs overestimated 

MVPA in free-living settings, 43 and one study reported ATs underestimated and 

overestimated MVPA in free-living settings. 32 

Sedentary Time 

One study has validated an AT (wrist-worn) in estimating sedentary time 

compared to a hip-worn AG (GT3X+) during 14 days of free-living time. 41  The cut-

points used for sedentary time were <100 CPM 133 and MVPA ≥2020 CPM. 90  Longest 

idle time from the AT was compared to ActiGraph estimates of longest sedentary bout.  

The results showed that the validity of the wrist-worn AT measure of sedentary time 

(“longest idle time”) was poor. The differences between the AT and GT3X+ estimates of 

longest sedentary bout were biased, with larger differences when bouts were longer. The 

limits of agreement were unbiased but wide (mean difference ±88 minutes), varying by 

up to 150% of the mean estimate according to GT3X+.  Though it did accurately classify 

more than 80% of the sample days as active or inactive based on the 10,000 steps 

criterion, days were frequently misclassified for meeting public health guidelines of 30 
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minutes/day of MVPA.  The use of an ActiGraph to estimate sedentary time may not be 

the optimal secondary measurement.  If fact, the authors recommended that future studies 

should consider using the activPAL (PAL Technologies Ltd, Glasgow, UK) device, a 

thigh-worn accelerometer/inclinometer that evaluates time spent sedentary based on 

posture rather than the cut-point method.  Recently, our group has shown that the thigh-

worn activPAL is superior to the hip-worn GT3X+ in estimating sedentary time. 65 

Clearly, more studies are needed to validate ATs in estimating sedentary time. 

 

Major Findings and Next Steps 

Four output variables have been studied in the investigations that have tested the 

accuracy of ATs: number of steps, EE, to estimate calories, activity minutes (moderate-

to-vigorous activity), achievement of PA recommendations, EE, to estimate calories and 

sedentary time. The results of these studies are equivocal.  Activity trackers under- or 

overestimate these measures with substantial between-subject variability.    For step 

counts, seven studies showed, ATs overestimated steps in laboratory settings17-23 and 

thirteen studies showed ATs underestimated steps.17-20,23-31  In free-living settings, four 

studies showed that ATs overestimated steps and lack precision,21,32-34 and two studies 

showed that ATs underestimated steps.31,32  For EE, six studies showed ATs 

overestimated kcals,18,25,30,35-37  and 12 studies showed that ATs underestimated kcals 

18,24-27,30,35-40 with variable precision and are most accurate for during locomotion and in 

lab-setting testing conditions18,25-27,30,36,38,39 compared with non-locomotive activities 

18,26,35,36,38,40 and free-living settings.31,32,37 For activity minutes, one study reported, ATs 

overestimated MVPA in free-living settings,32 and two studies reported, ATs 
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underestimated MVPA in free-living settings. 31,33  For sedentary time, only one study 

has shown, ATs overestimated sedentary time and lack precision in free-living settings. 41 

 

Based on this evidence, we sought to expand our understanding of the accuracy 

and precision of ATs in estimating steps, EE, activity minutes and sedentary time in free-

living settings using a validated DO system as the criterion measure.42  Previous free-

living studies employed accelerometers as a surrogate for gold-standard criterion 

measures (e.g. direct observation, DLW) to assess PA.32-34,43-46 Limitations in using 

accelerometers as criterion measure to assess PA in free-living settings include 1) the 

inability to validate compliance (e.g. wear-time, wear-location) and 2) substantial 

variability in prediction equations used to convert accelerometer data into meaningful PA 

outcomes (e.g. moderate intensity activity, METs). 47-49  The use of DO as a criterion 

measure in free-living settings address these limitations and will attenuate the sources of 

error inherent in previous free-living studies. The evidence from this novel study will 

inform consumers, researchers, clinicians and interventionists about the utility of ATs as 

intervention tools and potentially, assessment tools for research.  

 

Study Three: Activity Trackers are Sensitive to Change in Physical Activity and 

Sedentary Behaviors in Free-Living Settings 

To date, no studies have investigated the ability of ATs to detect change in PA 

behaviors in free-living settings.  Activity trackers are becoming increasingly popular 

with consumers, researchers and clinicians, and used as both PA exposures and PA 

outcomes.  Examining the capacity of ATs to detect change in free-living PA behaviors is 
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an important next step to broadening our understanding of these devices. Examining 

research-grade accelerometers’ in detecting change in PA behaviors in free-living settings 

is of equal importance. 
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

  -    0         +      -         0   +  - 0            + 
Laboratory Based  

  
Bai 2015 36 

N=52 (18-60 yr)  
LOC: TRD walking & running; Sports: 
Resistance EX; and SB 
Criterion: EE=IC 
Results: 

• FB-Wrist a 

                                     

Beevi 2016 28 

N=14 (29.9±4.9 yr)  
LOC: flat TRD walking at 0.6, 1.2, and 1.8 
mph 
Criterion: Steps=DO (100 steps) 
Results: ⫗ 

• FB-Hip d   

Case 2015 29 

N=14 (28.1±6.2 yr)  
LOC: flat TRD walking (3.0 mph;1500 steps) 
Criterion: Steps=DO 
Results: 

• FB-Hip b 
• FB-Wrist b  

Chen 2016 20 

N=30 (21.5±2.0 yr) 
LOC: TRD walking, SS: overground walking 
w/load/stroller, stairs; Lifestyle: laundry;SB 
Criterion: Steps=DO 
Results: 

• FB-Wrist d 
o LOC 

§ DOM 
§ Non-DOM 

o Non-LOC 
§ DOM  
§ Non-DOM  
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

  -    0         +      -         0   +  - 0            + 

Dannecker 2013 
40 

N=14 (28.1±6.2 yr). Duration: 4-hrs. 
LOC: TRD walking, stairs; Sports: cycle 
ergometer; Lifestyle: sweeping, standing; SB 
Criterion: EE=RC 
Results: 

• FB-Hip c 

Diaz 2015 25 

N=23 (20-54 yr)  
LOC: flat TRD walking & running 
Criterion: EE=IC; steps=DO 
Results: 
• FB-Hip d 
• FB-Wrist d 

Diaz 2016 30 

N=13♀ (32.0±9.2 yr)  
LOC: flat TRD walking & running 
Criterion: EE=IC; steps=DO 
Results: 
• FB-Hip j  
• FB-Wrist j  
• FB-Bra j  

Dondzila 2016 
39 

N=19♂ (24.6±3.1 yr)  
LOC: flat TRD walking & running 
Criterion: EE=IC 
Results: 
• FB-Wrist i   

Fortune 2014 19 

N=12 (25-55 yr)  
LOC: SS: overground walking & jogging 
Criterion: Steps=DO 
Results:  
• FB-Hip h   
• FB-Ankle h   

Kooiman 2015 
21 

N=33 (39±13.1) 
LOC: flat TRD walking (2.9 mph; 30 min) 
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

  -    0         +      -         0   +  - 0            + 
Criterion: Steps=Optogait system 
 
Results: ⫗ 

• FB-Wrist i   
• FB-Pocket i 

Lee 2014 35 

N=60 (18-43 yr)  
LOC: TRD walking & running, overground 
walking (20 steps); Sports: cycle ergometer, 
elliptical, Wii Tennis, basketball; SB. 
Criterion: EE=IC.  
 
Results: 

• FB-Hip a 

Mammen 2012 
17 

N=10 (23.0±1.2 yr)  
LOC: TRD walking & running, overground 
walking (20 steps); TRANS: driving.  
Criterion: Steps=DO 
Results: 

• FB-Hip a   
• FB-Pocket a    
• FB-Collar a  

Murakami 2016 
37 

N=19 (18-80 yr).  Duration: 24-hrs. 
LOC: TRD walking; Lifestyle: eating, 
computer, TV, housework; SB 
Criterion: EE=RC 
Results: 

• FB-Wrist d  

Nelson 2016 18 

N=30 (18-80 yr)  
LOC: SS: flat TRD walking & jogging, 
overground walking & jogging, stairs; Sports: 
cycle ergometer, Lifestyle: sweeping, dusting, 
laundry, bedding, gardening, standing; SB 
Criterion: EE=IC; Steps=DO 
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

  -    0         +      -         0   +  - 0            + 
 
Results: 

• FBZ-Hip i   
• FBO-Hip i   
• FB-Wrist i  

Noah 2013 27 

N=23 (26.6±7.5 yr)  
LOC: TRD walking & running 
Criterion: EE=IC; steps=Actical-Hip 
Accelerometer. 
 
Results:  

• FB-Hip e g 

Sasaki  
2012 38 

N=20 (24.1±4.5 yr) 
LOC: TRD walking & running, stairs; Sports: 
cycle ergometer, golf, tennis, basketball; 
Lifestyle; and SB 
Criterion: EE=IC 
Results:  

• FB-Hip a 

Stackpool 2014 
26 

N=20 (18-44 yr) 
LOC: TRD walking & running; Sports:  
elliptical, exercise/agility & ladder drills 
Criterion: EE=IC; steps=DO 
Results:  

• FB-Hip e: 
o LOC 
o Non-LOC 

Storm 2015 22 

N=16 (28.87±2.65 yr)  
LOC: SS: indoor & outdoor overground 
walking, stairs 
Criterion: Steps=OPAL sensors (L and R 
shanks) 
Results: 
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

  -    0         +      -         0   +  - 0            + 
• FB-Hip i    

 

Sushames 2016 
31 

N=25 (23.7±5.8 yr)  
LOC: SS: TRD walking (flat & incline) & 
jogging, stepping 
Criterion: Steps=DO 
Results: 

• FB-Wrist  a   

Takacs  
2013 23 

N=30 (29.6±5.7 yr)  
LOC: TRD walking & running 
Criterion: steps=DO 
Results: 

• FB-Hip f 
                     Free-Living  

*Alharbi 2016 
43 

N=48 (65.6±6.9 yr) cardiac rehab.  
Duration: 4-days 
Criterion: 

• Activity minutes: GT3X-BT-Hip 
o Cut-points NQLS-Senor 

• Steps: GT3X-BT-Hip 
Results:  

• FB-Wrist a   

      

Ferguson 2015 
32 

N=21 (32.8±10.2 yr). Duration: 48- hours. 
Criterion: 

• Activity minutes: GT3X+-Hip 
o Freedson 1998 cut-points 

• EE: BS   
• Steps: GT3X+-Hip; BS-upper arm 

 
Results:  

• FB-Hip a g  
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

  -    0         +      -         0   +  - 0            + 

Gomersall 2015 
33    

N=29 (39.6±11 yr).  Duration: 14-days 
Criterion: 

• Activity minutes: GT3X-BT-Hip 
o Troiano 2008 cut-points 

• Steps: GT3X-BT-Hip 
Results:  

• FB-Hip g 

Kooiman 2015 
21 

N=56 (37.1±10.6 yr).  Duration: 7.5 hrs. 
Criterion: Steps=ActivPAL 
Results: ⫗ 

• FB-Wrist i   
• FB-Pocket i  

Murakami 2016 
37 

N=19 (18-80 yr).  Duration: 15-days 
Criterion: EE=DLW 
Results: 
FB-Wrist d  

Sushames 2016 
31 

N=25 (23.7±5.8 yr). Duration: Not stated (<24 
hrs). 
Criterion: 

• Activity minutes: GT3X+-Hip 
o Freedson 1998 cut-points 

• EE: GT3X+-Hip 
o Actilife v6.2 

• Steps: GT3X+-Hip 
Results:  
FB-Wrist  a   

Tully 2014 34 

N=40 (43±12 yr). Duration: 7-days 
Criterion: 

• Steps: GT3X-Hip 
o Freedson 1998 cut-points 
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

  -    0         +      -         0   +  - 0            + 
Results:  

• FB-Hip h 
Table 1. Summary of current Fitbit (FB) validation studies 
LOC, locomotion 
DOM, dominant hand 
SB, sedentary behavior 
TRANS, transportation 
TRD, treadmill 
EX, exercise 
FB, Fitbit 
EE, energy expenditure 
IC, indirect calorimetry 
DLW, doubly-labeled water 
2MWT, 2-minute walk test 
BS, BodyMedia Sensewear armband 
a, mean bias (95% Limits of Agreement) 
b, mean step count (relative difference) 
c, RMSE 
d, mean difference (range) 
e, mean (range) 
f, % relative error 
g, mean (SD) 
h, median (SD) 
i, mean absolute percent error (95% CI) 
j, mean % error (SD) 
RC, room calorimeter 
AG, ActiGraph 
MVPA, moderate-to-vigorous physical activity 

	-25															+5029 	-4165													+14971 	-1216													+455 
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SS, self-selected 
TBI, traumatic brain injury 
NLQS, neighborhood quality of life study 

, hip-worn Fitbit 
, wrist-worn Fitbit 
, bra-worn Fitbit 
, collar-worn Fitbit 
, pocket-worn Fitbit 
, ankle-worn device 

* , special population 
⫗ , includes devices in both validation study tables. 
Note.  All studies were conducted on healthy populations (except for studies denoted with an *) and were approximately 50% female 
(except for studies denoted with an ♂= all male; ♀= all female).  
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

-    0         +      -         0   + -  0           + 
Laboratory	Based	 	

Alsubheen 2016 
24 

N=13 (40±11.9 yr)  
LOC: SS: flat and graded TRD walking 
Criterion: EE=IC; Steps=DO 
Results: 
GAR-Wrist d  

                                 	    

  
Bai 2015 36 

N=52 (18-60 yr)  
LOC: TRD walking & running; Sports: 
Resistance EX; and SB 
Criterion: EE=IC 
Results: ⫗ 

• MS-Wrist a  
• NFB-Wrist a  
• JU-Wrist a   

Beevi 2016 28 

N=14 (29.9±4.9 yr)  
LOC: flat TRD walking at 0.6, 1.2, and 1.8 
mph 
Criterion: Steps=DO (100 steps) 
Results: ⫗ 

• YM-Hip d   
• OM-Hip d   

Case	2015	29	

N=14	(28.1±6.2	yr)		
LOC:	flat	TRD	walking	(3.0	mph;1500	steps)	
Criterion:	Steps=DO	
Results:	⫗	

• NFB-Wrist	b	
• JB-Wrist	b	
• YDW-Hip	b		

Chen 2016 20 

N=30 (21.5±2.0 yr) 
LOC: TRD walking, SS: overground walking 
w/load w/stroller, stairs; Lifestyle: laundry; SB 
Criterion: Steps=DO 
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

-    0         +      -         0   + -  0           + 
Results: ⫗ 

• GAR-Wrist d 
o LOC 

§ DOM 
§ Non-DOM 

o Non-LOC 
§ DOM 
§ Non-DOM 

• JB-Wrist d 
o LOC 

§ DOM  
§ Non-DOM  

o Non-LOC 
§ DOM 
§ Non-DOM  

Dondzila 2016 
39 

N=19 ♂ (24.6±3.1 yr)  
LOC: flat TRD walking & running 
Criterion: EE=IC 
Results: ⫗ 

• JE-Ears i  -19.1 

Fortune 2014 19 

N=12 (25-55 yr)  
LOC: SS: overground walking & jogging 
Criterion: Steps=DO 
Results: ⫗ 

• NFB-Wrist h  

Kooiman 2015 
21 

N=33 (39±13.1) 
LOC: flat TRD walking (2.9 mph; 30 min) 
Criterion: Steps=Optogait system 
Results: ⫗ 

• JB-Wrist i   
• NFB-Wrist i   
• YDW-Waist i   
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

-    0         +      -         0   + -  0           + 
• MS-Pocket i   
• OM-Pocket i  
• WP-Pocket i   

Lee 2014 35 

N=60 (18-43 yr)  
LOC: TRD walking & running, overground 
walking (20 steps); Sports: cycle ergometer, 
elliptical, Wii Tennis, basketball; SB 
Criterion: EE=IC.  
Results: ⫗ 

• DL-Chest a  
• B1-Wrist a   
• JB-Wrist a   
• NFB-Wrist a  

Murakami 2016 
37 

N=19 (18-80 yr).  Duration: 24-hrs 
LOC: TRD walking; Lifestyle: eating, 
computer, TV, housework; SB 
Criterion: EE=RC 
Results: ⫗ 

• WP-Wrist d  
• JB-Wrist d  
• GAR-Wrist d  
• SL-Waist d   
• PA-Waist d   
• EP-Wrist d   
• TAN-Pocket d  
• MS-Wrist d     
• OA-Waist d   
• OC-Pocket d  

Nelson 2016 18 
N=30 (18-80 yr)  
LOC: SS: flat TRD walking & jogging, 
overground walking & jogging, stairs; Sports: 
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

-    0         +      -         0   + -  0           + 
cycle ergometer, Lifestyle: sweeping, dusting, 
laundry, bedding, gardening, standing; SB 
Criterion: EE=IC; Steps=DO 
Results: ⫗ 

• JB-Wrist i  

Storm 2015 22 

N=16 (28.87±2.65 yr)  
LOC: SS: indoor & outdoor overground 
walking 
Criterion: Steps=OPAL sensors (L and R 
shanks) 
Results: ⫗ 

• NFB-Wrist i    
• JB-Wrist i   

                     Free-Living  

Ferguson 2015 
32 

N=21 (32.8±10.2 yr). Duration: 48- hours. 
Criterion: 

• Activity minutes: GT3X+-Hip 
o Freedson 1998 cut-points 

• EE: BM    
• Steps: GT3X+-Hip; BS-upper arm 

Results: ⫗ 

 

 

 

• NFB-Wrist a g  
• JB-Wrist a g  
• MS-Wrist a g  
• WP-Hip a g   
• SSP-Hip a g    

      

Kooiman 2015 
21 

N=56 (37.1±10.6 yr).  Duration: 7.5 hrs. 
Criterion: Steps=ActivPAL 
Results: ⫗ 
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Author Research Study 
Activity 
Minutes 

Energy 
Expenditure 

Steps 

-    0         +      -         0   + -  0           + 
• JB-Wrist i   
• NFB-Wrist i   
• YDW-Waist i   
• MS-Pocket i   
• OM-Pocket i  
• WP-Pocket i   

Murakami 2016 
37 

N=19 (18-80 yr).  Duration: 15-days 
Criterion: EE=DLW 
Results: ⫗ 

• WP-Wrist d   
• JB-Wrist d   
• GAR-Wrist d   
• SL-Waist d   
• PA-Waist d  
• EP-Wrist d 
• TAN-Pocket d   
• MS-Wrist d   
• OA-Waist d  
• OC-Pocket d  

Table 2. Summary of current activity tracker validation 
studies; Fitbit excluded 
 
 
LOC, locomotion 
DOM, dominant hand 
SB, sedentary behavior 
TRANS, transportation 
TRD, treadmill 
EX, exercise 
EE, energy expenditure 

	-25																		+155 	-5968												+8275 	-1216														+550 
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IC, indirect calorimetry 
DLW, doubly-labeled water 
BS, BodyMedia Sensewear armband 
a, mean bias (95% Limits of Agreement) 
b, mean step count (relative difference) 
c, RMSE 
d, mean difference (range) 
e, mean (range) 
f, % relative error 
g, mean (SD) 
h, median (SD) 
i, mean absolute percent error (95%CI) 
j, mean % error (SD) 
GAR, Garmin  
JB, Jawbone 
JE, Jabra earbuds 
NFB, Nike Fuel Band 
MS, Misfit Shine 
PA, Panasonic Actimarker 
OC, Omron CaloriScan 
OA, Omron Active Style Pro 
EP, Epson Pulsense 
SL, Suzuken Lifecorder 
TAN, Tanita AM- 160 
WP: Withings Pulse O2 
OM, Omron pedometer 
YDW, Yamax Digi-Walker 
SSP, Striiv smart pedometer 
DL, DirectLife 
B1, Basis 1 
RC, room calorimeter 
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AG, ActiGraph 
MVPA, moderate-to-vigorous physical activity 
PED, pedometer 

, hip-worn device 
, wrist-worn device 
, pocket-worn device 

, ankle-worn device 
    , ear-worn device 
  , chest-worn device 
⫗ , includes devices in both validation study tables. 
Note.  All studies were conducted on healthy populations (except for studies denoted with an *) and were approximately 50% 
female.  
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CHAPTER 3 

METHODS 

 
Study One: A Comparison of Activity Tracker and ActiGraph™ GT3X-BT 

Accelerometers in Estimating Energy Expenditure and Steps During Orbital 

Shaking 

 

Experimental Instrumentation and Procedures 

 

Instrumentation 

Research-grade accelerometer: Reference Standard.  The ActiGraph (AG) GT3X-

BT (GT3X-BT) accelerometer (ActiGraph™ LLC, Pensacola, Florida) served as the 

reference standard to which all ATs were compared.  This device is a lightweight triaxial 

PA monitor (4.6cm x 3.3cm x 1.5cm, 19g) that measures acceleration ranging from -8 to 

+8 g’s. The accelerometer output can be sampled at rates ranging from 30 to 100 Hz and 

is digitized by a twelve-bit analog-to-digital converter.  The AG includes a micro-electro-

mechanical system (MEMS) based accelerometer.  The acceleration data are sampled by 

a 12-bit analog to digital converter and stored in a raw, non-filtered/accumulated format 

in g’s. These data are stored directly in non-volatile flash memory.  Raw data are 

collected at the selected sample rate (80 Hz for this study) and are post-processed in the 

ActiLife software.  Users generate files containing any desired combination of parametric 

data (e.g. 1-sec epoch, 60-sec epoch) during the data processing step. 
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Activity Trackers.  Activity trackers were chosen based on the following two 

criteria: (1) no known gravimeter within the device, and (2) researchers had at least two 

of the device.  The rationale for not containing a gravimeter was that the electronic orbital 

oscillator does not apply vertical accelerations and as a result, a device that contains a 

gravimeter would produce inaccurate output.  The rationale for at least two devices was 

to counterbalance each other in the electronic orbital oscillator.  As a result, six different 

ATs were studied: 1) Fitbit Flex (FBF), 2) Fitbit One (FBO), 3) Garmin® Vivofit (GV), 

4) Misfit Flash (MFF), 5) Misfit Shine (MFS) and 6) New Lifestyles NL-1000 pedometer 

(NL).  See Appendix E for detailed specifications of each AT.  

 

Electronic Orbital Shaker.  The electronic orbital shaker (Advanced Orbital 

Shaker, Model 10000-2; VRW International, Radnor, PA) (Figure 1) produces controlled 

oscillations between 0.25 and 5.0 Hz.  The electronic orbital shaker oscillates at various 

radii between 1.27 and 5.7 cm. Four trays (51 x 10 x 10 cm) are mounted on the base 

oscillating plate (60 x 60 cm) of the shaker. Each tray has four custom foam cushion slots 

that securely held the GT3X-BTs and ATs in place to eliminate device movement during 

electronic orbital shaking (Figure 2). 
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Figure 1. Electronic Orbital Shaker. 
 

Procedures 

Electronic Orbital shaker.  The electronic orbital shaker (Figure 2) was used to 

perform motion testing.  Two of each device were tested at the same time.  All devices 

were placed in the custom foam cushion slots with their vertical plane perpendicular to 

the control panel of the electronic orbital shaker (figure 2).  

The GT3X-BTs and ATs were oscillated for three: (1) twenty-four, 3-minute 

trials, and (2) 2-hour trials.  Each 3-minute trial consisted of one monitor oscillation 

frequency increased from zero to 3.0 Hz in 0.1 Hz increments on a fixed radius 56,134 of 

5.08 cm.  The three 2-hour trials consisted of oscillation frequencies ranging from zero to 

3.0 Hz., based on the American Time Use Survey, to simulate free-living whole body 

acceleration (e.g. variation).  These frequencies simulate hip rotation ranging from no 
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movement (e.g. sleep) to ambulation at speeds ranging between 1.5 and 16 miles per 

hour. 81   

	

Figure 2. Electronic orbital shaker with devices in custom foam cushioned slots 
 
 

 

 

 

Control	panel	
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Oscillation duration 

The total oscillation duration for a given range of frequencies (range: 0.0, 0.25  to 

3.0 Hz) reflected the American Time Use Survey (ATUS) percentages of time spent in 

selected activities (Figure 3), normalized for 2-hours (versus 24-hours) and conformed to 

5-minute trials (e.g. 44.5-minutes to 45 minutes) (Figure 4).  The ATUS describes the 

amount of time people spend doing various activities, such as paid work, childcare, 

volunteering, and socializing.  According to the ATUS, in 2014, working people aged 25 

to 54 years spent the majority of their weekdays sleeping (~32%) and working (~37%), 

with leisure and sport activities comprising 10% of daily activities (Figure 3).135  Thus, 

the 2-hour oscillation trials reflected the ATUS percentages of time spent in each activity, 

normalized for 2-hours (versus 24-hours)(Figure 4).  See table 3 for examples of 

activities and associated MET values.  

	
Figure 3. ATUS: Time use on an average workday for employed persons ages 25-54 
in 2014 
	

Household activities
(1.0 hours)

Leisure and sports
(2.5 hours)

Eating and drinking
(1.0 hours)

Caring for others
(1.2 hours)

Other
(1.6 hours)

NOTE: Data include employed persons on days they worked, ages 25 to 54, who lived in households with 
children under 18. Data include non-holiday weekdays and are annual averages for 2014. Data include related 
travel for each activity.

Working and 
related activities

(8.9 hours)

Sleeping
(7.7 hours)

Time use on an average work day for employed 
persons ages 25 to 54 with children

SOURCE: Bureau of Labor Statistics, American Time Use Survey 
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Total time (minutes) spent in each 

activity category at a given frequency 

	
	

	

Figure 4. Time spent in each activity category at a given frequency (range: 0.0, 0.25 
to 3.0 Hz) for 2-hour trials. 
 

Oscillation frequencies 

Oscillation frequency ranges for each activity category were established by 

electronically oscillating six GT3X-BT accelerometers at 0.0 to 3.0 Hz in 0.1 Hz 

increments.  Each 0.1 Hz. increment was oscillated for 3-minutes and the second minute 

of each trial was used to determine counts per minute at each frequency.  Using the 

second minute ensured that the desired frequency was met.  Figure 5 displays how 

oscillation frequency ranges were derived.  Briefly, the GT3X-BT data were initialized to 

collect data at 80 Hz., with the low frequency extension for oscillation frequencies <0.7 

Hz., post processed using ActiLife software (v 6.1.3) and aggregated into VM counts per 

minute.  These data were scored in ActiLife using the Freedson VM3 cut-points. 52 



	

68 

Lastly, the intensity categories and their associated frequencies were used to determine 

electronic oscillation trial: frequency, intensity and total time. Table 3 illustrates, 

performing household activities such as washing dishes produces MET values ranging 

from 1.5 (light) to 2.9 (light), which corresponds to oscillation frequencies ranging from 

0.5 to 0.7 Hz.   

	

Figure 5. Determination of oscillation frequency ranges 
 

During each 3-minute and 2-hour trial devices were oscillated at various 

frequencies to simulate different movement intensities.  To simulate variation in free-

living whole body acceleration, variation of the shaker oscillation frequencies occurred 

during testing (Table 3).   

Sedentary

Light
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Vigorous

Very Vigorous
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Frequency 

Range 

(Hz) 

ActiGraph 

GT3X-BT 

(VMCPM) 

Intensity METs Compendium of Physical Activities 

    Category Activity 

0.0 – 0.4 0 – 99 Sedentary ≤ 1.5 Inactivity Sleeping; sitting quietly 

0.5 – 0.7 100 – 2690 Light 1.5 – 2.9 Home Activity Washing dishes; cooking 

0.8 – 1.0 2691 – 6166 Moderate 3.0 – 5.9 Occupational Farming, feeding cattle; massage 

therapist 

1.1 – 1.3 6167 – 9642 Vigorous 6.0 – 8.9 Walking Hiking, cross country; carrying load 

upstairs, general 

1.4 – 3.0 ≥ 9643 Very 

Vigorous 

≥ 9.0 Sport Track and field (e.g., steeplechase, 

hurdles) 

Table 3. Electronic orbital shaker frequency ranges with corresponding: VMCPM, intensity categories, METs and activities 
VMCPM, vector magnitude counts per minute, MET, metabolic equivalent
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Data collection and processing.  The GT3X-BTs were synced to the same laptop 

as the ATs and initialized in advance of data collection (sampling rate of 80Hz).  These 

raw data were post processed into 1-second epochs/counts and steps via ActiLife v6.1.3 

software.   

Minute-by-minute EE (kcals) were estimated and summed for all 3-minute trials 

and for each 2-hour trial using the prediction equation previously developed by our 

group, 52 labeled the “Freedson VM3 (2011)” equation in the ActiLife software.   The 

Freedson VM3 equation: 

Kcals/min= 0.001064×VM + 0.087512(BM) - 5.500229 

Where, 

VM = Vector Magnitude Combination (per minute) of all 3 axes  

(√ [(Axis 1) 2+(Axis 2) 2+(Axis 3) 2]) 

BM = Body Mass in kg 

 

Weight was standardized for the GT3X-BTs and ATs. The low frequency 

extension (LFE) option was selected in the ActiLife software to detect lower amplitude 

movements. The LFE option lowers the baseband of the filter cut-off, expanding the 

bandwidth of the accumulated data.  The LFE was selected to ensure acceleration 

detection at slower oscillation frequencies (e.g. 0.7 Hz). 

 

Activity Trackers 

Pre-3-minute oscillation trials and 2-hour oscillation trial. Thirty-minutes prior to 

the first 3-minute and the 2-hour oscillation trial, all ATs were initialized/synched using 
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the same user profile (e.g. date of birth, gender, height and weight) and the same 

computer used to initialize the GT3X-BTs.  Next, the GT3X-BT and activity trackers 

(FBF, FBO, MFF, MFS, GV and NL) were secured into their respective customized foam 

cushion slots within each tray of the electronic orbital shaker (Figure 2).  Two of each 

device were tested in the electronic orbital shaker.    

Immediately prior to each 3-minute oscillation trial and each 2-hour oscillation 

trial, researchers retrieved all Misfit data via the Misfit app (iPhone 6s) and recorded 

baseline energy EE and step values for the MFS and MFF, as neither device is equipped 

with a real-time display.  The NL pedometers were set at 0 steps.  The values for EE and 

steps from the Fitbit FBF, FBO and the GT3X-BT were retrieved and recorded pre-and 

post each 3-minute oscillation trial and each 2-hour oscillation trial. The start and stop 

time for each 3-minute oscillation trial and each 2-hour oscillation trial were 

synchronized with the time of the same laptop used for initialization/synching and 

downloading of all devices. 

Data Processing and Statistical Evaluation 

Data Processing 

 Following each 3-minute oscillation trial and each 2-hour oscillation trial total EE 

and steps for the: 1) MFF and MFS were downloaded via bluetooth and retrieved via the 

Misfit app (iPhone 6s), 2) FBF and FBO were synched/downloaded to the Fitbit 

Dashboard via Bluetooth and retrieved from the Fitabase website (described below), and 

3) GV were retrieved from the real-time display.  Total steps for the NL pedometer were 

retrieved from the real-time display.  The GT3X-BT data were collected at 80 Hz, with 

the low frequency extension for oscillation frequencies <0.7 Hz, post processed using 
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ActiLife software (v 6.1.3) and aggregated into VM counts per minute.  Total estimated 

kcals for each 3-minute oscillation trial and each 2-hour oscillation trial were calculated 

and summed employing the “Freedson VM3 (2011)” equation in Actilife (v 6.1.3).  Total 

steps from the GT3X-BT were obtained by summing: 1) each 3-minute oscillation trial, 

and 2) each 2-hour oscillation trial. 

 

Fitabase (Small Steps Labs, LLC. San Diego, Ca).  All Fitbit data were exported 

using Fitabase.  Fitabase is a research platform that accesses data from Internet connected 

consumer devices.  Currently, Fitbit is the only consumer device company that utilizes 

Fitabase.  The advantage of using this platform to acquire Fitbit data is that it provides 

minute-by-minute data for activity minutes (intensity), kcals, MET-minutes and steps in 

comparison to the Fitbit software and Dashboard which only provide total activity 

minutes (intensity), kcals and steps for the monitoring period. 

 

Statistical evaluation 

All data cleaning, processing and analysis were done using the open source R 

statistical software package, version 3.3.3  (www.r-project.org) and computing language 

R. 136  

 

 

 

Data Analysis.  Three-minute oscillation trial and two-hour oscillation trials.  

Repeated measure random effects models were assessed main effects of device and 
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frequency and the interaction of device x frequency on AT estimates of EE and steps 

compared to GT3X-BT estimates of EE and steps. Significance level was set at α = .05. 

 

Study Two: Validation Consumer and Research-Grade Activity Monitors in Free-

Living Settings 

 

Sample Size and Power 

Using data from a previous (free-living) study,42 we found a between subject 

standard deviation of 0.17 METs and a within subject standard deviation of 1.46 METs. 

The relatively larger within subject variability informed our decision to measure each 

subject multiple times.  A sample of 32 subjects yielded at least 80% power to detect 

average MET differences of less than 0.45 METs per hour. 

 

Recruitment, Eligibility 

Thirty-two adults (16 females and 16 males) 18-59 years of age were recruited to 

participate in this study.  Thirty-two participants yielded 192 hours of free-living data.  

Volunteers were from the Amherst, Massachusetts’s area and were recruited using flyers 

and word of mouth. Volunteers were screened either in person (in the Physical Activity 

and Health Laboratory (PAHL)) or over the phone (from the PAHL) and were 

automatically excluded if they had any diagnosed cardiovascular, pulmonary, metabolic, 

joint, or chronic diseases, or limitation(s) in locomotion.  If volunteers were considered 

eligible, they were invited to the PAHL for an informed consent visit. 
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Experimental Instrumentation and Procedures 

Participants were fitted with a variety of activity monitors that were worn on the 

wrists, hips and ankle, and a biometric shirt.  The devices included: (1) wrist-worn, 

GT3X-BT (AGwrist), Apple iWatch Sport (AiW), Fitbit Flex (FBF), Garmin Vivofit 

(GV), Microsoft Band (MB), Misfit Shine (MFS) and Polar Loop (PL); (2) hip-worn, 

GT3X-BT (AGhip), Fitbit One (FBO), Misfit Flash (MFF), New Lifestyles NL-1000 

(NL) and Withings Pulse (WP); (3) ankle-worn, StepWatch (SW); and (4) Hexoskin 

Biometric shirt (HxSkin) (i.e. smart shirt). 

The researchers video recorded participants for each of the 2-hr sessions while 

participants performed normal activities. If private time was required (i.e. going to the 

bathroom), we did not observe participants during these private time periods.  At the end 

of the 2-hr recording period, the researchers removed the activity monitors and the 

participants removed the smart shirt. 

 

Instrumentation 

Research-grade accelerometer.  The previously described, ActiGraph GT3X-BT 

(GT3X-BT) Accelerometer (ActiGraph™ LLC, Pensacola, Florida). 

 

 

StepWatch™ (mōdus™ health llc, Washington, DC) monitor.  The StepWatch 

monitor is worn at the ankle of the dominant leg.  The StepWatch is a reliable 137 and  

accepted criterion measure for steps in healthy adults. 138  The StepWatch is a research 

and clinical tool for assessment of ambulatory function in free-living settings.  It is an 
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ankle- worn, microprocessor-controlled step counter, and detects steps for a wide variety 

of normal and abnormal gait styles and cadences.  Step counts can be recorded every 3 to 

60 seconds.  The StepWatch has been cleared by the US government FDA as a class II 

device. 

Activity Trackers.  Nine different activity trackers were studied: 1) AiW, 2) FBF, 

3) FBO, 3) GV, 4) MB, 5) MFF, 6) MFS, 7) PL, 8) WP and 9) NL.  For the NL, 

participants’ stride length was determined according to the manufacturers recommended 

method and programmed into the device. 139  See Appendix E for detailed specifications 

of each activity tracker.  

 

Biometric Shirt.  The market for emerging wearable categories including smart 

clothing is rapidly developing.  According to a recent report, smart clothing shipments 

will grow from 140,000 units in 2013 to 10.2 million units by 2020. 140  The Hexoskin 

Biometric Shirt (Hexoskin) (Carré Technologies Inc., Montréal, Québec, Canada) is 

sustained, in large part, by its utility as a tool for the management of athletes’ health, 141 

remote medical monitoring for long-term space missions and space exploration 142 and 

objectively measuring clinical populations in research settings. 143 

  

  The Hexoskin is a multi-parameter physiological recording system designed to 

monitor levels of physical activity and energy expenditure, which combines 

measurements of cardiac, ventilator, and hip-motion intensity (Figure 6). 

	



	

75 

	
Figure 6. Hexoskin output from one observation session 

 

Video Recording.  We employed a GoPro Hero+ LCD (GOPRO, Inc. San Mateo, 

Ca) camera to record all observation sessions.  The GoPro Hero+ LCD is a small, 

lightweight, waterproof camera that is capable of recording video at 1080 pixels and up 

to 70 frames per second.  The GoPro app was used to password protect the GoPro Hero+ 

LCD camera via wifi.  A 64 GB SanDisk micoSD™ memory card (SanDisk, Inc. 

Milpitas, Ca) was used to store the GoPro Hero+ LCD video files. 

Noldus (Information Technology B.V: Wageningen, Netherlands).  The Noldus 

Observer® XT is the software package for the collection, analysis, and presentation of 

observational data (Noldus Information Technology B.V: Wageningen, Netherlands).  

The Observer XT- Media Module was used in combination with The Observer XT® 

Base.  This module allows for the playback of one video and the creation of video 

highlights (Figure 7). 
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Figure 7. Noldus: The Observer XT 

The Observer XT- External Data Module (software module to include 

physiological or other external data) supports the import and synchronization of data 

from a wide range of data acquisition systems. The system combines, synchronizes and 

analyzes accelerometer signals (e.g. ActiGraph GT3X-BT accelerations) with the 

behavioral data and video (Direct Observation). The Observer® XT has been developed 

to enable advanced analysis of multimodal data in relation to observational data (Figure 

8). 
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Figure 8. Screenshot from The Observer XT while following one subject 
The Observer XT coding synched with imported GT3X-BT accelerometer data from the vertical axis at 1-second epochs for the hip 

(red box) and wrist (blue box) locations (the GT3X-BT is a triaxial (i.e. vertical axis, anterior-posterior axis and medial-lateral axis) 

accelerometer).   The subject transitioned from a run to a walk and then stretching	

Subject	
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Compendium of Physical Activities: Estimation of METs and Kcals from Direct 

Observation.  The Compendium of Physical Activities was developed for use in 

epidemiologic studies to standardize the assignment of MET intensities in physical 

activity questionnaires. 144  A MET is defined as the ratio of the work metabolic rate to 

the resting metabolic rate.  One MET is defined as 1 kcal/kg/hour and is roughly 

equivalent to the energy cost of sitting quietly.  A MET also is defined, as oxygen uptake 

in ml/kg/min with one MET equal to the oxygen cost of sitting quietly, equivalent to 3.5 

ml/kg/min.  The Compendium has been used in studies worldwide to assign intensity 

units to physical activity questionnaires and to develop innovative ways to assess energy 

expenditure in physical activity studies. 

 

Procedures 

Visit 1- Informed Consent, Questionnaires, Measurement of Height and Weight 

During the informed consent visit, a researcher explained the study and answered 

any questions.  If the potential participant agreed to enroll as a subject, he/she signed the 

UMass Institutional Review Board approved informed consent document (ICD) (see 

Appendix B for approved ICD) and completed two questionnaires: 1) physical activity 

readiness (PAR-Q) and 2) physical activity status (NASA physical activity scale (PAS)) 

(Appendices C and D).  For the PAS, participants were asked to choose a number which 

best describes their activity during the previous 30 days.  Possible responses range from 0 

to 7, with 0 corresponding to “avoided walking or exertion (e.g. always used the elevator, 

drove whenever possible instead of walking)”, and 7 corresponding to “ran more than 10 

miles per week or spent over 3 hours per week in comparable physical activity”.  Next, 
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participants’ height was measured using a standard floor stadiometer and weight was 

measured using a Tanita scale (DC-430) to the nearest 0.25 cm and 0.1 kg, respectively.  

Participants then provided demographic information (e.g. ethnicity) and were scheduled 

for three 2-hr data collection (observation) sessions.  

 
Research-grade accelerometer.  Participants were fitted with two ActiGraph 

GT3X-BT activity monitors.  Both GT3X-BT monitors were synced to the same laptop 

and initialized in advance to collect data at a sampling rate of 80 Hz. They were 

positioned on the wrist and right hip of each participant.  The wrist monitor was secured 

using a Velcro strap to the non-dominant wrist (positioned over the dorsal aspect of the 

wrist midway between the radial and ulnar styloid processes), and the hip monitor was 

secured using a belt at the iliac crest in line with the anterior axilla.  The initialization and 

wrist wear location are consistent with the current National Health and Nutrition 

Examination Survey (NHANES) activity monitoring study protocol. 145 

 

StepWatch™ monitor.  Participants were fitted with a SW monitor, fastened using 

a Velcro strap to the dominant ankle (positioned superior to the lateral malleolus).  The 

SW was programmed to record at 3-second intervals, with sensitivity set to 13 and 

cadence set to 73, consistent with a previous study that our lab conducted.112 Sensitivity, 

the magnitude of acceleration that the device qualifies as constituting a step, and cadence, 

how often the device searches for steps taken. 

 

Activity Trackers.  The device placement was counterbalanced across subjects.  

For example, the total number of devices worn was the same for all subjects but the order 
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in which the devices were placed on subjects was different between subjects.  The same 

placement positions within each participant across the 3 observation sessions (e.g. 

participant 2, Misfit Flash, left hip for all observation sessions) was used. 

 

Direct Observation 

Criterion: Direct Observation.  Participants were met by a trained observer in their 

natural environment (e.g. home, place of work) and observed for approximately two 

consecutive hours.  The GoPro video files were imported into the Behavior coding 

software The Observer® XT.  

Focal sampling and duration coding (FSD) were used to record participant 

behavior (activity type, body posture, intensity and duration).  The FSD method is one 

where every time a behavior changes (e.g. sitting to standing) the observer recorded the 

new activity type, body posture and intensity into The Observer XT program.  Each entry 

of a behavior change was time stamped and the duration of each behavior bout was 

saved.  During the two-hour observation time, participants could have “private time” 

when needed.  Reasons for “private time” included behaviors such as using the restroom 

and changing clothes.  During these activities, the observer did not video the participant 

and the camera was pointed to the ground and recorded as private time in Observer XT.   

 

 Direct observation observer training.  Training involved research 

assistants learning how to identify and record activities described in the direct 

observation (DO) methods (Criterion DO below).  The observer training objectives 

were to: (1) complete an extensive verbal and video training and testing, (2) learn 
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strategies to avoid disrupting free-living behavior, and (3) to accurately record 

activity type and intensity, all prior to observing participants in a free-living 

environment.  Observers completed DO training that includes review of a training 

manual, (2) 2-hours of training videos (videos include subjects in free-living settings 

engaging in a variety of free-living behaviors such as, activities of daily living, 

locomotion and exercise), and (3) DO practice sessions with the GoPro camera 

(minimum of 12-hrs of training).  After the training, study observers completed a 

testing video that is ~10 minutes in duration and included different activities with 

various postures. Before data collection, researchers were required to correctly 

classify at least 90% (Cohen’s kappa coefficient (k) ≥ 0.90) of the body positions, 

intensity levels, and duration of activities throughout the testing video. 

 

Compendium of Physical Activities.  The Compendium of Physical Activities was 

not developed to determine the precise energy cost of physical activity within 

individuals, but rather to provide a classification system that standardizes the 

MET intensities of physical activities used in survey research. The values in the 

Compendium do not estimate the energy cost of physical activity in individuals in 

ways that account for differences in body mass, adiposity, age, sex, efficiency of 

movement, and geographic and environmental conditions in which the activities 

are performed. 146  Therefore, the Compendium of Physical Activities was used in 

concert with the preceding coding scheme to estimate physical activity (MET 

level) in free-living environments.  Study observers were extensively trained 

(previously described) in how to identify physical activity behaviors and their 
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associated MET values within the Compendium of Physical Activities, before 

observing participants in a free-living environment.  

 

Direct Observation Sessions: Visit 2, 3 and 4.  Participants were met by a trained 

observer in their natural environment (e.g. home, place of work, school) and observed 

for approximately two consecutive hours.  A GoPro video camera was used to record 

each observation session.  Each of the 2-hr observation sessions were done at 

different times of the day (e.g. Session 1: morning; Session 2: afternoon; Session 3: 

evening), including one weekend day, in the participants’ free-living settings (e.g. 

home, work, driving). If/when a participant drove; researchers either road with the 

participant or followed from a safe distance in a separate car. Two researchers were 

always present during the observation sessions, one videographer and one to take 

notes, support videographer and drive if needed.   For these three visits, researchers 

initialized devices and met the participants in their free-living environment to be 

fitted with a variety of activity monitors that were worn on the wrists, hip and ankle, 

and a biometric shirt.  Participants wore 7 monitors on the wrists (4 on one wrist and 

3 on the other wrist), 5 monitors on the right and left hip, 1 monitor on the ankle of 

the dominant leg and 1 biometric shirt worn as an undergarment (Figure 9). The 

biometric shirt estimates energy expenditure and steps (Table 4). 
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Figure 9. Participant equipped with all devices for observation session 
 

The researchers video recorded participants for the 2-hr sessions while 

participants performed normal activities (including driving). Every attempt was made to 

avoid including faces in these video recordings. If any faces appear in the video we edited 

these shots to blur from the video recording. If private time was required (i.e. going to the 

bathroom), participants were not observed during these private time periods. At the end 

of the 2-hr recording period, the researchers recorded the data from the ATs via the real-

time display or iPhone app, and removed the activity monitors.  Finally, researchers 

returned to the lab and downloaded data from monitors and video recording.  
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 Other considerations.  We expected that some participant’ normal 

activities may bring them to the Recreation Center for individualized workouts or 

group activity classes. We were sensitive to the privacy of our participants and those 

persons of the surrounding environment and as a result we had safeguards in place to 

ensure that privacy was preserved.  For example, sound was not recorded, and 

identities (faces) of all individuals in the video were blurred, thus, individuals are not 

identifiable. If the participant took part in a group fitness class, we communicated 

with the instructor, informing her of the purpose of our study and gave a short (~ 

60 seconds) explanation to the class and handed out study information (Appendix F).   

 

Data Processing and Statistical Evaluation 

Data Processing 

All data cleaning, processing and analysis were done using the open source R 

statistical software package (www.r-project.org) and computing language R. 136  

 

Criterion: Direct observation.  For an observation to be included in the analysis, 

the full 2-hour observation was continuous including private time.  Behavior coded, as 

“private time” were eliminated from analysis. 

Focal sampling and duration coding were used, with trained data collectors coding 

the real-time occurrence (i.e. The Observer XT Media Module synchronized with activity 

tracker data using The Observer XT External Data Module) of the eight activity 

categories, body positions, and intensities described below: 

1. Lying: Individuals were flat on their backs (horizontal); sedentary (<1.5 METs). 
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2. Sitting: Individuals had some of their body weight supported by the buttocks or 

thighs. The upper body was not parallel to the ground. If they kneeled, they were 

coded based on the thigh position (i.e., if the thigh was parallel to the ground, 

sitting was selected). 

3. Standing still: Individuals were standing with little or no contribution from the 

upper body. They were not carrying a load >1 kg. Standing still included talking 

with hand gestures, looking at something, or waiting in a line; sedentary (<1.5 

METs). 

4. Standing with upper body movement: Individuals were upright with some 

contribution from the upper body that causes an increase in energy expenditure 

(holding a load >1 kg, filing papers, or doing a task that required the arms). The 

purpose of the activity included the upper body; light (1.5 – 2.9 METs). 

5. Standing/moving: Individuals were engaging in activities that were of light 

intensity (1.5 – 2.9 METs); e.g., walking at a speed <2.5 mph and not be carrying 

a load). These activities included movements around an office or a home but not 

for locomotion (e.g., traveling between one place and another). 

6. Moving moderate: Individuals were engaging in activities (3.0 – 5.9 METs). 

Examples include walking >2.5 mph, gardening, vacuuming, and carrying a load. 

7. Moving vigorous: Individuals were engaging in activities (6.0-8.9 METs). This 

typically involves purposeful exercise including jogging, walking briskly uphill, 

and sporting activities. 
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8. Moving very vigorous: Individuals were engaging in activities >9.0 METs.  This 

typically involves purposeful exercise including running 6 mph, bicycling at 200 

watts, and conditioning classes. 

 

A log of the start and stop of each behavior recorded by the observer was 

exported to a csv file using a custom software and profile (Noldus: The Observer XT 

12.5).  These data were used to determine criterion measures of activity and inactivity 

including, MET-hours, MET-minutes (where, 1 MET = 1 kcal/kg/hr), kcals per hour 

(where, Kcals=METs x time x BW (kg) and  time in categories of intensity. The Mifflin-

St Jeor equation was used to estimate participant resting metabolic rate (RMR), 147 which 

has been shown to be valid and reliable in estimating RMR in adults. 148,149  The RMR 

was added to the EE estimates from the WP and summed to estimate total calories (e.g. 

exercise + resting).   

Total EE was determined by summing/totaling the amount of time spent in all 

body positions from the DO coding system (e.g. total MET-minutes).   METs were then 

converted to Kcals/minute as recommended by Ainsworth et al.144 

Kcals= METS x time x body weight in kilograms 

Criterion.  DO steps were defined as each event when the foot was completely 

lifted off and lowered back to the ground. To determine criterion step count, steps were 

manually counted twice for each 2-hour video recording session, and averaged. If there 

was a 5% difference between total step counts, the video was analyzed a third time and 

the average of the two closest total step counts was used for analysis (% difference = 

((Count 1 – Count 2)/ Count 1) x 100) 
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Research-grade accelerometers  

ActiGraph GT3X-BT.  Accelerometer data were downloaded to a laptop using the 

ActiLife v6.1.1 software (ActiGraph, Pensacola, FL) and were later extracted to match the 

corresponding DO time blocks. These data were then be processed to derive total time 

spent in each activity type and intensity for each participant.   

 

StepWatch™ monitor.  StepWatch data were downloaded to the same laptop used 

for all devices via the StepWatch software (v3.4).  Next, the StepWatch data from the 

observation session were exported and saved for analysis.  Total steps were determined 

by summing/totaling the number of steps taken. 

 

Activity Trackers 

Steps, EE, Activity minutes (if provided by activity tracker) and sedentary time (if 

provided by AT) data from activity trackers were recorded at the beginning and at the end 

of each observation session.  Total estimates were then calculated by subtracting the 

beginning values from the ending values. 

 

Fitabase (Small Steps Labs, LLC. San Diego, Ca).  All Fitbit data were exported 

using Fitabase.  Fitabase is a research platform that acquires data from Internet connected 

consumer devices.  Currently, Fitbit is the only consumer device company that utilizes 

Fitabase.  The advantage of using this platform to acquire Fitbit data is that it provides 

minute-by-minute data for activity minutes (intensity), kcals, MET-minutes and steps in 
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comparison to the Fitbit software and Dashboard which only provides totals for activity 

minutes (intensity), kcals, MET-minutes and steps for the monitoring period. 

 

Biometric Shirt.  First, the Hexoskin Biometric Shirt data was downloaded to the 

HxServices Dashboard.  Next, an “Activity” was created in the myhexoskin website for 

the 2-hour observation session (data are time stamped) (Figure 10) and EE and steps were 

recorded. 

	

Figure	10.	Hexoskin	Biometric	Shirt	activity	output		
	

Session date, time 
and duration 

Participant ID 
And session # 

Total Kcals 

Total Steps 
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Device (Location) Output Data Extraction Method 

  Upload Retrieval 

Apple iWatch Sport (W) EE, steps, active calories, min: exercise, total active time, stand hours Bluetooth Apple Activity App 

GT3X-BT (W & H) Steps, min: Sedentary, light, moderate, vigorous USB cable ActiLife 

Fitbit Flex /One (W/H) EE, steps, MET-min, min: sedentary, light, moderate, vigorous Bluetooth Fitabase 

Garmin Vivofit (W) EE, steps, active calories, %: sedentary, active, highly active Bluetooth Garmin Connect™ App 

Hexoskin (T) EE, steps USB cable Hexoskin dashboard 

Microsoft Band (W) EE, steps, active min USB cable MB dashboard 

Misfit Flash/Shine (H/W) EE, steps, active min: light, moderate, vigorous Bluetooth Misfit App 

New Lifestyles NL-1000 (H) Steps, MVPA min RTD RTD 

The Observer XT (NA) MET-hours, MET-min The Observer XT The Observer XT 

Polar Loop (W) EE, steps, time: lying, sitting, active, sitting, min: stand, walk, run USB cable Polar dashboard 

StepWatch (A) Steps USB cable StepWatch dashboard 

Withings Pulse (H) EE, steps Bluetooth Withings App 

Table 4. Devices with corresponding output and data extraction method 
H, hip; W, wrist: T, torso; A, Ankle; NA, not applicable; EE, energy expenditure; min, minutes; MVPA, moderate-to-vigorous 

physical activity; MB, Microsoft Band; RTD, real-time display.
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Video files.  Video files were edited (e.g. combined and participants de-identified) 

using CyberLink PowerDirector 13 Ultra (CyberLink LLC. Boyds, MD) video editing 

software (Figure 10). 

	

Figure 11. De-identified observation session video 
 

Statistical Evaluation 

Statistical Analysis Plan 

Accuracy 

Bias.  We used bias in units of minutes, kcals and steps (activity tracker estimates 

– criterion) and as a percentage [(mean difference between the activity tracker estimates 

and the criterion/ criterion x 100]. 

Precision 

We used confidence intervals (CI) as measures of precision.  If the upper and 

lower 95% confidence interval of the bias span 0, then the estimate was not considered 
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significantly different from the criterion at α = .05.  Higher precision was indicated by 

higher correlations and smaller CI.   Linear-mixed models were used to account for the 

correlation within subjects, as each subject provides more than one observation (one from 

each 2 hour session).		
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Study Three: Activity Trackers are Sensitive to Change in Physical Activity and 

Sedentary Behaviors in Free-Living Settings  

 

Experimental Procedures 

 
The data used in this study are from our previous study, “Validation of Consumer 

and Research-Grade Activity Monitors in Free-Living Settings.” 

 

Data Processing and Statistical Evaluation 

The aims of this study were: 1) to examine the ability of ATs to detect change in 

PA and ST in free-living settings and 2) to examine the ability of research-grade 

accelerometer to detect change in PA and ST in free-living settings.  Described below are 

the statistical methods to address this aim. 

 
Data Processing 

All data cleaning, processing and analysis were done using the open source R 

statistical software package (www.r-project.org) and computing language R. 136  

 

Statistical Evaluation 

 

Direct observation provided criterion measures of change in steps, EE, activity 

minutes and sedentary time 
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 Visit 1 Visit 2 Visit-to-Visit 

Change 

 MFS DO MFS DO MFS DO 

Kcals/2-

hrs 

416 287 583 325 -167 -38 

Table 5. Example of one subject’s data for Misfit Shine estimated kcals and DO 
measured Kcals for visits 1 and 2. 
MFS, Misfit Shine; DO, direct observation (criterion Kcals) 

 

For both the criterion measure and the device estimates, we calculated the 

differences between the visits (i.e. visit 1 minus visit 2, visit 1 minus visit 3 and visit 2 

minus visit 3) for estimated steps, EE, activity minutes, and or sedentary time. We then 

classified the criterion and device measured outcomes for visit-to-visit change into one of 

three categories: increase, no change or decrease where an increase or decrease was 

defined as a change that was greater than the within-subject standard deviation of the 

criterion measure (estimated by a linear-mixed model). Finally, confusion matrices were 

used to determine percent agreement between criterion visit-to-visit change and device 

visit-to-visit change.  Table 6 illustrates a confusion matrix and percent agreement for 

DO visit-to-visit change and FBF visit-to-visit change for seven participants.	
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Percent Agreement = 100 

  Fitbit Flex Changes 

  Decrease No Change Increase 

Direct 

Observation 

Changes 

Decrease 7   

No Change  3  

Increase   11 

Table 6. Confusion matrix and percent agreement change in energy expenditure 
between sessions (session 1 – session 2, session 1 – session 3, session 2 – session 3) for 
seven participants 
	 	



	

 95 

CHAPTER 4 

STUDY ONE – A COMPARISON OF CONSUMER ACTIVITY TRACKER 

ACCELEROMETER OUTPUT AND A RESEARCH-GRADE 

ACCELEROMETER OUTPUT DURING ORBITAL SHAKING 

 

Introduction 

 
Electronic testing of research-grade accelerometers has provided valuable 

information about device performance during controlled accelerations at different 

frequencies.  This information has been essential for researchers to gain a more 

comprehensive understanding of the strengths and weaknesses of accelerometers in 

highly controlled testing conditions using electronic testing systems.   The ActiGraph 

(AG)(ActiGraph, LLC, Pensacola, FL) accelerometer provides an objective estimate of 

human physical activity (PA) and is used in many research studies and in clinical 

settings. 50-52  The ActiGraph GT3X-BT detects a wide range of accelerations and 

samples acceleration from 30 to 100 Hz.  Standardized electronic validation and 

reliability testing of the AG has been performed using the GT3X+, GT3X, GT1M, 7164 

and 71256.  In these studies, electronic devices such as wheels, 53,54 a table, 55 and orbital 

shaking 56-58 were employed to examine accelerometer output at fixed frequencies.  From 

these studies, we have advanced our understanding of differences in accelerometer 

counts, steps, and raw acceleration as a function of model, band-pass filter methods, 

sampling frequency, accelerometer type (piezoelectric versus solid state 

microelectromechanical systems (MEMS)) and firmware.   
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To date, our laboratory has published the only study that has applied electronic 

testing techniques to examine the accelerometer output of consumer activity trackers 

(ATs).150  The benefits of electronic orbital shaker testing are that it allows us to: (1) 

expose ATs to different oscillation frequencies to simulate different movement intensities 

and (2) vary oscillation frequencies to simulate variation in free-living whole-body 

acceleration. The electronic orbital shaker will inform researchers of how ATs perform 

under highly controlled conditions.  Orbital shaker testing removes human variation from 

the testing environment.  As a result, observed differences would be due to technological 

features of the devices that are not impacted by human variation. Our lab employed an 

electronic orbital shaker to assess the data of several consumer ATs compared to the AG 

GT3X+ accelerometer (unpublished observations). 62  We found that AT data was highly 

correlated with oscillation frequency (r range: 0.92 to 0.99).   

Electronic testing of ATs is a necessary first step in building a scientific 

knowledge base of these increasingly popular devices.  Therefore, the purpose of the 

present study was to compare consumer ATs with the research-grade ActiGraph™ 

GT3X-BT accelerometer in estimating energy expenditure (EE) and steps during orbital 

shaking at different frequencies.  We hypothesized that EE and step estimates from 

consumer ATs would be similar to the EE and step estimates of the research grade 

GT3X-BT accelerometer during standardized testing using an electronic orbital shaker. 

Methods 

Instrumentation 

Research-grade accelerometer: Reference Standard.    The ActiGraph GT3X-BT 

(GT3X-BT) accelerometer (ActiGraph™ LLC, Pensacola, Florida) served as the 
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reference standard to which all ATs were compared.  This device is a lightweight triaxial 

PA monitor (4.6cm x 3.3cm x 1.5cm, 19g) that measures acceleration ranging from -8 to 

+8 g’s. Data were collected at a sample rate of 80 Hz and post-processed in the ActiLife 

software version 6.1.3 to 60-second epochs. 

 

Activity Trackers 

Activity trackers were chosen based on three criteria: (1) no known gravimeter 

within the device, (2) researchers had at least two of the device, and (3) the device fit in 

the cushioned slots of the shaker. The rationale for excluding ATs that contain a 

gravimeter was that the electronic orbital oscillator does not produce vertical 

accelerations and as a result, a device that contains a gravimeter would produce 

inaccurate data, as it would detect no change in gravitational position.  The rationale for 

at least two devices was to counterbalance each other in the electronic orbital oscillator.  

Six different ATs were studied: 1) Fitbit Flex (FBF)(Fitbit® Inc., San Francisco, 

California), 2) Fitbit One (FBO)(Fitbit® Inc., San Francisco, California), 3) Garmin® 

Vivofit (GV)(Garmin Ltd., Schaffhausen, Switzerland), 4) Misfit Flash (MFF)(Fossil 

Group, Inc.), 5) Misfit Shine (MFS)(Fossil Group, Inc.), and 6) New Lifestyles NL-1000 

pedometer (NL)(New Lifestyles, Inc., Lee’s Summit, Missouri).  See table 7 for detailed 

specifications of each activity tracker.			
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Device Fitbit Flex Fitbit One 
 

Garmin 
vívofit 

New 
Lifestyles 
NL-1000 

 Misfit 
Flash 

Misfit 
Shine 

Cost $39.95 $99.95 $99.99 $54.95  $19.99 $39.95 
Wear location Wrist 

 
Clip on 

(multiple 
locations) 

Wrist 
 

Hip 
 

 Clip on 
(multiple 
locations) 

Clip on 
(multiple 
locations) 

Tracks Calories 
Burned 

� � � �  � � 

Tracks Active 
Time 

� � � �  � � 

Tracks Steps � � � �  � � 
Tracks Distance � � � �  � � 
Tracks 
Elevation/Stairs 

� � � �  � � 

Tracks Sleep � � � �  � � 
Tracks Heart 
Rate 

� � � �  � � 

Battery or 
Chargeable 

Chargeable 
(every 5 

days) 

Chargeable 
(every 10+ 

days) 

Battery 
(every 1+ 

years) 

Battery (up 
to 18 

months) 

 Battery 
(lasts up to 6 

months) 

Battery 
(lasts up to 6 

months) 
Uploading Data Bluetooth Bluetooth Bluetooth Real-time 

data 
 App App 

Tracker Display LED 
progress 
indicator 

Real-time 
data 

Real-time 
data 

Real-time 
data 

 LED 
progress 
indicator 

LED 
progress 
indicator 

Table 7. Features of consumer-based activity trackers 
LED, Light-Emitting Diode; USB, Universal Serial Bus; App, application 

 

Electronic Orbital Shaker.  The electronic orbital shaker (Advanced Orbital 

Shaker, Model 10000-2; VRW International, Radnor, PA) (Figure 1) produces controlled 

oscillations between 0.25 and 5.0 Hz.  The electronic orbital shaker oscillates at various 

radii between 1.27 and 5.7 cm. Four trays (51 x 10 x 10 cm) are mounted on the base 

oscillating plate (60 x 60 cm) of the shaker. Each tray has four custom foam cushion slots 

to securely hold the GT3X-BTs and ATs in place to eliminate device movement during 

electronic orbital shaking (Figure 12). 
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Figure 12. Electronic orbital shaker with devices in custom foam cushioned slots 
 

Procedures 

Electronic Orbital shaker.  The electronic orbital shaker was used to perform 

motion testing.  Two of each device were tested at the same time.  All devices were 

placed in the custom foam cushion slots with their vertical plane perpendicular to the 

control panel of the electronic orbital shaker (figure 12).  

The GT3X-BTs and ATs were oscillated using two protocols, (1) 3-minute trials, 

and (2) 2-hour trials.  Each 3-minute trial consisted of one monitor oscillation frequency 

(e.g. 0.9 Hz).   Oscillation frequencies were increased from zero, 0.25 to 3.0 Hz in 0.1 Hz 

increments for a total of 24-trials.  The step-wise increase in frequency allowed 

researchers to test the effect of specific frequencies on device output.  Each protocol 

(twenty-four, 3-min trials; 2-hour trial) was repeated three times.  The 2-hour trials 

consisted of oscillation frequencies ranging from zero to 3.0 Hz., based on the American 

Time Use Survey (ATUS) percentages of time spent in selected activities, normalized for 

2-hours, 135 to simulate free-living whole body acceleration (e.g. variation).  These 
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frequencies simulate hip rotation ranging from no movement (e.g. sleep) to ambulation at 

speeds ranging between 1.5 and 16 miles per hour. 81  Two-hour blocks were chosen as it 

was not feasible to test devices for 24-hours consecutively.  All shaker oscillations were 

performed on a fixed radius 56,134 of 5.08 cm.  

  

Oscillation Frequencies.  Oscillation frequency ranges for each activity category 

were established by electronically oscillating six GT3X-BTs at 0.0, 0.25 to 3.0 Hz in 0.1 

Hz increments and applying cutpoints.  Each 0.1 Hz. increment was oscillated for 3-

minutes and the second minute of each trial was used to determine counts per minute at 

each frequency.  Using the second minute ensured that the desired frequency was 

achieved for the entire minute. The GT3X-BT data were collected at 80 Hz., with the low 

frequency extension for oscillation frequencies <0.7 Hz., post processed using ActiLife 

software (v 6.1.3) and aggregated into VM counts per minute.  These data were scored in 

ActiLife using the Freedson VM3 cut-points. 52 Lastly, the intensity categories and their 

associated frequencies were used to determine the 2-hour electronic oscillation trial: 

frequency, intensity and total time.   

 

Data Collection and Processing.  The GT3X-BTs were synched to the same laptop 

as the ATs and initialized in advance of data collection (sampling rate of 80Hz).  These 

raw data were post processed into 1-second epochs/counts and steps via ActiLife v6.1.3 

software.   

Minute-by-minute EE (kcals) was estimated and summed for all 3-minute trials 

and for each 2-hour trial using the prediction equation previously developed by our 



	

 101 

group, 52 labeled the “Freedson VM3 (2011)” equation in the ActiLife software.  The 

Freedson VM3 equation has been validated in classifying PA intensity.52 

The same user profile (e.g. weight in kg) was used for the GT3X-BTs and ATs. 

The low frequency extension (LFE) option was selected in the ActiLife software to detect 

lower amplitude movements. The LFE option lowers the baseband of the filter cut-off, 

expanding the bandwidth of the accumulated data.  The LFE was selected to ensure 

acceleration detection at slower oscillation frequencies (e.g. 0.7 Hz). 

 

Activity Trackers  

Pre-3-minute oscillation trials and 2-hour oscillation trial.  Thirty-minutes prior to 

the first 3-minute and the 2-hour oscillation trial, all activity trackers were 

initialized/synched using the same user profile (e.g. date of birth, gender, height and 

weight) and the same computer was used as was used to initialize the GT3X-BTs.  Next, 

the GT3X-BT and ATs (FBF, FBO, MFF, MFS, GV and NL) were secured into their 

respective customized foam cushion slots within each tray of the electronic orbital shaker 

(Figure 12).  Two of each device were tested in the electronic orbital shaker.    

Immediately prior to each 3-minute oscillation trial and each 2-hour oscillation 

trial, all Misfit data were retrieved via the Misfit app (iPhone 6s) and baseline step values 

for the MFS and MFF were recorded as neither device is equipped with a real-time 

display.  Steps from the GV were recorded from the real-time display.  The NL 

pedometers were set at 0 steps.  The values for EE and steps from the FBF, FBO and the 

GT3X-BT were retrieved and recorded pre-and post each 3-minute oscillation trial and 

each 2-hour oscillation trial. The start and stop time for each 3-minute oscillation trial 
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and each 2-hour oscillation trial were synchronized with the time of the same laptop used 

for initialization/synching and downloading of all devices. 

Data Processing.  Following each 3-minute and 2-hour oscillation trial total steps 

for the: 1) MFF and MFS were downloaded via Bluetooth and retrieved via the Misfit 

app (iPhone 6s), 2) FBF and FBO were synched/downloaded to the Fitbit Dashboard via 

Bluetooth and retrieved from the Fitabase website (described below), and 3). Garmin 

Vivofit were retrieved from the real-time display.  Total steps for the NL pedometer were 

retrieved from the real-time display.  Total EE for the FBF and FBO were 

synched/downloaded to the Fitbit Dashboard via Bluetooth and retrieved from the 

Fitabase website (described below).  The GT3X-BT data were collected at 80 Hz, with 

the low frequency extension for oscillation frequencies <0.7 Hz (3-minute oscillation 

trials only), post processed using ActiLife software (v 6.1.3) and aggregated into VM 

counts per minute.  Total estimated kcals for each 3-minute and 2-hour oscillation trial 

were calculated and summed employing the “Freedson VM3 (2011)” equation in Actilife 

(v 6.1.3).  Total steps from the GT3X-BT were obtained by summing: 1) each 3-minute 

oscillation trial, and 2) each 2-hour oscillation trial. 

 

Fitabase (Small Steps Labs, LLC. San Diego, Ca).  All Fitbit data were exported 

using Fitabase.  Fitabase is a research platform that accesses data from Internet connected 

consumer devices.  The advantage of using this platform to acquire Fitbit data is that it 

provides minute-by-minute data for activity minutes (intensity), kcals, MET-minutes and 

steps in comparison to the Fitbit software and Dashboard which only provide total 

activity minutes (intensity), kcals and steps for the monitoring period. 
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Statistical evaluation 

All data cleaning, processing and analysis were done using the open source R 

statistical software package, version 3.3.3 (www.r-project.org) and computing language 

R. 136  

 

Data Analysis.  To evaluate AT estimates, we used two statistical tools: bias 

(mean difference between the estimate and the reference) provides information about the 

accuracy of the estimate and if the upper and lower 95% confidence intervals of the bias 

span 0, then the estimate is not significantly different from the reference at α = .05.  

Linear mixed effects models assessed main effects of device and frequency and random 

effects of trial on activity tracker estimates of EE and steps compared to GT3X-BT 

estimates of EE and steps. Significance level was set at α = .05. 

 

Results 

Figure 13 shows steps per 3-minutes during electronic oscillation.  The NL was 

not significantly different from the GT3X-BT beginning at 0.9 Hz (corresponding to 

moderate intensity PA).  The largest difference between the NL and the GT3X-BT was 

142 steps/3-min at 0.8 Hz (corresponding to moderate intensity PA).  All other AT step 

estimates were significantly different than GT3X-BT steps.  For the MFF, the largest 

difference was 285 steps/3-min at 1.5 Hz (corresponding to very vigorous intensity PA).  

However, these differences were smaller beginning at 2.4 Hz (44 steps/3-min) 

(corresponding to very vigorous intensity PA).  For the MFS, the largest difference was 
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102 steps/3-min at 1.5 Hz (corresponding to very vigorous intensity PA).  However, these 

differences were smaller beginning at 2.4 Hz (44 steps/3-min) (corresponding to very 

vigorous intensity PA).  For the FBO, the largest difference was -310 steps/3-min at 2.4 

Hz (corresponding to very vigorous intensity PA).  However, these differences were 

smaller beginning at 2.5 Hz, with the smallest difference at 2.6 Hz (-264 steps/3-min) 

(corresponding to very vigorous intensity PA).  For the FBF, the largest difference was -

385 steps/3-min at 2.4 Hz (corresponding to very vigorous intensity PA).  However, these 

differences were smaller beginning at 2.5 Hz (corresponding to very vigorous intensity 

PA), with the smallest difference at 2.6 Hz (-317 steps/3-min) (corresponding to very 

vigorous intensity PA).  The GV detected no steps at all frequencies tested. 

 

Figure 14 shows energy expenditure per 3-minutes during electronic oscillation.  

Energy expenditure estimates from both the FBO and FBF were significantly different 

than GT3X-BT estimates of EE.  For the FBO, the largest difference was -35 kcals/3-min 

at 2.4 Hz.  However, these differences were smaller beginning at 2.5 Hz, with the 

smallest difference at 2.6 Hz (-34 kcals/3-min).  For the FBF, the largest difference was -

39 kcals/3-min at 2.3 Hz.  However, these differences were smaller beginning at 2.5 Hz, 

with the smallest difference at 2.9 Hz (-31 kcals/3-min). 

 

Figure 15 shows steps per 2-hours during electronic oscillation.  Average steps for 

the GT3X-BT were, 5831, 5178 and 6301 steps/2hr. for trials 1, 2 and 3, respectively.  

On average, the FBO and the GV significantly underestimated steps for all trials.  These 

underestimations ranged from -6200 to -4200 steps/2-hrs.  On average, the FBF 
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underestimated steps with two trials significantly different than the GT3X-BT.  The NL 

significantly underestimated one trial compared to the GT3X-BT.  In contrast, the MFS 

and MFF significantly overestimated steps for two trials compared to the GT3X-BT.  

These overestimations ranged from 50 to 2,200 steps per 2-hrs. 

 

Figure 16 shows energy expenditure per 2-hours during electronic oscillation.  

Average kcals for the GT3X-BT were, 601, 508 and 681 for trials 1, 2 and 3, 

respectively.  The FBF, FBO and the GV significantly underestimated kcals for all trials.  

These underestimations ranged from -580 to -65 kcals/2-hrs.  In contrast, the MFS and 

MFF significantly overestimated kcals for two trials and significantly underestimated 

kcals for one trial compared to the GT3X-BT.  Average overestimations ranged from 105 

to 190 kcals/2-hrs.  Average underestimations ranged from -160 to -170 kcals per 2-hrs. 

 

Figure 17 illustrates the relationship between hertz and acceleration.  Note that the 

relationship between hertz and counts differs, as the relationship is curvilinear starting at 

2.5 Hz (see Figure 5). 

 
Discussion 

Currently, no published studies have examined ATs during electronic shaker 

testing.  Therefore, in this discussion interpretation it is necessary to compare our results 

to human studies.  There is evidence that electronic oscillation of the GT3X simulates hip 

rotations similar to ambulation at speeds ranging between 1.5 and 16 miles per hour. 81  

Therefore, to provide meaning, and context to the present study’s findings, the following 

discussion will present evidence from validation studies comparing Fitbit, Garmin, Misfit 
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and NL-1000 estimates of steps and/or EE to criterion measures during lab-based 

treadmill walking and running.  

The purpose of the present study was to compare consumer ATs with the 

ActiGraph™ GT3X-BT accelerometer in estimating EE and steps during orbital shaking 

at different frequencies.  To address this question, two protocols employing an electronic 

orbital shaker were developed: a 3-minute trial at specific frequencies and a 2-hr trial at 

various frequencies.   

 

Our main findings from the 3-minute protocol were that for steps, the NL was not 

significantly different from the GT3X-BT beginning at 0.9 Hz and held constant through 

3.0 Hz.  Previously, our group exposed GT3X-BTs to electronic oscillation frequencies 

from zero to 3.0 Hz in 0.1 Hz increments and applied the widely used Freedson (VM3) 

cut-points to categorize frequencies into corresponding intensity levels.  We found that 

0.9 Hz elicits GT3X-BT VM counts corresponding to moderate intensity PA.  

Additionally, 0.6 to 0.8 Hz corresponds to the change from light to moderate intensity 

PA, suggesting, that the NL may be less sensitive to sedentary to light PA as compared to 

moderate, vigorous and very vigorous PA.  All other AT step estimates were significantly 

different than GT3X-BT steps.  Another finding was step estimates from devices of the 

same company displayed similar trends.  For example, both Misfits produced the largest 

and smallest errors at 1.5 and 2.4 Hz, respectively.  The Fitbits, produced the largest and 

smallest errors at 2.4 and 2.6 Hz, respectively.  In contrast, the GV detected no steps.  

According to the Garmin website, the Vivofit only possesses one sensor: an 

accelerometer.151  However, we posit that this device utilizes a gravimeter, which 
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continuously identifies true vertical axis.  The electronic orbital shaker oscillates in the 

horizontal versus the vertical plane.  These findings elucidate technological differences 

between ATs.  For example, ATs employ triaxial accelerometers in concert with user 

information, band-pass filters, firmware, and proprietary algorithms to estimate PA 

behaviors, such as, steps.  For researchers, this “black-box” method of deriving PA 

behavior estimates remains a challenge. 

Main findings from the 3-minute protocol were that for EE, both the FBO and 

FBF were significantly different that GT3X-BT estimates of EE.  The largest and 

smallest differences ranged from 2.4 to 2.9 Hz. This frequency range corresponds to very 

vigorous intensity PA.  This suggests that estimates of EE from the FBO and FBF may 

not be comparable to EE estimates from the GT3X-BT derived via the Freedson EE 

equation.  Moreover, these findings strengthen the argument that proprietary algorithms 

may be a primary cause of observed differences in AT data compared to GT3X-BT data. 

 

Our main findings from the 2-hour protocol were that for steps, the NL produced 

the smallest bias (bias for all trials = -570 steps/per 2-hrs), and two of three trials were 

not significantly different than our reference measure (GT3X-BT).  Our findings of the 

relationship between NL steps and GT3X-BT steps are consistent with the those of Abel 

et al. 152 Briefly, 59 participants performed treadmill walking and running at speeds 

ranging from 2.2 to 4.0 mph while wearing the NL on the waist.  They reported that, the 

NL and AG 7164 yielded the most accurate step counts at a range of walking speeds in 

individuals with different physical characteristics.  Next, we found that, the FBO and the 

GV significantly underestimated steps for all trials.  Bias for all trials was -5120 and -
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5770 for the FBO and GV, respectively.  Additionally, the FBF significantly 

underestimated steps for two of the three trials.  Bias for all trials was -1651 steps/2-hrs.  

Lab-based validation studies have provided evidence that, in general, FBF and FBO 

underestimate steps with varying precision compared to criterion measures during 

treadmill walking and running. 20,25,26,28-30  Our finding that GV significantly 

underestimated steps, is supported by Chen et al. 20 who showed that the GV significantly 

underestimated steps compared to DO during treadmill walking and running at speeds 

ranging from 2.0 to 5.0 mph (p<.05).  Lastly, we found, both Misfits significantly 

overestimated steps for two trials.  Bias across all trials was 1,921 and 1,332 steps/2-hrs, 

for the MFF and MFS, respectively.  Two studies have examined the MFS during 

treadmill walking and running and results are equivocal.  First, Kooiman et al. 21 

examined the MFS during treadmill walking at 2.0 mph for 30-minutes compared to 

criterion steps (Optogait system) and reported a bias (SD) of -6(43) steps.  Chen et al. 20  

validated the MFS during treadmill walking and running (speed range: 2.0 to 5.0 mph)  

The MFS significantly underestimated steps at all speeds compared to criterion steps 

(p<.05), however, accuracy improved at higher speeds.  These data provide evidence that, 

the NL produced the smallest error compared to the GT3X-BT during 2-hours of 

electronic orbital shaking at frequencies ranging from zero to 3.0 Hz, which highlights 

potential issues with comparing step estimates from ATs. 

Main findings from the 2-hour protocol were that for EE, the FBF, FBO and the 

GV significantly underestimated kcals for all trials (range: -580 to -65 kcals/2-hrs) 

compared to the GT3X-BT.  Several validation studies support and refute this finding.  

For example, Price et al. 153 examined FBO (hip-worn) and GV (wrist-worn) EE 
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estimates during treadmill walking (1.5, 2.8 and 4.0 mph) and running (5.0, 6.4 and 7.4 

mph) compare to indirect calorimetry.  They reported, EE estimates from the FBO and 

GV correlated significantly (p< 0.01; r= 0.702; 0.854) with criterion across all gait speeds 

(1.5 - 7.4 mph).  However, EE estimations of single speeds were overestimated by the 

FBO and underestimated by the GV.  Further, EE estimations of single speeds were 

overestimated by the FBO and underestimated by the GV.  One reason for these 

differences may have been the result of device location.  Specifically, the FBO was hip-

worn and the GV was wrist-worn.   Our laboratory compared AG GT3X+ wrist and hip 

accelerations (g’s) at different locomotion speeds (unpublished).  We found a significant 

difference between the slopes (m) (speed vs vector magnitude (VM)) for the hip, (m = 

0.052 [95% CI: 0.033, 0.103] compared to the wrist, m = 0.195 [95% CI: 0.160, 0.230], 

p<0.001), and concluded that the pattern of change is different and more variable 

between subjects for the wrist VM.  The FBF has also been shown to significantly 

overestimate EE during treadmill walking and running compared to indirect calorimetry 

(p<.05). 25  The Fitbit One has demonstrated both significant overestimation- 26,30  and 

underestimation 27 of EE during treadmill locomotion (p<.05).  For these studies, 

participant populations and protocols were similar.  E.g. healthy adult, age range: 19 – 41 

years and treadmill locomotion, respectively.  Lastly, we found that the MFS and MFF 

significantly overestimated kcals (range: 105 to 190 kcals/2-hrs) for two trials and 

significantly underestimated kcals (range: -160 to -170 kcals/2-hrs.) for one trial 

compared to the GT3X-BT.  Currently, no studies have examined EE estimations from 

Misfits during treadmill locomotion, only. 
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Energy expenditure estimates from the FBO, FBF, MFS, MFF and GV during 

electronic orbital shaking and EE estimates from human, treadmill studies illustrate the 

need for further investigation into possible origins of device differences. 

This study has several strengths.  First, electronic orbital shaker testing removes 

human variation.  As a result, we are confident that observed differences are due to 

technological features of the devices and not impacted by human variation.  Second, ATs 

were tested over a wide range of frequencies, which allowed identification of exact 

frequencies where differences were present.  This information may be valuable to both 

consumers and manufacturers, depending on their needs.  For example, a consumer may 

seek to use a device that can detect steps while walking at a moderate pace.  A 

manufacturer may choose to adjust filters and/or algorithms to allow step detection at 

lower oscillation frequencies (e.g. 0.7 Hz).  Lastly, we employed a widely used, valid, 

and reliable, research-grade accelerometer as our reference. 

This study has several limitations.  First, the ATs that were tested in the present 

study are made to be worn by people.  It is possible that these devices possess algorithms, 

and/or filters to detect, and remove artificial human movement (i.e. electronic orbital 

shaking).  Thus, AT data would differ from our reference.  Another limitation is that step 

estimates and EE estimates from Freedson VM3 equation were developed via human-

testing.  Though studies have provided evidence that sensor output is often calibrated 

during standardized activities such as walking on a treadmill, 154 applying the same 

algorithm to electronic oscillations may be inappropriate.  Lastly, we did not include 

estimated EE from all ATs.  Currently, Fitbit is the only AT company that provides 

minute-by-minute data via the research platform Fitabase.  For all other ATs, the exact 
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time between 3-minute trials could not be determined.  As a result, it was not possible to 

compare EE estimates from these ATs to our reference for the  3-minute protocol. 

 

 In conclusion, this study provides the first evidence of AT estimates of steps and 

EE compared to the GT3X-BT during electronic shaking.  Our main findings were that, 

on average, the NL produced the smallest error.  All other ATs were equivocal, with 

some overestimating steps or EE, and others underestimating steps or EE compared to the 

GT3X-BT.  This study is a first step toward a more comprehensive understanding of AT 

estimates of steps and EE during electronic shaker.  More research is needed to identify 

specific causes for these differences so to improve the accuracy and precision in AT 

estimates of steps and energy expenditure. 
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Figure 13. Steps per 3-minutes during electronic oscillation 
AG, ActiGraph wGT3X-BT; FBF, Fitbit Flex; FBO, Fitbit One; MFF, Misfit Flash; MFS, Misfit Shine; NL, NL-1000 pedometer; 
Vivofit, Garmin Vivofit. 
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Figure 14. Energy expenditure per 3-minutes during electronic oscillation 
AG, ActiGraph wGT3X-BT; FBF, Fitbit Flex; FBO, Fitbit One 
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Figure 15. Steps per 2-hours during electronic oscillation 
Data presented as mean and 95% confidence intervals 
FBF, Fitbit Flex; FBO, Fitbit One; MFF, Misfit Flash; MFS, Misfit Shine; NL, NL-1000 pedometer: GV, Garmin Vivofit.	
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Figure 16. Energy expenditure per 2-hours during electronic oscillation 
Data presented as mean and 95% confidence intervals 
FBF, Fitbit Flex; FBO, Fitbit One; MFF, Misfit Flash; MFS, Misfit Shine; NL, NL-1000 pedometer: GV, Garmin Vivofit. 
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Figure 17. Hertz as a function of acceleration (g's) 
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CHAPTER 5 

STUDY TWO – VALIDATION OF CONSUMER AND RESEARCH-GRADE 

ACTIVITY MONITORS IN FREE-LIVING SETTINGS 

Introduction 

 
Lack of physical activity (PA) is strongly implicated in virtually all leading causes 

of chronic disease morbidity and mortality. To attenuate the prevalence of these 

preventable chronic diseases and promote health benefits, the U.S. Government 

recommends that Americans accumulate at least 10,000 steps/day,3  increase daily 

expenditure approximately 150 kilocalories (kcals) per day (equivalent to about 1,000 

kilocalories/week)2 and/or engage in at least 150 minutes of moderate PA, or 75 minutes 

of vigorous PA, or an equivalent of combined moderate-to-vigorous PA (MVPA) per 

week.1  Although there are currently no federal guidelines for sedentary behavior (SB) 

from the United States, SB recommendations from Australia state that adults should 

minimize the amount of time spent in prolonged sitting and break up long periods of 

sitting. 4  Dissemination of these recommendations has led to a heightened awareness of 

the importance and value of PA monitoring as a strategy for chronic disease management. 

Tools such as wearable devices to track personal PA provide a mechanism to be more 

informed about activity behavior. As a result, consumer devices that track PA behavior 

are increasingly popular for researchers, the general public, and developers and 

manufacturers of ATs. 

 

According to a recent report, the global wearable technology market will grow 

from over $30 billion in 2016 and should reach over $150 billion in 2026.5  Activity 
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trackers such as the Fitbit (FB) (Fitbit Inc., San Francisco, CA) provide estimates of 

steps, energy expenditure (EE), activity minutes and sedentary time (sitting).  According 

to reports, Fitbit remained the leading brand in ATs in 2015, accounting for 79 percent of 

sales.6  This expanding market for ATs is driven in part by lower cost, longer battery life 

and more memory (e.g. to store data for days or weeks). However, growth of the market 

and advances in consumer device technology far outpace our knowledge about the 

validity of such devices. This gap is of major concern since it is not clear if these devices 

provide accurate information. Therefore, to address this problem, it is essential to 

improve our understanding of the accuracy and precision of the activity output measures 

of consumer devices. Several studies to validate ATs have been conducted in lab-based 

settings.  Lab-based activity protocols range from fixed time treadmill and overground 

walking and running to SBs and simulated free-living activities (e.g. vacuuming, 

computer work).  From these studies, we have advanced our knowledge of the accuracy 

and precision of ATs in estimating physical activity (PA) and ST in laboratory settings.  

However, there is limited knowledge of how ATs perform outside of a laboratory setting 

(i.e. free-living environment) where these devices are used by consumers. Addressing this 

knowledge gap is essential to a comprehensive understanding of the validity of ATs for 

estimating PA and ST. 

 

To date, few studies have validated ATs in free-living settings.  Of these studies, 

none have employed direct observation (DO) as the criterion measure for steps, EE, 

activity minutes or sedentary time.  The objective of the present study was to determine 

the accuracy and precision of ATs in estimating steps, EE, activity minutes and sedentary 
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time compared to direct observation-derived measures (criterion measures) in free-living 

settings.  We also validated commonly used research-grade devices.  

Methods 

Eligible participants were 18-59 years of age and were in good physical health.  

All participants sign an informed consent document approved by the University of 

Massachusetts Institutional Review Board.   

 

Participants wore a variety of activity monitors on the wrists, hips or ankle, and a 

biometric shirt, while carrying out their daily activities in the wild (free-living 

environments) for three, 2-hour sessions.  Participants were videotaped (i.e. direct 

observation) for all sessions.  The video data were imported and processed in a custom 

behavioral analysis program previously validated.42   

 

Instrumentation 

Research-grade accelerometer.  ActiGraph GT3X-BT (AG) Accelerometer 

(ActiGraph™ LLC, Pensacola, Florida).  This device is a lightweight triaxial PA monitor 

(4.6cm x 3.3cm x 1.5cm, 19g) that measures acceleration ranging in magnitude from -8 to 

+8 g’s. The accelerometer output has a sampling output range of 30 to 100 Hz and is 

digitized by a twelve-bit analog-to-digital convertor. 

 

Research-grade step counter.  StepWatch™ (SW) (Mōdus™ Health llc, 

Washington, DC) monitor.  The SW is an ankle- worn device (dominant leg) that 
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contains a microprocessor-controlled step counter, and detects steps.  Step counts can be 

recorded every 3 to 60 seconds. 

 

Activity Trackers 

Nine different activity trackers were studied: 1) Apple iWatch Sport (AiW) 

2) Fitbit Flex (FBF), 3) Fitbit One (FBO), 3) Garmin® Vivofit (GV), 4) Microsoft 

Band (MB), 5) Misfit Flash (MFF), 6) Misfit Shine (MFS), 7) Polar Loop (PL), 8) 

Withings Pulse (WP) and 9) New Lifestyles NL-1000 pedometer (NL).  

Participants’ stride length was determined according to the manufacturers 

recommended method and programmed into the devices requiring this input. 139  

(See Tables 8 and 9 for detailed specifications of each AT)  

 

Biometric Shirt.  The Hexoskin Biometric Shirt (HxSkin) (Carré Technologies 

Inc., Montréal, Québec, Canada) is a multi-parameter physiological recording system 

designed to monitor levels of PA and EE, which combines measurements of cardiac, 

ventilation, and trunk acceleration. 

 

Video Recording and Direct Observation.  We employed a GoPro Hero+ LCD 

(GOPRO, Inc. San Mateo, Ca) camera to record all observation sessions. The Noldus 

Observer® XT (Information Technology B.V: Wageningen, Netherlands) is the software 

package for the collection, analysis, and presentation of observational data  
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Procedures 

Participant height was measured to the nearest 0.25 cm using a standard floor 

stadiometer and weight was measured using a Tanita scale (DC-430) to the nearest 0.1 

kg. 

 
Research-Grade Accelerometer.  Participants were fitted with two AG activity 

monitors.  Both AG monitors were synced to the same laptop and initialized in advance 

to collect data at a sampling rate of 80 Hz. The wrist monitor (AGwrist) was secured 

using a Velcro strap to the non-dominant wrist (positioned over the dorsal aspect of the 

wrist midway between the radial and ulnar styloid processes), and the hip monitor 

(AGhip) was secured using a belt at the iliac crest in line with the anterior axilla.  The 

initialization and wrist wear location are consistent with the current National Health and 

Nutrition Examination Survey (NHANES) activity monitoring study protocol. 145 

 

StepWatch™.  Participants were fitted with a SW monitor which was fastened 

using a Velcro strap to the dominant ankle (positioned superior to the lateral malleolus).  

The SW was programmed to record at 3-second intervals, with sensitivity (the magnitude 

of acceleration that the device qualifies as constituting a step) set to 13 and cadence (how 

often the device searches for steps taken) set to 73, consistent with a previous study. 112 

The cadence setting is the length of time (cadence settings x 0.01 s) after a step is taken 

during which a subsequent step cannot be counted and sensitivity setting is the threshold 

acceleration that must be exceeded to register a step. 155 
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Activity Trackers.  The device placement was counterbalanced across subjects.  

For example, the total number of devices worn was the same for all subjects but the order 

in which the devices were placed on subjects was different between subjects.  The same 

placement positions within each participant across the 3 observation sessions was used. 

(e.g. participant 2, MFF, left hip for all observation sessions) 

 

Direct Observation: criterion 

The DO method employed in the present study was previously described by 

Lyden et al.42,102  Briefly, participants were met by a trained observer in their natural 

environment (e.g. home, place of work, school) and observed for approximately two 

consecutive hours.  A GoPro video camera was used to record each observation session.  

The GoPro video files were imported into the behavioral coding software (Noldus 

Observer XT). Focal sampling and duration coding (FSD) were used to record participant 

behavior (activity type, body posture, intensity and duration).  The FSD method is one 

where every time a behavior changes (e.g. sitting to standing) the observer recorded the 

new activity type from a coding scheme of general categories from the MET value (from 

the Compendium of Physical Activities144) associated with that category.   Each entry of 

a behavior change was time stamped and the duration of each behavior occurrence was 

saved.  Steps were manually counted from the video.  For a detailed description of the 

procedures used to train researchers and the development of a comparable DO technique 

see Kozey-Keadle et al.65 

 

Direct observation observer training 
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Training involved research assistants learning how to identify and record 

activities described in the DO methods. After the training, study observers completed a 

testing video (~10 min) that included different activities with various postures. Before 

data collection, researchers were required to correctly classify at least 90% (Cohen’s 

kappa coefficient (k) ≥ 0.90) of the body positions, intensity levels, and duration of 

activities throughout the testing video. 

 

Direct Observation Sessions 

Participants were met by a trained observer in their natural environment (e.g. 

home, place of work, school) and were observed for approximately two consecutive 

hours.  Each of the 2-hr observation sessions was done at different times of the day (e.g. 

Session 1: morning; Session 2: afternoon; Session 3: evening), including one weekend 

day, in the participants’ free-living settings (e.g. home, work, driving). For these three 

visits, researchers initialized devices and met the participants in their free-living 

environment to be fitted with a variety of activity monitors that were worn on the wrists, 

hip and ankle, and a biometric shirt.  At the end of the 2-hr recording period, researchers 

recorded the data from the ATs via the real-time display or iPhone app, and downloaded 

data from monitors and video recording (see table 9 for detailed device initializing and 

download).  

Data Processing and Statistical Evaluation 

 

Data Processing 
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All data cleaning, processing and analysis were done using the open source R 

statistical software package (www.r-project.org) and computing language R. 136  

 

Criterion: Direct observation  

A log of the start and stop of each behavior recorded by the observer was exported to a 

csv file using a custom software and profile (Noldus: The Observer XT 12.5).  These data 

were used to determine criterion measures of activity and inactivity including, MET-

minutes, MET-hours (where, 1 MET = 1 kcal/kg/hr), kcals per hour (where, Kcals=METs 

x time x BW [kg]) and time in categories of intensity.  The Mifflin-St Jeor equation was 

used to estimate participant resting metabolic rate (RMR), 147 RMR was added to the EE 

estimates from the WP monitor only and summed to estimate total calories (e.g. exercise 

+ resting).   

Total EE was determined by summing/totaling the amount of time spent in all 

body positions from the DO coding system (e.g. total MET-minutes).   METs were then 

converted to Kcals/minute (Kcals= METs x time x body weight in kilograms). 

Criterion.  DO steps were defined as each event when the foot was completely 

lifted off and lowered back to the ground. To determine criterion step count, steps were 

manually counted twice for each 2-hour video recording session, and averaged. If there 

was a greater than 5% difference between total step counts, the video was analyzed a 

third time and the average of the two closest total step counts was used for analysis.  

Total steps were determined by summing/totaling the number of steps manually 

counted/2-hour session.  Two trials required a third measure (2.1%). 
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Research-grade accelerometers 

 

ActiGraph GT3X-BT (AG).   Accelerometer data were downloaded to a laptop 

using the ActiGraph ActiLife v6.1.1 software and were later extracted to match the 

corresponding DO time blocks. These data were then processed to derive total time spent 

in each activity type (cutpoint/method: AGhip;77 AGwrist156), intensity (cutpoint/method: 

AGhip;77 AGwrist156), EE (method: AGhip52) and steps for each participant.  The 

previous ActiGraph model GT3X+ has been shown to be a valid measure of both step 

count compared with observation111,157,158 and MVPA compared to indirect calorimetry.77 

 

StepWatch™ (SW).  StepWatch data were downloaded to the same laptop used 

for all devices via the SW software (v3.4).  The SW data from the observation session 

were then exported and saved for analysis.  Total steps was determined by 

summing/totaling the number of steps taken. 

 

Activity Trackers 

Steps, EE, activity minutes (if provided by AT) and sedentary time (if provided 

by AT) data from ATs were recorded at the beginning and at the end of each observation 

session.  Total estimates were then calculated by subtracting the start values from the end 

values. 

 

Fitabase (Small Steps Labs, LLC. San Diego, Ca).  All FB data were exported 

using Fitabase, a research platform that acquires data from Internet connected consumer 
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devices.  Currently, FB is the only consumer device company that utilizes Fitabase.  The 

advantage of using this platform to acquire FB data is that it provides minute-by-minute 

data for steps, kcals, MET-minutes and activity minutes (intensity) in comparison to the 

FB software and Dashboard which only provides totals for steps, kcals and intensity for 

the monitoring period. 

 

Biometric Shirt.  The HxSkin data were downloaded to the HxServices 

Dashboard.  Next, an “Activity” was created in the myhexoskin website for the 2-hour 

observation session (data are time stamped).  Then energy expenditure and step estimates 

were recorded for each 2-hour observation session. 

 

Statistical Evaluation 

 

Correlations 

 We used the Pearson correlation coefficient to determine the strength of the 

relationship between criterion measured and device estimated steps, EE, activity minutes 

and ST. 

Accuracy 

We used bias in units of steps, kcals and minutes (AT estimates – criterion) and as 

a percentage [(mean difference between the AT estimates and the criterion/ criterion x 

100].  The percentage bias is useful because, for instance, a 10% bias of 15,000 steps/2-

hrs could be applied to an observation time of 2-hrs (a 2-hr overestimate), compared to 

bias of +1,500 steps/2-hrs. 
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Precision 

We used confidence intervals (CI) as measures of precision.  If the upper and 

lower 95% confidence interval of the bias span 0, then the estimate was not considered 

significantly different from the criterion at α = .05.  Higher precision was indicated by 

higher correlations and smaller CI.  

Linear mixed models were used to compare the accuracy and precision of the 

steps, EE, activity minutes and ST estimates from the devices. 

 
Results 

 
Table 11 illustrates participant’ characteristics.  Thirty-two healthy adults (50% 

female, 37.5% minority).  Average age (yrs.) and BMI (kg*m-2) were 32.3 and 24.4, 

respectively. 

 

 

Table 12 summarizes participant visits by day of week and time block.  Morning 

(time from arising from bed for the day until lunchtime [or 12:00 PM if no lunch]), 

afternoon (period during lunch [or 12:00 PM] until dinner [or 6:00 PM if no dinner]) and 

evening (time after dinner until getting into bed for the night) visits totaled 29, 34 and 33, 

respectively.  Weekday and weekend visits totaled 62 and 34, respectively. 

 

 Table 13 summary statistics (in minutes) of top eight activity categories that 

participants engaged in during 2-hr visits.  Activity categories are based on the 

Compendium of Physical Activities.146  Means ranged from 18.1 minutes 
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(Transportation) to 90.5 minutes (Occupational).  Minimums ranged from 1.0 minute 

(Walking) to 55.0 minutes (Running).  Maximums ranged from 12.0 minutes (Walking) 

to 120.0 minutes (Conditioning Exercise, Home Activities and Occupational). As a 

percent of 2-hours, means were 15.1% minutes, 15.3% minutes, 18.8% minutes, 47.6% 

minutes, 54.0% minutes, 59.2% minutes, 62.8% minutes and 75.4% minutes for 

transportation, walking, self-care, home activities, miscellaneous, running, conditioning 

exercise and occupational, respectively. 

 

Relationship between criterion measured and device estimated steps: Figures 18 - 21 

show correlations between DO measured steps and device estimated steps.  Correlations 

ranged from r= 0.86 (FBF) to r = 0.97 (AGhip, NL). 

 

Differences between criterion measured and device estimated steps: Figure 22 shows 

bias of ATs, AGhip, AGwrist, and SW step estimates compared to DO measured steps.   

Average steps for DO was 2,623/2-hours.  The SW and PL were not significantly 

different from DO.  Average steps were -119 (CI:-439,201) and -57 (CI:-291,175) 

steps/2-hours for the SW and PL, respectively.  All other devices significantly 

underestimated steps compared to DO.  For several devices, underestimations ranged 

from -753 to -524 steps/2-hours.  The FBF, WP, FBO, MFS, HxSkin, AGhip and MB 

underestimates were -753 (CI:-1,144,-362.8), -725 (CI:-887,-564), -647 (CI:-869,-425), -

628 (CI:-816,-440), -586 (CI:-768,-403), -558 (CI:-699,-417), and -524 (CI:-689,-358) 

steps/2-hours, respectively.  For other devices, underestimations ranged from -437 to -

285 steps/2-hours.  In this range, the NL, MFF, AGwrist, GV, and AiW underestimations 
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were -437 (CI:-581,-292), -435 (CI:-621,-250), -379 (CI: -717,-41), -341 (CI:-525,-156), 

and -285 (CI:-559,-11) steps/2-hours, respectively. 

 

Percent differences between criterion measured and device estimated steps: Figure 

23 shows percent bias of ATs, AGhip, AGwrist, and SW step estimates compared to DO 

measured steps.    The SW and PL were not significantly different from DO.  Percent 

average steps were -4.5% (%CI:-16.7,7.6) and -2.1% (%CI:-11.1,6.7) steps/2-hours for 

the SW and PL, respectively.  All other devices significantly underestimated steps 

compared to DO.  For several devices, percent underestimations ranged from -28,7% to -

19.9% steps/2-hours.  In this range, the FBF, WP, FBO, MFS, HxSkin, AGhip and MB 

percent underestimates were -28.7% (%CI:43.6,-13.8), -27.6% (%CI:-33.8,-21.5), -24.6% 

(%CI:-33.1,-16.2), -23.9% (%CI:-31.1,-16.7), -22.3% (%CI:-29.3,-15.4), -21.2% (%CI:-

26.6,-15.8), and -19.9% (%CI:-26.3,-13.6) steps/2-hours, respectively.  For other devices, 

percent underestimations ranged from -16.6 to -10.8% steps/2-hours.  In this range, the 

NL, MFF, AGwrist, GV, and AiW percent underestimations were -16.6% (%CI:-22.1,-

11.1),  -16.6% (%CI:-23.6,-9.5), -14.4% (%CI:-27.3,-1.5), -13.0% (%CI:-20.0,-5.9), and -

10.8% (%CI:-21.3,-0.4) steps/2-hours, respectively. 

 

Relationship between criterion measured and device estimated kcals Figures 24 -26 

show correlations between DO measured kcals and device estimated kcals.  Correlations 

ranged from r = 0.32 (GV) to r = 0.85 (AGhip) 
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Differences between criterion measured and device estimated kcals: Figure 27 shows 

bias of AT and AGhip kcal estimates compared to DO measured kcals.  Average kcals for 

DO was 329/2-hours.  The PL, MFF and MFS were not significantly different than DO.  

Bias for the PL, MFF and MFS were -7.0 (CI:-37.0,22.8), 6.9 (CI:-36.6,50.4), and 8.3 

(CI:-47.1,63.9) kcals/2-hours, respectively.  The MB, WP, FBO, FBF, GV, AiW and 

AGhip significantly underestimated kcals compared to DO.  Underestimates for the MB, 

WP, FBO, FBF, GV, AiW and AGhip were -121.8 (CI:-163.7,-79.9), -107.7 (CI:-136.1, -

79.4), -90.6 (CI:-120.7,-60.5), -85.3 (CI:-123.8,-46.7), -71.4 (CI:-127.5,-15.3), -60.2 (CI:-

93.9,-26.5), and -48.8 (CI:-75.3,-22.3) kcals/2-hours, respectively.  In contrast, the 

HxSkin significantly overestimated kcals compared to DO.  Average overestimation was 

119.3 (CI:52.2,186.3) kcals/2-hours.  

 

Percent differences between criterion measured and device estimated kcals: Figure 

28 shows percent bias of AT and AGhip kcal estimates compared to DO measured kcals.  

Average kcals for DO was 329/2-hours.  The PL, MFF and MFS were not significantly 

different than DO.  Percent bias for the PL, MFF and MFS were -2.1% (%CI:-11.2,6.9), 

2.0% (%CI:-11.1,15.3), and 2.5% (%CI:-14.3,19.4) kcals/2-hours, respectively.  The MB, 

WP, FBO, FBF, GV, AiW and AGhip significantly underestimated kcals compared to 

DO.  Percent underestimates for the MB, WP, FBO, FBF, GV, AiW and AGhip were -

36.9% (%CI:-49.7,-24.2), -32.7% (%CI:-41.3,-24.1), -27.5% (%CI:-36.6,-18.3),  -25.8% 

(%CI:-37.5,-14.2),  -21.6% (%CI:-38.7,-4.6),  -18.2% (%CI:-28,5,-8.0), and -14.8% 

(%CI:-22.8,-6.7)  kcals/2-hours, respectively.  In contrast, the HxSkin significantly 
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overestimated kcals compared to DO.  Average percent overestimation was 36.2% 

(%CI:15.8,56.5) kcals/2-hours.  

 

Relationship between criterion measured and device estimated MVPA minutes: 

Figures 29 and 30 show correlations between DO measured MVPA minutes and device 

estimated MVPA minutes.  The correlations between DO MVPA minutes and FBF, 

AGwrist, FBO and AGhip were r = 0.54, 0.70, 0.71 and 0.75, respectively. 

 

Differences between criterion measured and device estimated MVPA minutes: 

Figure 31 shows bias of MVPA minutes per 2-hours for the AGhip, AGwrist, FBO and 

FBF compared to DO MVPA minutes.  Average MVPA for DO was 27 minutes/2-hours.  

The AGhip and FBO significantly underestimated MVPA minutes by -11.8 (CI:-15.5,-

8.1) and -5.4 (CI:-9.9,-0.9) /2-hours, respectively.  In contrast, the AGwrist significantly 

overestimated MVPA by 6.9 minutes (CI:2.5,11.4) /2-hours.  The FBF was not 

significantly different from DO MVPA minutes.   On average, the FBF underestimated 

MVPA by -3.5 (CI:-9.6,2.4) minutes/2-hours.  

 

Percent differences between criterion measured and device estimated MVPA 

minutes: Figure 32 shows percent bias of MVPA minutes per 2-hours for the AGhip, 

AGwrist, FBO and FBF compared to DO MVPA minutes.  The AGhip and FBO 

significantly underestimated MVPA minutes by -43% (%CI:-57.3,-29.9) and -20% 

(%CI:-36.7,-3.3) /2-hours, respectively.  In contrast, the AGwrist significantly 

overestimated MVPA minutes by 25% (%CI:9.2,42.1) /2-hours.  The FBF was not 
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significantly different from DO MVPA minutes.   On average, the FBF underestimated 

MVPA minutes by -13% (%CI:-35.6,9.1) minutes/2-hours.  

 

Relationship between criterion measured and device estimated output analogous to 

MVPA minutes: Figures 33 and 34 show correlations between DO MVPA minutes and 

MVPA minutes from the NL, AiW, MFF, MFS, and PL.  The correlations ranged from to 

r = 0.20 (NL) to r = 0.64 (MFF).  Correlations for the PL, MFS, and the AiW were r= 

0.40, 0.56, and 0.57, respectively 

 

Differences between criterion measured and device estimated output analogous to 

MVPA minutes: Figure 35 shows bias of MVPA minutes per 2-hours for the AiW, PL, 

NL, MFS, and MFF compared to DO MVPA minutes.  All ATs significantly 

underestimated MVPA minutes.  On average, underestimations ranged from -17 to -13 

minutes/2-hours.  Confidence intervals ranged from -24 to -9 minutes per 2-hours.  The 

PL and NL estimates resulted in the widest CIs of approximately 14 minutes/2-hours, 

respectively.  

Percent differences between criterion measured and device estimated output 

analogous to MVPA minutes: Figure 36 shows percent bias of MVPA minutes per 2-

hours for the AiW, PL, NL, MFS, and MFF compared to DO MVPA minutes.  All ATs 

significantly underestimated MVPA minutes.  On average, percent underestimations 

ranged from -64 to -48% MVPA minutes per 2-hours.  Confidence intervals ranged from 

-88 to -36% MVPA minutes per 2-hours.  The PL and NL estimates resulted in the widest 

CIs of approximately 48% and 50% MVPA minutes/2-hours, respectively.  
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Relationship between criterion measured and device estimated sedentary time:  

Figure 37 shows correlations between DO sedentary minutes and AT estimates of 

sedentary minutes.  Correlations for the FBO, FBF AGhip and AGwrist were r = 0.06, -

0.06, 0.59 and 0.77, respectively. 

 

Differences between criterion measured and device estimated sedentary time: Figure 

38 shows the bias of AT and AGhip sedentary time estimates compared to DO sedentary 

time.  All devices significantly overestimated sedentary time compared to DO.  

Overestimates for the Fitbit One, FBF and AGhip were 14.3 (CI:2.8,25.8), 20.9 

(CI:9.3,32,5), and 52.0 (CI:43.6,60.4) sedentary minutes/2-hours, respectively.  

 

Percent differences between criterion measured and device estimated sedentary 

time: Figure 39 shows the percent bias of AT and AGhip sedentary time estimates 

compared to DO sedentary time.  All devices significantly overestimated sedentary time 

compared to DO.  Overestimates for the FBO, AGwrist, FBF and AGhip were 34% 

(%CI:7.7,61.5), 47% (%CI:31.3,64.0), 50% (%CI:23.0,77.1), and 118% 

(%CI:101.1,135.5) sedentary minutes/2-hours, respectively.  

 

Discussion 

 
The purpose of the present study was to validate ATs and research-grade 

accelerometers in free-living settings to estimate steps, EE, activity minutes and 

sedentary time using DO as the criterion method.  In general, all devices accurately 
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estimated steps and the estimates were highly correlated with DO. Estimates of EE, 

MVPA minutes were less accurate and more variable across devices and correlations 

between the estimated measure and the measure derived from DO ranged from weak 

(r=0.20) to moderate (r=0.75).  Devices were the least accurate in estimating sedentary 

time, although one method156 was more correlated with DO (AGwrist r=0.77) (Table 14).  

Activity Trackers 

To date, several studies have validated ATs in estimating steps, EE, MVPA 

minutes and sedentary time and the results are equivocal.  Activity trackers have been 

reported to significantly under- and- overestimate PA and ST. Most studies have used AG 

accelerometer measures as the reference.  The results from our study indicate that this is 

not an appropriate reference measure, given the differences we observed between AG 

measures of PA and ST in comparison to the measures derived from DO. 

Steps 

Our main findings were that ATs produced accurate step estimates and were 

highly correlated to criterion measures.  Current research has compared steps from 

consumer ATs and research-grade devices in free-living settings.  Some studies reported 

that ATs overestimated steps, 21,32-34,159-161 while others reported that ATs underestimated 

steps. 21,31,32,159 Differences in step results from previous studies compared to this study 

may be related to the use of different reference measures.  We reported that the AGhip 

significantly underestimates steps by -558 (CI:-699,-417)/2-hours. Therefore, in most of 

the studies that used the AG as the reference tool would yield results that indicate an 

overestimation of steps by the ATs.  For example, Ferguson et al32. reported that the WP 

significantly underestimated daily steps by -632 compared to hip-worn ActiGraph 
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GT3X+ steps (reference measure).  Applying our AGhip findings (significant 

underestimation [-558 steps/2-hrs]} to Ferguson’s may impact their findings (e.g. the WP 

overestimates daily steps). 

 

Energy Expenditure 

We found that AT estimates of EE were less accurate than step estimates, and 

highly correlated with criterion measures.  Similar findings have been reported.37  The 

current research comparing the EE estimates of ATs in free-living settings has primarily 

used research-grade devices as the reference measure, with one study employing doubly-

labeled water (DLW).37  For EE, two studies showed ATs overestimated kcals,31,37 and 

three studies showed that ATs underestimated kcals32,162,163 with variable precision in 

free-living settings.31,32,37,162,163 We compared EE data recorded by ATs to EE data 

estimated from DO. Because the DO system used has been validated as a criterion for 

free-living PA and ST,42 our study improves upon the current literature.  

MVPA Minutes/ Sedentary Time 

The U.S. PA Guidelines (Guideline) define MVPA as activities where intensity is 

greater than 2.99 METS.  Currently, devices from one AT company (Fitbit) provide MET 

values, retrievable via the research platform Fitabase.  Accordingly, these data are 

directly comparable to our criterion measure. Although ATs from other companies 

provide proprietary estimates of PA intensity, they do not explicitly define MVPA (i.e. 

Non-Guideline; Table 10). 

In general, we found AT estimates of MVPA minutes (Guideline and Non-

Guideline) were less accurate than step and EE estimates, and were moderately to weakly 
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correlated with criterion measures. To date, one validation study examining ATs in free-

living settings on adults employed Fitabase to retrieve MET-minutes of activity.164 They 

reported, that the FBF significantly overestimated daily MET rate (mean difference 0.7, 

SD 0.09, METs/day, P<.001), proportion of time in moderate (mean difference 3.0%, SD 

11.0%, per day, P<.001) and vigorous PA (mean difference 3.0%, SD 1.0%, per day, 

P<.001 compared to the AG GT3X. Several studies have examined estimates of Non-

Guideline MVPA minutes from ATs compared to accelerometer derived MVPA minutes 

in free-living adults.  Two studies reported ATs underestimated MVPA minutes,31,33 three 

studies reported ATs overestimated MVPA minutes, 43,161,165,166 and one study reported 

ATs underestimated and overestimated MVPA minutes in free-living settings.32  

We reported that ATs were the least accurate at estimates of sedentary time 

(overestimated) and were weakly correlated with criterion measures.  Underestimations164 

and overestimations41,166 of sedentary time by ATs have been previously reported. Two 

studies164,41 used the AG accelerometer as the comparison measure and applied different 

count cutpoints to define sedentary time.  One study used the activPAL as the comparison 

measure.166 The contrasting findings of previously reported sedentary time to ours may 

be reflective of reference measures used to compare ATs: accelerometers versus DO.  

Direct observation is considered superior to accelerometers in estimating PA behaviors167 

as it provides instant, visual information regarding activity type, posture and context-

aspects that govern PA intensity- and may influence device output.  For example, we 

coded all seated activity (e.g. seated typing) as sedentary, while a wrist-worn AT may 

detect hand/wrist accelerations as steps.  We are confident that employing DO provides 

us with a true measure of free-living behaviors. 
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Research-grade accelerometers 

We found that step estimates from research-grade accelerometers were accurate 

and highly correlated with DO (range: r=0.91 (SW) to 0.97 (AGhip)).  Despite statistical 

differences (e.g. over-or-underestimations), the AGhip and AGwrist were highly 

correlated with DO (AGhip range: r=0.56 (sedentary time) to 0.97 (steps); AGwrist 

range: r=0.70 (MVPA) to 0.95 (steps). Similar to our findings, the SW has been shown to 

accurately estimate steps in simulated free-living laboratory investigations.112 Accept for 

sedentary time, AGwrist estimates were greater than AGhip estimates.  Several studies 

have reported the wrist location produces greater output as compared to the hip location, 

in free-living settings.168,169 For MVPA, the AGwrist and AGhip were less accurate (than 

for steps) (percent bias: 25.6% and -43.6, respectively) but remained moderately 

correlated with DO (r=0.70 and 0.75, respectively).  This may be the result of differences 

in wear-location and/or methods used to derive MVPA minutes (e.g. raw accelerations 

for AGwrist compared to counts per minute for AGhip).  This is in contrast to the study 

by Murakami et al.37 who reported that AGhip underestimated EE (bias -534.9 kcals/d) 

compared to doubly-labeled water with strong correlations (r=0.80) during 15-days of 

free-living time.  Similar to previous studies AGhip tended to underestimate102 and 

AGwrist overestimated MVPA minutes169 compared to reference measures (DO and 

AGhip, respectively). AGhip and AGwrist overestimated sedentary time (percent bias: 

118.3 and 47.5%, respectively).  Previous studies are in agreement with our AGwrist 

findings156   but disagree with our AGhip findings.65  It is possible that the 

underestimation of sedentary time in the present study is due to differences in data 

processing techniques to estimate sedentary time.  For example, Kozey-Keadle et al.65 
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used AG counts per minute to categorize ST compared to Staudenmayer et al. who used 

AG 15-second epochs from raw-accelerations and  machine-learning techniques to 

categorize ST. 

Activity trackers compared to Research-grade accelerometers 

We showed that ATs perform similar to research-grade accelerometers is 

estimating steps and EE. However, ATs are less precise and accurate in estimating 

MVPA minutes and sedentary time.  These differences are likely the result contrasting 

methods used to define MVPA minutes and sedentary time.  For example, we defined 

MVPA and ST using posture and intensity, whereas ATs rely entirely on proprietary 

algorithms.  For the AGs, MVPA and ST were defined using counts/min (AGhip) and 15-

second epochs (from raw-accelerations) and random forest (machine-learning technique) 

(AGwrist). 

 There is a growing movement toward using ATs as a measurement tool in PA 

intervention trials. There are many clinical trials underway that are employing ATs to 

estimate PA and ST exposures and outcomes.  Our findings suggest that ATs are accurate 

in estimating PA behaviors such as steps in free-living settings.  In fact, step accuracy 

was similar between ATs and research-grade accelerometers.  Though more research 

validating ATs in free-living settings compared to DO is needed, it is reasonable to 

employ these devices to estimate measures of steps, EE and MVPA minutes.  On the 

other hand, our results indicate that the accuracy and precision of ATs in estimating ST is 

less certain.  

 Given the widespread use of ATs, we have an opportunity to engage the public 

and industry leaders who sell these devices in conversations about their experiences in 
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using these devices with the goal to improve the user experience to enhance long-term 

compliance and adapting a more active lifestyle.  Evidence presented in this study 

support the accuracy and serve as an anchor for these conversations. 

Strengths and Limitations 

The primary strengths of this study were the use of a validated DO method42 to 

derive criterion measures for PA and sedentary behavior measures and conducting this 

study in the natural environment  Most previous free-living studies employed 

accelerometers as a surrogate for gold-standard criterion measures (e.g. DO, doubly 

labeled water) to assess steps, EE, activity minutes and/or ST. 32-34,43-46 Another strength 

was the wide range of activities, intensities of activities and the duration of activities 

performed naturally by participants. Activities ranged from sleeping to trail running.  

Intensities ranged from 1.0 to 12.0 METs, and duration of specific activities ranged from 

seconds to hours.  All provided a unique opportunity to capture a rich dataset critical to 

proper scrutiny of AT estimates of PA and ST. Additional strengths included having 

observations conducted at all times of day ranging from 5:00 am to after 11:00 pm and 

conducted in multiple settings as diverse as a Zumba class to a nightclub (Tables 12 and 

13). 

This study also has limitations.  We employed a validated DO system that used 

the Compendium of Physical Activities to apply MET values to activities. The values in 

the Compendium do not estimate the energy cost of PA in individuals in ways that 

account for differences in body mass, adiposity, age, sex, efficiency of movement, and 

environmental conditions in which the activities are performed.146  Therefore, it is 

possible that activities were misclassified by intensity category, which may have resulted 
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in inaccuracies of activity minutes, sedentary time and energy expenditure.   The 

observation duration within each trial was another limitation.  We observed participants 

for three, 2-hour time frames.  Compared to previous free-living AT validation studies, 

the time frame for observation is short. In general, ATs are designed to be worn during 

waking hours and while sleeping.  Thus, our findings may not be a true representation of 

whole day behavior.  However, we do have a broad range of activities ranging from light 

to very vigorous activity and a balanced distribution of time of day and day of week that 

participants were observed (Tables 12 and 13). 

In conclusion, this study provides evidence that ATs are accurate with varying 

precision in estimating steps, EE and activity minutes.  Sedentary time estimates from 

ATs were less accurate. Further, AT and research-grade accelerometers performed 

similarly (e.g. both were more accurate in estimating steps and less accurate in estimation 

MVPA minutes).  This work significantly advances the field of activity monitor 

validation that should set the standard for future work.	
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Device Apple 

iWatch 
Sport 

Fitbit Flex Fitbit One 
 

Garmin 
Vivofit 

New 
Lifestyles 
NL-1000 

Microsoft 
Band 

 Misfit 
Flash 

Misfit 
Shine 

Polar loop Withings 
Pulse 

Cost $350.99 $79.95 $99.95 $99.99 $54.95 $199.99  $29.99 $69.99 $109.95 $119.95 
Wear location Wrist 

 
Wrist 

 
Clip on 

(multiple 
locations) 

Wrist 
 

Hip 
 

Wrist 
 

 Clip on 
(multiple 
locations) 

Clip on 
(multiple 
locations) 

Wrist Clip on and 
wrist band 

 

Tracks Calories 
Burned 

✓ ✓ ✓ ✓ ✗ ✓  ✓ ✓ ✓ ✓ 

Tracks Active 
Time 

✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

Tracks Steps ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 
Tracks 
Distance 

✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

Tracks 
Elevation/Stairs 

!	 ! ✓ ! ! !  ! ! ! ✓ 

Tracks Sleep ✓ ✓ ✓ ✓ ! ✓  ✓ ✓ ✓ ✓ 
Tracks Heart 
Rate 

✓ ! ! ! ! ✓  ! ! ✓ ✓ 

Battery or 
Chargeable 

Chargeable 
(every 18 

hours) 

Chargeable 
(every 5 

days) 

Chargeable 
(every 10+ 

days) 

Battery 
(every 1+ 

years) 

Battery 
(up to 18 
months) 

Chargeable 
(every 48 

hours) 

 Battery 
(lasts up to 
6 months) 

Battery 
(lasts up to 
6 months) 

Chargeable 
(up to 6 
days) 

Chargeable 
(every 2 

days) 
Uploading Data Bluetooth Bluetooth Bluetooth Bluetooth Real-time 

data 
USB    USB Bluetooth 

Tracker Display Real-time 
data 

LED 
progress 
indicator 

Real-time 
data 

Real-
time data 

Real-time 
data 

Real-time 
data 

 LED 
progress 
indicator 

LED 
progress 
indicator 

Real-time 
data 

Real-time 
data 

Table 8. Features of consumer-based activity trackers 
LED, Light-Emitting Diode; USB, Universal Serial Bus  
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Device (Location) Output Data Extraction Method 

  Upload Retrieval 

Apple iWatch Sport (W) EE, steps, active calories, min: exercise, total active time, stand hours Bluetooth Apple Activity App 

GT3X-BT (W & H) Steps, min: Sedentary, light, moderate, vigorous USB cable ActiLife 

Fitbit Flex /One (W/H) EE, steps, MET-min, min: sedentary, light, moderate, vigorous Bluetooth Fitabase 

Garmin Vivofit (W) EE, steps, active calories, %: sedentary, active, highly active Bluetooth Garmin Connect™ App 

Hexoskin (T) EE, steps USB cable Hexoskin dashboard 

Microsoft Band (W) EE, steps, active min USB cable MB dashboard 

Misfit Flash/Shine (H/W) EE, steps, active min: light, moderate, vigorous Bluetooth Misfit App 

New Lifestyles NL-1000 (H) Steps, MVPA min RTD RTD 

The Observer XT (NA) MET-hours, MET-min The Observer XT The Observer XT 

Polar Loop (W) EE, steps, time: lying, sitting, active, sitting, min: stand, walk, run USB cable Polar dashboard 

StepWatch (A) Steps USB cable StepWatch dashboard 

Withings Pulse (H) EE, steps Bluetooth Withings App 

Table 9. Devices with corresponding output and data extraction method 
H, hip; W, wrist: T, torso; A, Ankle; NA, not applicable; EE, energy expenditure; min, minutes; MVPA, moderate-to-vigorous 

physical activity; MB, Microsoft Band; RTD, real-time display 
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Device Output Definition 

Apple iWatch Exercise minutes Anything above a brisk walk is classed as exercise. Every full minute of 

movement equaling or exceeding the intensity of a brisk walk counts towards 

daily Exercise goal (30 min). 

Fitbit Flex/One Active minutes Activities at or above about 3 METs. Minutes are only awarded after 10 

minutes of continuous moderate-to-intense activity. 

Misfit Flash/Shine Light-, moderate-, 

vigorous- minutes 

No definitions provided. 

NL-1000 MVPA Moderate-to-vigorous physical activity (MVPA) time accumulation. 

Polar Loop WALK and JOG 
 

Medium and high intensity activity, respectively. 

Table 10. Activity tracker intensity outputs and definitions 
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Characteristic                                     Mean (SD) 
Age	(yrs.)	 32.3 (13.3) 
BMI	(kg*m-2)	 24.4 (3.3) 
N (%) 
Female	 16 (50) 
Minority	 12 (37.5) 

Table 11. Participant characteristics (N = 32) 
SD, standard deviation; BMI, body mass index 
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 Weekday Weekend Day Total Visits 

Morning 18 11 29 

Afternoon 20 14 34 

Evening 24 9 33 

Total Visits 62 34 96 

Table 12. Summary of visits by day of week and time block 
Morning, the time from arising from bed for the day until lunchtime (or 12:00 PM if no 

lunch); Afternoon, the period during lunch (or 12:00 PM) until dinner (or 6:00 PM if no 

dinner); Evening, the time after dinner until getting into bed for the night	
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 Mean SD Minimum Maximum 

Conditioning Exercise 75.4 33.5 5.0 120.0 

Home Activities 57.1 43.5 1.0 120.0 

Miscellaneous 64.8 43.4 2.5 120.0 

Occupational 90.5 38.0 5.0 120.0 

Running 71.0 17.7 55.0 90.0 

Self-Care 22.5 24.6 1.0 66.0 

Transportation 18.1 12.7 5.0 45.0 

Walking 18.3 23.7 1.0 12.0 

Table 13. Summary statistics (in minutes) of top eight activity categories that 
participants engaged in during 2-hr visits 
Activity categories are based on the Compendium of Physical Activities 
SD, standard deviation; NA, not applicable 
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   Steps EE (kcals) MVPA (min) SED (min) 
Criterion (avg)  2,623 329.0 27.0 43.0 
Device       
 AGhip Accuracy (%) -579⨢ (-22.0%) -48.8⨢ (-14.8%) -11.8⨢ (-43.6%) 50.6⨢ (118.3%) 
  Precision -718,-439 -75.3,-22.3 -15.5, -8.3 43.2,57.9 
  Correlation 0.97 0.85 0.75 0.59 
 AGwrist Accuracy (%) -379⨢ (-14.4%) NA 6.9⨢ (25.6%) 20.3⨢ (47.5%) 
  Precision -717,-40 NA 2.5, 11.4 13.3,27.3 
  Correlation 0.95 NA 0.70 0.77 
 SW Accuracy (%) -180 (-6.8%) NA NA NA 
  Precision -421,60 NA NA NA 
  Correlation 0.92 NA NA NA 
 AiW Accuracy (%) -285⨢ (-10%) -60.2⨢ (-18.2%) -16.8⨢ (-62.0%) NA 
  Precision -559,-11 -93.9,-26.5 -21.8,-11.7 NA 
  Correlation 0.91 0.75 0.57 NA 
 FBF Accuracy (%) -753⨢ (-28.7%) -85.3⨢ (-25.8%) -.35 (-13.2%) 21.4⨢ (50.0%) 
  Precision -1,144,-362 -123.8,-46.7 -9.6,2.4 9.8,33.0 
  Correlation 0.83 0.71 0.54 -0.06 
 FBO Accuracy (%) -647⨢ (-24.6%) -90.6⨢ (-27.5%) -5.4⨢ (-20.0%) 14.8⨢ (34.6%) 
  Precision -869,-425 -120.7,-60.5 -9.9,-0.9 3.3,26.3 
  Correlation 0.96 0.76 0.71 0.06 
 GV Accuracy (%) -341⨢ (-13.0%) -71.4⨢ (-21.6%) NA NA 
  Precision -525,-156 -127.5,-15.3 NA NA 
  Correlation 0.95 0.32 NA NA 
 HxSkin Accuracy (%) -586⨢ (-22.3%) 119.3⨢ (36.2%) NA NA 
  Precision -768,-403 52.2, 186.3 NA NA 
  Correlation 0.96 0.67 NA NA 
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   Steps EE (kcals) MVPA (min) SED (min) 
Criterion (avg)  2,623 329.0 27.0 43.0 
Device       
 MB Accuracy (%) -524⨢ (-19.9%) -121.8⨢ (36.9%) NA NA 
  Precision -689,-358 -163.7,-79.9 NA NA 
  Correlation 0.96 0.41 NA NA 
 MFF Accuracy (%) -435⨢ (-16.6%) 6.9 (2.0%) -13.1⨢ (-48.4%) NA 
  Precision -621,-250 -36.6,50.4 -17.7,-8.5 NA 
  Correlation 0.96 0.75 0.64 NA 
 MFS Accuracy (%) -628⨢ (-23.9%) 8.3 (2.5%) -15.7⨢ (-57.9%) NA 
  Precision -816,-440 -47.1,63.9 -20.5,-10.9 NA 
  Correlation 0.96 0.71 0.56 NA 
 NL Accuracy (%) -437⨢ (-16.6%) NA -16.6⨢ (-61.2%) NA 
  Precision -581,-292 NA -24.4,-9.7 NA 
  Correlation 0.97 NA 0.20 NA 
 PL Accuracy (%) -57 (-2.1%) -7.0 (-2.1%) -17.4⨢ (-64.4%) NA 
  Precision -291,175  -37.0,22.8 -23.9,-10.8 NA 
  Correlation 0.95 0.8 0.40 NA 
 WP Accuracy (%) -725⨢ (-27.6%) -107.7⨢ (-32.7%) NA NA 
  Precision -887,-564 -136.1, -79.4 NA NA 
  Correlation 0.96 0.77 NA NA 

 
 Table 14. Summary of device accuracy, percent accuracy, precision and correlations in estimating steps, energy expenditure, 
MVPA and sedentary minutes compared to criterion measures 
MVPA, moderate-to-vigorous physical activity; SED, sedentary; EE, energy expenditure; avg, average; AGhip, hip-worn GT3X-BT; 
AGwrist, wrist-worn GT3X-BT; NA, not applicable. 
⨢, significantly different than criterion (p<0.05). 
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Figure 18. Relationship between criterion steps and hip- and- wrist-worn ActiGraph, Misfit Flash and Misfit Shine estimated 
steps 
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Figure 19. Relationship between criterion steps and Fitbit One, Fitbit Flex, NL-1000 and StepWatch estimated steps 
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Figure 20. Relationship between criterion steps and Withings Pulse, Garmin Vivofit, Polar Loop and Hexoskin estimated 
steps 
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Figure 21. Relationship between criterion steps and Apple iWatch and Microsoft Band estimated steps 
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Figure 22. Bias for Fitbit Flex (FBF), Withings Pulse (WP), Fitbit One (FBO), Misfit Shine (MFS), Hexoskin (HxSkin), hip-
worn ActiGraph (AGhip), Microsoft Band (MB), NL-1000 (NL), Misfit Flash (MFF), wrist-worn ActiGraph (AGwrist), 
Garmin Vivofit (GV), Apple iWatch (AiW), StepWatch (SW) and Polar Loop (PL), step estimates compared to criterion 
steps 
Data presented as mean and 95% confidence intervals 
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Figure 23. Percent bias Fitbit Flex (FBF), Withings Pulse (WP), Fitbit One (FBO), Misfit Shine (MFS), Hexoskin (HxSkin), 
hip-worn ActiGraph (AGhip), Microsoft Band (MB), NL-1000 (NL), Misfit Flash (MFF), wrist-worn ActiGraph (AGwrist), 
Garmin Vivofit (GV), Apple iWatch (AiW), StepWatch (SW) and Polar Loop (PL), step estimates compared to criterion 
steps 
Data presented as mean and 95% confidence intervals 
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Figure 24. Relationship between criterion energy expenditure and Fitbit One (FBO), Fitbit Flex (FBF), Misfit Flash (MFF) 
and Misfit Shine (MFS) estimated energy expenditure 
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Figure 25. Relationship between criterion energy expenditure and Withings Pulse (WP), Garmin Vivofit (GV), Polar Loop 
(PL) and Hexoskin HxSkin) estimated energy expenditure 
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Figure 26. Relationship between criterion energy expenditure and hip-worn ActiGraph (AGhip), Apple iWatch (AiW) and 
Microsoft Band (MB) estimated energy expenditure 
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Figure 27. Bias from Microsoft Band (MB), Withings Pulse (WP), Fitbit One (FBO), Fitbit Flex (FBF), Garmin Vivofit (GV), 
Apple iWatch (AiW), hip-worn ActiGraph (AGhip), Polar Loop (PL), Misfit Flash (MFF), Misfit Shine (MFS) and Hexoskin 
(HxSkin) energy expenditure estimates compared to criterion energy expenditure 
Data presented as mean and 95% confidence intervals 
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Figure 28. Percent bias from Microsoft Band (MB), Withings Pulse (WP), Fitbit One (FBO), Fitbit Flex (FBF), Garmin 
Vivofit (GV), Apple iWatch (AiW), hip-worn ActiGraph (AGhip), Polar Loop (PL), Misfit Flash (MFF), Misfit Shine (MFS) 
and Hexoskin (HxSkin) energy expenditure estimates compared to criterion energy expenditure 
Data presented as mean and 95% confidence intervals 
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Figure 29. Relationship between criterion MVPA minutes and hip- and- wrist-worn ActiGraph (AGhip, AGwrist) estimated 
MVPA minutes 

	

Figure 30. Relationship between Criterion MVPA minutes and Fitbit One (FBO) and Fitbit Flex (FBF) estimated MVPA 
minutes 
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Figure 31. Bias from hip- and wrist-worn ActiGraph (AGhip, AGwrist), Fitbit One (FBO) and Fitbit Flex (FBF) MVPA 
minutes estimates compared to criterion MVPA minutes 
Data presented as mean and 95% confidence intervals 
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Figure 32. Percent bias from hip- and wrist-worn ActiGraph (AGhip, AGwrist), Fitbit One (FBO) and Fitbit Flex (FBF) 
MVPA minutes estimates compared to criterion MVPA minutes 
Data presented as mean and 95% confidence intervals	
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Figure 33. Relationship between criterion MVPA minutes and NL-1000 (NL) and Apple iWatch (AiW)estimated MVPA 
minutes 
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Figure 34. Relationship between criterion MVPA minutes and Misfit Flash (MFF), Misfit Shine (MFS) and Polar Loop (PL) 
estimated MVPA minutes 
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Figure 35. Bias from Apple iWatch (AiW), Polar Loop (PL), NL-1000 (NL), Misfit Shine (MFS) and Misfit Flash (MFF) 
MVPA minutes estimates compared to criterion MVPA minutes 
Data presented as mean and 95% confidence intervals 
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Figure 36. Percent bias from Apple iWatch (AiW), Polar Loop (PL), NL-1000 (NL), Misfit Shine (MFS) and Misfit Flash 
(MFF) MVPA minutes estimates compared to criterion MVPA minutes 
Data presented as mean and 95% confidence intervals 
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Figure 37. Relationship between criterion sedentary minutes and Fitbit One (FBO), Fitbit Flex (FBF) and hip- and- wrist-
worn ActiGraph (AGhip, AGwrist) estimated sedentary minutes 
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Figure 38. Bias from Fitbit One (FBO), wrist-worn ActiGraph (AGwrist), Fitbit Flex (FBF) and hip-worn ActiGraph 
(AGhip) sedentary minutes estimates compared to criterion sedentary minutes 
Data presented as mean and 95% confidence intervals 
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Figure 39. Percent bias from Fitbit One (FBO), wrist-worn ActiGraph (AGwrist), Fitbit Flex (FBF) and hip-worn ActiGraph 
(AGhip) sedentary minutes estimates compared to criterion sedentary minutes 
Data presented as mean and 95% confidence intervals 
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CHAPTER 6 

STUDY THREE - ACTIVITY TRACKERS ARE SENSITIVIE TO CHANGE IN 

PHYSICAL ACTIVITY AND SEDENTARY BEHAVIORS IN FREE-LIVING 

SETTINGS 

Introduction 

 
Tools such as wearable devices to track personal physical activity (PA) provide a 

mechanism to be more informed about activity behavior. Consumer devices that track PA 

behavior are increasingly popular for consumers, researchers, clinicians and of interest to 

the National Institutes of Health66 who recognize the value of using sensor-based 

wearable monitors to assess PA behaviors.  Consumers are using these devices to monitor 

and track personal PA.  In many cases, clinicians and researchers are using consumer 

devices to track change in PA behavior44 and to assess PA exposure170 and outcomes.165  

Currently, there are at least 149 active or recruiting clinical trials funded by NIH that are 

employing consumer ATs to measure (estimate) change in PA behaviors such as energy 

expenditure (EE) and/or steps. 67  

The research and clinical communities have rapidly adapted ATs, however, their 

utility within these communities has yet to be realized.  Moreover, unlike research-grade 

devices that have been utilized by the research and clinical communities in the past, ATs 

have yet to undergo rigorous testing in both laboratory and free-living settings.  In 

particular, there is no evidence examining the effectiveness of ATs for detecting change 

in PA behaviors in free-living settings.  This knowledge gap is of major concern since 

ATs are widely used to monitor change in PA behaviors.  Therefore, the aims of the 

present study were to: 1) examine the ability of ATs to detect change in PA and ST in 
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free-living settings and 2) examine the ability of research-grade accelerometers to detect 

change in PA and ST in free-living settings. 

Methods 

Procedures 

The data used in the present study are from our previous study, “Validation of 

Consumer and Research-Grade Activity Monitors in Free-Living Settings.”  Briefly, 

thirty-two healthy men and women (50% female, 37.5% minority; mean ± SD: Age = 

32.3 ± 13.3 years; BMI = 24.4 ± 3.3 kg·m-2) were directly observed while completing 

three, 2-hour visits on different days.  During these visits, participants wore several 

different ATs, research-grade devices and a biometric shirt.  At the end of each visit, data 

from all devices were recorded and processed for analysis. For comparison, a validated 

DO system (The Observer XT) was used to compute criterion measures for activity and 

sedentary time outcomes.  (See Tables 12 and 13 for detailed description of devices). 

 

Data Processing and Statistical Evaluation 

For both the criterion measure and the device estimates, we calculated the 

differences between the visits (i.e. visit 1 minus visit 2, visit 1 minus visit 3 and visit 2 

minus visit 3) for estimated steps, EE (Except AGwrist.  No validated EE estimates from 

a wrist-worn AG), activity minutes, and or sedentary time. We then classified the 

criterion and device measured outcomes for visit-to-visit change into one of three 

categories: increase, no change or decrease where an increase or decrease was defined as 

a change that was greater than the within-subject standard deviation of the criterion 

measure (estimated by a linear-mixed model). Finally, confusion matrices were used to 
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determine percent agreement between criterion visit-to-visit change and device visit-to-

visit change. 

 

All data cleaning, processing and analysis were performed using the open source 

R statistical software package (www.r-project.org) and computing language R. 136  

 

Results 

 

Table18 shows percent agreement between criterion measured visit-to-visit 

change and device estimated visit-to-visit change for each output metric.  Correct 

classification of steps ranged from 79.2% (AiW) to 93.3% (MFS and WP).  Correct 

classification of energy EE ranged from 71.2% (MB) to 82.1% (AiW).  Correct 

classification of moderate-to-vigorous physical activity (MVPA) change in minutes 

ranged from 77.6% (FBF) to 74.7% (AGwrist).  Non-Guideline MVPA minutes 

(previously described in study 2, see Table 15 for definitions) ranged from 58.4 (PL) to 

73.8% (MFF).  Correct classification of sedentary time change ranged from 43.4 % (FBF) 

to 53.1% (AGhip). 

 

Figures 40 to 43 illustrate criterion measured visit-to-visit change with FBO (A) 

and/or FBF (B) visit-to-visit change, for steps, EE, MVPA minutes and sedentary time.  

Correct classifications ranged from 46.8% (sedentary minutes) to 89.1% (steps) and from 

43.4% (sedentary minutes) to 88.3% (steps) for the FBO and FBF, respectively. 
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Figure 44 illustrates criterion measured visit-to-visit change versus SW visit-to-

visit change, for steps (91.1% correct classification). 

 

Figures 46 to 48 illustrate criterion measured visit-to-visit change versus AGhip 

(A) and/or AGwrist (B) visit-to-visit change, for steps, EE, MVPA minutes and sedentary 

time. Correct classifications ranged from 53.1% (sedentary minutes) to 91.4% (steps) and 

from 53.1% (sedentary minutes) to 88.3% (steps) for the AGhip and AGwrist, 

respectively. 

 

Discussion 

 
 The purpose of the present study was to examine the ability of ATs to detect 

change in PA and ST during free-living time.  This discussion will highlight key findings 

from the FBF and FBO since this AT is the one most widely used in intervention research 

and by consumers.  Discussion will also include an analysis of the change classification 

results for the AG hip, AGwrist and SW research-grade devices (Table 18 presents a 

summary of the percent agreement between criterion visit-to-visit change and device 

estimated visit-to-visit change for all the outcome measures).  

  

 All ATs detected change in PA with varying levels of agreement with criterion 

change (see Appendices G – J).  For example, percent agreement for ATs that provided 

estimates of Non-Guideline MVPA minutes (previously described in study 2, see Table 

15 for definitions) ranged from 55.8% (PL) to 71.4% (MFF).  Fitbit Flex and FBO 

percent agreement for steps, EE and Guideline MVPA minutes (previously described in 
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study 2) were 65% or greater.  Agreement was lowest for sedentary time (46.8% FBO, 

42.3% FBF) (Figures 39-42).   

Fitbit and AG change estimates for PA and ST were similar to criterion measures 

with a few exceptions.  For the hip location, percent agreement for Guideline MVPA 

minutes and sedentary time was approximately 8% and 12% higher for the FBO versus 

the AGhip, respectively.  For the wrist location, percent agreement for Guideline MVPA 

minutes was approximately 8% higher for the FBF versus the AGwrist.  Additionally, 

percent agreement for sedentary time was approximately 30% higher for the AGwrist 

versus the FBF. These findings suggest that the hip-worn FBO and FBF may be suitable 

alternative devices to research-grade devices for detecting change in free-living steps, EE 

and Guideline MVPA minutes.  However, accurately estimating change in sedentary time 

will require further refinement in prediction models for this behavior.  

Currently, there are at least 117 active clinical trials employing the FB as either an 

outcome or an exposure measure of PA, and the rate of adoption of this tool is rapidly 

increasing.67  To date, the ability of these measurement tools to detect increases, 

decreases or no change in PA behaviors is largely unknown.  The evidence from the 

present study is the first study addressing this issue. The findings of this study support the 

use of this device to detect and monitor changes in free-living steps, EE and Guideline 

MVPA minutes.  The accuracy of the FB for detecting and monitoring change in ST is 

not sufficient and thus changes in ST may be harder to accurately assess from the FB and 

AG. 
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All research-grade devices (AGhip, AGwrist and SW) detected change in PA (see 

Figures 43-46). The highest percent agreement was for steps (88.3% AGwrist, 91.1% 

SW, 91.4% AGhip classification), followed by EE (77.0% AGhip classification), MVPA 

minutes (71.2% AGwrist, 77.0% AGhip classification) and sedentary time (53.1% 

AGhip, 72.7% AGwrist classification).  Hip-and ankle-worn research-grade devices have 

been examined and been shown to detect change in steps and activity minutes in lab-

based settings.96,171,172 We were unable to examine changes in EE from the AGwrist since 

there are no widely accepted validated algorithms to estimate EE from this wrist-worn 

AG. There are no validated EE estimates from a wrist-worn AG.   

 

This study has several strengths.  The primary strength was the study design.  

These data are from our validation study of AT in free-living settings, where we 

employed a validated direct observation (DO) system as the criterion measure.42 Our use 

of DO to derive criterion measures of PA and ST is a major advance in this line of 

research since previous free-living studies employed accelerometer estimates of activity 

and ST as a substitute for gold-standard criterion measures  to assess PA.32-34,43-46 Second, 

an ecological study setting allowed us to examine AT performance while participants 

wore them in their natural environment which has high research-translation value.  Third, 

the use of within-subject standard deviation (SD) of the criterion measures allowed us to 

use an evidence-based behavior cut-point of the minimum outcome level to define 

change.    For example, based on our data, if an activity intervention observed a ±3,000 

step/2hr change, the FBF could detect this change.   
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This study also has limitations.  We employed a validated DO system that uses 

the Compendium of Physical Activities to apply MET values to activities. The values in 

the Compendium do not estimate the energy cost of physical activity in individuals that 

account for differences in body mass, adiposity, age, sex, efficiency of movement, and 

environmental conditions in which the activities are performed.146  Therefore, it is 

possible that activities were misclassified by intensity category, which may have resulted 

in inaccuracies of criterion EE, activity minutes and sedentary time..  The trial duration 

was another limitation.  We observed participants for three, 2-hour time frames versus a 

whole-day, thus, our findings may not represent change in whole day behavior. 

   

 In summary, the present study is a major advance beyond traditional validation 

studies in the lab and simulated free-living studies where activities are performed over 

fixed time and activity menu driven fixed time and activity studies. This study used a 

novel protocol that is truly free-living, which is relevant to real-life applications. Thus 

far, no studies have examined ATs ability to detect change in PA and ST in free-living 

settings where these devices are used.  Our findings suggest that in general, there is 

similar agreement between the hip-worn FBO and FBF with hip- and- wrist-worn AGs in 

estimates of change in steps, EE (accept AGwrist) and MVPA minutes (except FBF) with 

criterion measured change.  However, change in ST was more difficult to detect for the 

FB and AGhip. 
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Device Apple 
iWatch 
Sport 

Fitbit Flex Fitbit One 
 

Garmin 
Vívofit 

New 
Lifestyles 
NL-1000 

Microsoft 
Band 

 Misfit 
Flash 

Misfit 
Shine 

Polar loop Withings 
Pulse 

Cost $350.99 $79.95 $99.95 $99.99 $54.95 $199.99  $29.99 $69.99 $109.95 $119.95 
Wear location Wrist 

 
Wrist 

 
Clip on 

(multiple 
locations) 

Wrist 
 

Hip 
 

Wrist 
 

 Clip on 
(multiple 
locations) 

Clip on 
(multiple 
locations) 

Wrist Clip on and 
wrist band 

 

Tracks Calories 
Burned 

✓ ✓ ✓ ✓ ✗ ✓  ✓ ✓ ✓ ✓ 

Tracks Active 
Time 

✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

Tracks Steps ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 
Tracks 
Distance 

✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

Tracks 
Elevation/Stairs 

✗ ✗ ✓ ✗ ✗ ✗  ✗ ✗ ✗ ✓ 

Tracks Sleep ✓ ✓ ✓ ✓ ✗ ✓  ✓ ✓ ✓ ✓ 
Tracks Heart 
Rate 

✓ ✗ ✗ ✗ ✗ ✓  ✗ ✗ ✓ ✓ 

Battery or 
Chargeable 

Chargeable 
(every 18 

hours) 

Chargeable 
(every 5 

days) 

Chargeable 
(every 10+ 

days) 

Battery 
(every 1+ 

years) 

Battery 
(up to 18 
months) 

Chargeable 
(every 48 

hours) 

 Battery 
(lasts up to 
6 months) 

Battery 
(lasts up to 
6 months) 

Chargeable 
(up to 6 
days) 

Chargeable 
(every 2 

days) 
Uploading Data Bluetooth Bluetooth Bluetooth Bluetooth Real-time 

data 
USB    USB Bluetooth 

Tracker Display Real-time 
data 

LED 
progress 
indicator 

Real-time 
data 

Real-
time data 

Real-time 
data 

Real-time 
data 

 LED 
progress 
indicator 

LED 
progress 
indicator 

Real-time 
data 

Real-time 
data 

Table 15. Features of consumer-based activity trackers 
LED, Light-Emitting Diode; USB, Universal Serial Bus 
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Device (Location) Output Data Extraction Method 

  Upload Retrieval 

Apple iWatch Sport (W) EE, steps, active calories, min: exercise, total active time, stand hours Bluetooth Apple Activity App 

GT3X-BT (W & H) Steps, min: Sedentary, light, moderate, vigorous USB cable ActiLife 

Fitbit Flex /One (W/H) EE, steps, MET-min, min: sedentary, light, moderate, vigorous Bluetooth Fitabase 

Garmin Vivofit (W) EE, steps, active calories, %: sedentary, active, highly active Bluetooth Garmin Connect™ App 

Hexoskin (T) EE, steps USB cable Hexoskin dashboard 

Microsoft Band (W) EE, steps, active min USB cable MB dashboard 

Misfit Flash/Shine (H/W) EE, steps, active min: light, moderate, vigorous Bluetooth Misfit App 

New Lifestyles NL-1000 (H) Steps, MVPA min RTD RTD 

The Observer XT (NA) MET-hours, MET-min The Observer XT The Observer XT 

Polar Loop (W) EE, steps, time: lying, sitting, active, sitting, min: stand, walk, run USB cable Polar dashboard 

StepWatch (A) Steps USB cable StepWatch dashboard 

Withings Pulse (H) EE, steps Bluetooth Withings App 

Table 16. Device output and data extraction methods 
H, hip; W, wrist: T, torso; A, Ankle; NA, not applicable; EE, energy expenditure; min, minutes; MVPA, moderate-to-vigorous 

physical activity; MB, Microsoft Band; RTD, real-time display	
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Device Output Definition 

Apple iWatch Exercise minutes Anything above a brisk walk is classed as exercise. Every full minute of 

movement equaling or exceeding the intensity of a brisk walk counts towards 

daily Exercise goal (30 min). 

Fitbit Flex/One Active minutes Activities at or above about 3 METs. Minutes are only awarded after 10 

minutes of continuous moderate-to-intense activity. 

Misfit Flash/Shine Light-, moderate-, 

vigorous- minutes 

No definitions provided. 

NL-1000 MVPA Moderate-to-vigorous physical activity (MVPA) time accumulation. 

Polar Loop WALK and JOG 
 

Medium and high intensity activity, respectively. 

Table 17. Activity tracker intensity outputs and definitions 
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  Device – Percent Agreement (%) 
 CRIT 

w/i Sub 
SD 

AGhip AGwrist SW AiW FBF FBO GV HxSkin MB MFF MFS NL PL WP 

Metric                
Steps ±2,809 91.4 88.3 91.1 79.2 88.8 89.1 88.0 89.4 89.1 82.5 93.3 91.4 84.9 93.3 
EE 
(kcals) 

±213.0 77.0 NA NA 82.1 72.8 76.5 72.3 78.2 71.2 77.2 77.7 NA 74.0 78.2 

MVPA 
(min) 

±28.0 77.0 71.2 NA 67.1⨣ 65.2 79.7 NA NA NA 71.4⨣ 64.1⨣ 63.5⨣ 55.8⨣ NA 

SED 
(min) 

±41.0 53.1 72.7 NA NA 42.3 46.8 NA NA NA NA NA NA NA NA 

Table 18. Percent agreement between criterion measured visit-to-visit change and device estimated visit-to-visit change for 
each output metric 
CRIT, criterion; Sub, subject: SD, standard deviation; AGhip, hip-worn GT3X-BT; AGwrist, wrist-worn GT3X-BT; SW, 

StepWatch; AiW, Apple iWatch; FBF, Fitbit Flex; FBO, Fitbit One; GV, Garmin Vivofit; HxSkin, Hexoskin; MB, Microsoft Band; 

MFF, Misfit Flash; MFS, Misfit Shine; NL, New Lifestyles-1000; PL, Polar Loop; WP, Withings Pulse; MVPA, moderate-to-

vigorous physical activity; SED, sedentary; min, minutes; EE, energy expenditure; kcals, calories; NA, not applicable; 

⨣, Non-Guideline MVPA minutes. 
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A.      B. 

	
	
	
	
Figure 40. Steps: criterion measured visit-to-visit change and Fitbit One (A) Fitbit 
Flex (B) visit-to-visit change 
The open circles are visit-to-visit change, dotted lines are the criterion measured within-
subject standard deviation, the dashed line is the line of identity, and the shaded areas 
illustrate agreement. 
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A.      B. 

	
	
	
	
Figure 41. Energy expenditure: criterion measured visit-to-visit change and Fitbit 
One (A) Fitbit Flex (B) visit-to-visit change 
The open circles are visit-to-visit change, dotted lines are the criterion measured within-
subject standard deviation, the dashed line is the line of identity, and the shaded areas 
illustrate agreement. 
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A.      B. 

	
	
	
Figure 42. Moderate-to-vigorous physical (MVPA): criterion measured visit-to-visit 
change and Fitbit One (A) and Fitbit Flex (B) visit-to-visit change 
The open circles are visit-to-visit change, dotted lines are the criterion measured within-
subject standard deviation, the dashed line is the line of identity, and the shaded areas 
illustrate agreement. 
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A.      B. 

	
	
	
	
Figure 43. Sedentary time: criterion measured visit-to-visit change and Fitbit Flex 
(A) and Fitbit One (B) visit-to-visit change 
The open circles are visit-to-visit change, dotted lines are the criterion measured within-
subject standard deviation, the dashed line is the line of identity, and the shaded areas 
illustrate agreement. 
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A.      B. 

	
	
	
Figure 44. Steps: criterion measured visit-to-visit change and ActiGraph hip (A) 
ActiGraph wrist (B) visit-to-visit change 
The open circles are visit-to-visit change, dotted lines are the criterion measured within-
subject standard deviation, the dashed line is the line of identity, and the shaded areas 
illustrate agreement. 
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Figure 45. Steps: criterion measured visit-to-visit change and StepWatch visit-to-
visit change 
The open circles are visit-to-visit change, dotted lines are the criterion measured within-
subject standard deviation, the dashed line is the line of identity, and the shaded areas 
illustrate agreement. 
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Figure 46. Energy expenditure: criterion measured visit-to-visit change and 
ActiGraph hip visit-to-visit change 
The open circles are visit-to-visit change, dotted lines are the criterion measured within-
subject standard deviation, the dashed line is the line of identity, and the shaded areas 
illustrate agreement. 
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A.      B. 

	
	
	
	
Figure 47. Moderate-to-vigorous physical (MVPA): criterion measured visit-to-visit 
change and ActiGraph hip (A) and ActiGraph wrist (B) visit-to-visit change 
The open circles are visit-to-visit change, dotted lines are the criterion measured within-
subject standard deviation, the dashed line is the line of identity, and the shaded areas 
illustrate agreement. 
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A.      B. 
	

	
	
	
	
Figure 48. Sedentary time: criterion measured visit-to-visit change and ActiGraph 
hip (A) and ActiGraph wrist (B) visit-to-visit change 
The open circles are visit-to-visit change, dotted lines are the criterion measured within-
subject standard deviation, the dashed line is the line of identity, and the shaded areas 
illustrate agreement. 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

-100 -50 0 50 100

-1
00

-5
0

0
50

10
0

AGhip Sedentary Time

Criterion Visit to Visit Change

D
ev

ic
e 

V
is

it 
to

 V
is

it 
C

ha
ng

e

-100 -50 0 50
-1
00

-5
0

0
50

AGwrist Sedentary Time

Criterion Visit to Visit Change

D
ev

ic
e 

V
is

it 
to

 V
is

it 
C

ha
ng

e

%	Agreement	
53.1	

					

					

					

%	Agreement	
72.7	

					

					

					



	

190 
	

	
	

CHAPTER 7 

OVERALL SUMMARY AND CONCLUSIONS 

The overall goal of this dissertation was to develop a comprehensive 

understanding of AT estimates of PA and SB using innovative methods to address critical 

knowledge gaps in the field of PA and health. 

Study One 

 This study was the first to examine AT performance under highly 

controlled conditions using an electronic orbital shaking protocol.  We showed that, on 

average, the NL produced the smallest error and detected steps similar to our reference 

(AG) at a 0.9 Hz (corresponding to moderate intensity) and maintained this small error up 

to a 3.0 Hz (corresponding to very vigorous intensity).  Estimates from all other ATs 

were equivocal, with some overestimating steps or EE, and others underestimating steps 

or EE compared to the AG.  Isolating devices from external influences allowed us to 

glean valuable insight.  There is strong evidence of differences in prediction algorithms 

by device.  Shaking devices across a wide range of frequencies in short increments 

allowed us to understand how the behavior of the output from the ATs changed across 

different oscillation frequencies.  We were able to also associate oscillation frequencies 

with intensity levels to provide PA context. 

Study Two 

In study two, we compared consumer ATs and research-grade activity monitors 

with DO in free-living settings. Estimates of PA and ST from three research-grade 

accelerometers and 11 activity monitors during 192 DO-hours were analyzed.  The 
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innovation of study two was rooted in the DO criterion measure.  We are the first to 

provide evidence of AT estimates of PA and SB in free-living settings compared to DO.  

This unique dataset revealed that ATs are accurate with varying precision in estimating 

PA behaviors in free-living settings.  Additionally, ATs and research-grade 

accelerometers perform similarly (e.g. more accurate in estimating steps and less accurate 

in estimating MVPA minutes [Table 13]).  For all devices, step estimates were accurate 

and strongly correlated but EE and MVPA estimates were less accurate and more 

variable but at least moderately correlated.  For ATs, estimates of sedentary time were the 

least accurate and weakly correlated with criterion measures.  These findings may stem 

from the fact that typically, acceleration signals (e.g. vertical accelerations) are used to 

detect steps, however, ATs use proprietary prediction equations to estimate EE, MVPA 

and sedentary time.  These methods work for some individuals and for others they do not.  

Implications from this novel study are that consumers and the research community using 

ATs such as Fitbit, to track steps can be confident in their estimates of PA but less 

confident in estimating sedentary time.  This study advances our understanding of the 

performance characteristics of ATs in free-living natural settings using a validated DO 

method to derive PA and SB measures.   

Study Three 

To date, more than 230 clinical trials have used Fitbit to measure PA behaviors as 

an outcome and/or exposure,67 for example, daily step accumulation pre and post PA 

behavior intervention.  Until the current study, no evidence existed of ATs ability to 

detect change in PA behaviors in free-living settings. Study three was pioneering as it 

addressed this knowledge gap by examining the ability of ATs to detect change in PA 
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and SB in free-living settings. Our findings suggested that in general, there is similar 

agreement between the hip-worn FBO and FBF with hip- and- wrist-worn AGs in 

estimates of change in PA behaviors with criterion measured change.  However, change 

in SB was more difficult to detect for the FBO, FBF and AGhip. Results from study two 

suggest that the reason for the poorer performance to detect SB change is related to the 

large bias and inaccuracies of these devices in estimating SB. Results from this 

innovative study have significant implications regarding the deployment of ATs to 

estimate PA and SB exposure and outcome measures. We have advanced the field by 

translating our findings from study two into real-world applications.  For example, as an 

alternative to research-grade accelerometers, researchers may employ FB to measure step 

accumulation pre- and post-intervention and have confidence in FB step estimates.  If the 

goal of the intervention was to increase steps/2-hrs beyond baseline, average 2-hr step 

count from the FB should be able to detect that change.  Our findings are applicable to 

activity monitor users worldwide and should be used to disseminate a positive public 

health message.  For example, using activity monitors to promote increasing PA and 

decreasing ST to produce positive health outcomes. 

. 

Strengths 

Study one was the first to employ electronic orbital shaker testing over a wide 

range of frequencies to examine AT estimates of steps and EE compared to a widely used 

research-grade accelerometer.   The orbital shaker methods remove the subject to subject 

variation.  As a result, we are confident that observed differences are due to technological 

features of the devices and are not a function of human variation.   
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For studies two and three we employed a validated DO system as the criterion 

measure.42 An ecologically valid study setting allowed us to examine AT performance 

while participants wore these devices in their natural environment.  Other strengths were 

the wide range of activities (sleep to trail running), intensities (1.0 to 12.0 METs), 

activity duration (seconds to hours) and the range of settings and times used for data 

collection.   

In study three, we used the within-subject standard deviation (SD) of the criterion 

measures to define change, which allowed us to use an evidence-based behavior cut-point 

of the minimum outcome level to define change. 

Limitations 

 A limitation was that we used  the EE estimates from Freedson VM3 

equation which was developed via human-testing.52  Though studies have provided 

evidence that sensor output is often calibrated during standardized activities such as 

walking on a treadmill, 154 applying the same algorithm to electronic oscillations may be 

inappropriate.   

In studies two and three the DO procedures used to derive PA and ST measures 

are not ideal.  We employed a validated DO system that uses the Compendium of 

Physical Activities to apply MET values to activities. The values in the Compendium do 

not estimate the energy cost of PA in individuals in ways that account for differences in 

body mass, adiposity, age, sex, efficiency of movement, and environmental conditions in 

which the activities are performed.146  Therefore, it is possible that activities were 

misclassified by intensity category, which may have resulted in inaccuracies of activity 

minutes, sedentary time and EE.  The study trial duration was another limitation for study 
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two.  We observed participants for three, 2-hour time frames versus whole-day. Thus, our 

findings may not be a true representation of whole day behavior. Misclassifications may 

have impacted study three in at least two ways: (1) the magnitude and direction of visit-

to-visit change and, (2) within-subject SD of visit-to-visit change. 

Significance and Future Directions 

Each study in the present dissertation provides new evidence of wearable monitor 

estimates of PA and ST.  Study one, shows how electronic orbital shaking affects device 

output.  Ultimately, these data provided clear evidence of differences in algorithm by 

device.  The evidence from study two offers a major new contribution to the field of PA 

measurement.  We reported how AT estimates of PA and ST performed under free-living 

settings.  In study three we employed analytic procedures that defines translational 

research. Our evidence examining the detection of change in PA and ST provides direct 

meaning and value in using these devices for research, clinical applications and the 

individual consumer.  

Collectively, these studies provide the foundation to building a more 

comprehensive understanding of the performance characteristics of consumer and 

research-grade monitors.  This is the first evidence detailing how these devices behave in 

highly controlled and free-living settings. The study designs and data should become the 

foundation for future work in this field and can be used as evidence for best practices in 

activity monitor validation studies.  
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Albert Mendoza, Kinesiology

Protocol Title:Validation of activity trackers in estimating energy expenditure, activity minutes and steps in free-living settings
Protocol ID: 2015-2492
Review Type:EXPEDITED - NEW
Paragraph ID: 4,6
Approval Date: 05/11/2015
Expiration Date:05/10/2016
OGCA #:115-0883

This study has been reviewed and approved by the University of Massachusetts Amherst IRB, Federal Wide Assurance # 00003909.  Approval is
granted with the understanding that investigator(s) are responsible for:

Modifications - All changes to the study (e.g. protocol, recruitment materials, consent form, additional key personnel), must be submitted for
approval in e-protocol before instituting the changes.  New personnel must have completed CITI training.

Consent forms - A copy of the approved, validated, consent form (with the IRB stamp) must be used to consent each subject.  Investigators must
retain copies of signed consent documents for six (6) years after close of the grant, or three (3) years if unfunded.

Adverse Event Reporting - Adverse events occurring in the course of the protocol must be reported in e-protocol as soon as possible, but no later
than five (5) working days.

Continuing Review - Studies that received Full Board or Expedited approval must be reviewed three weeks prior to expiration, or six weeks for Full
Board.  Renewal Reports are submitted through e-protocol.

Completion Reports - Notify the IRB when your study is complete by submitting a Final Report Form in e-protocol.

Consent form (when applicable) will be stamped and sent in a separate e-mail.  Use only IRB approved copies of the consent forms, questionnaires,
letters, advertisements etc. in your research.

Please contact the Human Research Protection Office if you have any further questions.  Best wishes for a successful project.

Certification of Human Subjects Approval

May 11, 2015Date:
To:

From: Lynnette Leidy Sievert, Chair, UMASS IRB

108 Research Administration Bldg.
70 Butterfield Terrace
Amherst, MA 01003-9242

University of Massachusetts Amherst Research Compliance
Human Research Protection Office (HRPO)
Telephone: (413) 545-3428
FAX: (413) 577-1728

Patty Freedson, KinesiologyOther Investigator:
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Initials: ______ 

Consent Form for Participation in a Research Study 
University of Massachusetts Amherst 

 
 
Researcher(s):  Albert Mendoza, M.S., Principal Investigator, Dr. Patty Freedson, 

Amanda Hickey, M.S. 
Study Title: Validation of Activity Trackers in Estimating Energy Expenditure, 

Activity Minutes and Steps in Free-living Settings 
Funding Agency:  NIH: National Heart, Lung, and Blood Institute 
 
 
1. WHAT IS THIS FORM? 
This form is called the Informed Consent. It will give you information about the study so you can 
make an informed decision about participation in this research. This information will outline 
everything you will need to do to participate and any known risks, discomfort, or inconveniences 
that may occur during your participation in this research. Feel free to ask questions at any time.  
If you decide to participate in this study, you will be asked to sign this form and initial each page. 
You will be given a copy for your records. 
 
 
2. WHO IS ELIGIBLE TO PARTICIPATE? 
To participate in this study: 
(1) You must be between 18 and 59 years of age, and women must not be pregnant. 
(2) You must be in good physical health (no diagnosed cardiovascular, metabolic, joint, or 
chronic diseases). 
(3) You must be able to do normal daily activities and are not limited by musculoskeletal 
problems that would impair your ability to be normally active. 
(4) You must be willing to comply with the study protocol described below. 
 
 
3. WHAT IS THE PURPOSE OF THIS STUDY? 
The purpose of this study is to determine the accuracy and precision of activity trackers in 
estimating energy expenditure, activity minutes and steps in free-living settings. Researchers will 
also examine whether activity trackers can detect changes in your activity behavior (e.g. classify 
you as inactive or active) in free-living settings. 
 
 
4. WHERE WILL THE STUDY TAKE PLACE AND HOW LONG WILL IT LAST? 
The study will consist of four visits. 
Visit One: Informed consent visit will take place in the Physical Activity and Health Lab on the 
UMass Amherst campus (~30 min). 
Visits 2, 3 and 4: Observations sessions: Each of the observation visits will last 2-hrs and 15 
min: 10 min to put on monitors, 2-hrs of observation while you perform normal daily activities, 5 
min to remove monitors. 
Your total time commitment while participating in this study will be approximately 7.25 hours 
over a 3 week time period.  After the fourth visit your participation in the study will be complete.  
 

 
 

University of Massachusetts Amherst-IRB 
(413) 545-3428 

Approval Date:                         Protocol #:   
Valid Through:             
IRB Signature: 

 
 

04/12/2016
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5. WHAT WILL I BE ASKED TO DO? 
If you agree to participate in this study during the first visit you will be asked to initial the bottom 
of each page of this informed consent and sign the last page. During the first visit you will fill out 
a Physical Activity Status (PAS) Questionnaire and a Physical Activity Readiness Questionnaire 
(PAR-Q), which will ask questions about how active you are and if you have any injuries or 
health impairments that prevent you from physical activity. Based on your answers to the 
questionnaire you may not qualify for this study. Then you will also fill out a School of Public 
Health Compensation Form and a W9 form.  Researchers will record your height and weight 
and demographic information like your date of birth and ethnicity (Visit One). You may skip any 
question you feel uncomfortable answering.  You will then be scheduled for 3, 2-hr and 15 min 
testing sessions including one weekend testing session (Visits 2, 3 and 4).  The first visit will be 
approximately 30 minutes.   
 
Visits 2, 3 and 4.  Each of the 2-hr 15 min observation sessions (scheduled at the end of Visit 
1) will be done at different times of the day (e.g. Session one: morning; Session 2: afternoon; 
Session 3: evening), in your free-living settings (e.g. home, work, driving).  If/when you drive, 
researchers will follow from a safe distance in a separate car.  Two researchers (or 1 researcher 
and 1 research assistant) will always be present during the observation sessions, and for female 
participants, at least one of the 2 researchers will be female.  For these three visits, you will 
come to the Physical Activity and Health Laboratory to be fitted with a variety of activity monitors 
that will be worn on the upper arm, wrists, hip and ankle, and a smart shirt.  You will wear 1 
monitor on the upper arm, 8 monitors on the wrists (4 on the right wrist and 4 on the left wrist), 2 
monitors on the right hip, and 1 smart shirt to be worn as an undergarment.  The smart shirt 
estimates energy expenditure and steps, as well as respiration (how much you breathe) and 
heart-rate.  You will then leave the lab with two researchers who will stay with you for the 2-hr 
session. The researchers will be video recording you for each of the entire 2-hr sessions while 
you carry out your normal activities (including driving).  Every attempt will be made to avoid 
including your head in these video recordings. If your head does appear in the video we will edit 
these shots to blur or eliminate your head from the video recording. If private time is required 
(i.e. going to the bathroom), we will not observe you during these private time periods. At the 
end of the 2-hr recording period, the researchers will remove the activity monitors, you will 
remove the smart shirt in private wherever you feel most comfortable (e.g. restroom or secured 
room) and your testing session is complete. Your data from these monitors will be downloaded 
to computer.  Visits 2, 3 and 4 will each take approximately 2 hours and 15 minutes. 
 
 
6. WHAT ARE MY BENEFITS OF BEING IN THIS STUDY?  
You may not directly benefit from this research; however we hope that your participation in the 
study may provide valuable information about the accuracy and precision of activity monitors in 
free-living settings and will provide evidence about how the consumer monitors compare to one 
another (using direct observation/video recording as the criterion [truth] measure) for estimating 
energy expenditure, activity minutes, steps and sedentary time.  Once all data are collected and 
analyzed, we will provide you with your results that will describe the number of minutes you 
were active and sedentary during the observation periods and your estimated activity energy 
expenditure and steps during the observation periods. 
 
 
7.  WHAT ARE MY RISKS OF BEING IN THIS STUDY?  
All possible attempts will be made to minimize any risks. The risks are minimal and are simply 
risks that occur carrying out your normal daily activities. We will not ask you to do anything out 

 
 

University of Massachusetts Amherst-IRB 
(413) 545-3428 

Approval Date:                         Protocol #:   
Valid Through:             
IRB Signature: 
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of the ordinary pattern of what you would typically do.  You may be uncomfortable with the video 

recording but we will make every attempt to record your body movements without your head 

being recorded. In the event your head is recorded we will use our software to blur or edit out 

your face from all video recordings when the recordings are downloaded into the computer.  

You may notice that you are wearing several devices on your upper arm, wrists, hip, and ankle, 

and a smart shirt. There is a very minimal risk that a device or devices you are wearing become 

uncomfortable or cause you discomfort. You are free to remove any device and/or the smart 

shirt if you feel that causes you a problem during the observation sessions. 

 

 

8. HOW WILL MY PERSONAL INFORMATION BE PROTECTED?  
The information obtained in this study will be regarded as privileged and confidential.  If the 

results of this study are published in a scientific journal or presented at a scientific meeting, your 

name will not be used. All records, including questionnaire data, activity monitor data, and video 

data will be identified only with a numerical ID. Activity monitor data will be stored on a 

password protected PC and a password protected portable hard drive (portable hard drive will 

be stored in a locked file cabinet). Video data will be downloaded into a PC and portable hard 

drive (hard drive will be stored in locked file cabinet). The video data will then be deleted from 

the camera. All efforts will be made to not capture your head in the video recordings. In the 

event that head data are contained in the video file, we will either blur the face images or edit 

these images out of the video recording. After we code the data from the PC files, we will delete 

this record and will only keep the video record stored on the hard drive in the event we have to 

go back to review and verify coding. 

 

 

9. WILL I RECEIVE ANY PAYMENT FOR TAKING PART IN THE STUDY?  
Payment will be sent as a check by mail to the address you provide in 6-8 wks. You will receive 

partial payment if you decide to leave the study at any point.  For each 2-hr observation period 

completed, you will receive $25.00 (maximum will be $75.00 for completion of all 3, 2-hr 

observation sessions). If you complete at least 1-hr of any observation period, you will receive 

$12.50.  After completing all visits you will be paid $75.00 total. 

 

 

10. WHAT IF I HAVE QUESTIONS? 
You are encouraged to ask any questions, voice any concerns or doubts regarding the study at 

any time. Investigators will attempt to answer all questions to the best of their ability. The 

investigators fully intend to conduct the study with your best interest, safety, and comfort in mind. 

Mr. Mendoza can be reached at 413.545.1583 or by cell at 415.297.9327, Professor Freedson 

can be reached at 413.545.2620 and Ms. Hickey may be reached at 413.545.1583.  If you would 

like to discuss your rights as a participant in a research study or wish to speak with someone not 

directly involved with the study you may contact the Human Research Protection Office at 

humansubjects@ora.umass.edu.  

 

 

11. CAN I STOP BEING IN THE STUDY? 
Participation in this study is completely voluntary. You may withdraw consent at any time in 

writing or by telephone (413.545.1583) and discontinue participation in the study without 

prejudice to you or your medical care at UMass Amherst. 
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12.WHAT IF I AM INJURED? 
In the unlikely event of an injury resulting directly from participation in this study, investigators 
will assist you in every way to insure that you receive proper medical attention. The University of 
Massachusetts does not have a program to compensate subjects for injury or complications 
related to human subjects research but the study personnel will assist you in getting treatment. 
It also should be understood that by your agreement to participate in this study, you are not 
waiving any of your legal rights. 
 
 
13. SUBJECT STATEMENT OF VOLUNTARY CONSENT 
I confirm that this document has explained the purpose of the research, the study procedures 
that I will undergo and the possible risks and discomforts as well as the benefits I may 
experience.  I have read and I understand the consent form. Therefore, I agree to participate in 
this study. 
 
Recall, that the video will not include your face. 

 
______I agree that segments of the recordings made of my participation 
in this research may be used for conference presentations, as well as 
education and training of future researchers/practitioners. 

 

______I agree to have my recordings archived for future research in the 
field of Kinesiology. 

 

______I do not agree to have my recordings archived for future 
research in the field of Kinesiology. 

 

______I do not agree to allow segments of recordings of my 
participation in this research to be used for conference presentations or 
education and training purposes.  

 

 
________________________ ____________________  __________ 
Participant Signature:   Print Name:    Date: 
 
 
By signing below I indicate that the participant has read and, to the best of my knowledge, 
understands the details contained in this document and has been given a copy. 
 
_________________________    ____________________  __________ 
Signature of Person   Print Name:    Date: 
Obtaining Consent 
 
The investigators will retain the original copy of this document for their records. You will be 
given a copy of the document if you would like one. 

 
 

University of Massachusetts Amherst-IRB 
(413) 545-3428 

Approval Date:                         Protocol #:   
Valid Through:             
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PHYSICAL ACTIVITY READINESS QUESTIONNAIRE (PAR-Q) 
	

Please	read	the	following	questions	carefully	and	answer	each	one	honestly:	check	
YES	or	NO.	
	
	
YES	 NO	
	
o	 o	 1.	 Has	your	doctor	ever	said	that	you	have	a	heart	condition	and	

that	 you	 should	 only	 do	 physical	 activity	 recommended	 by	 a	
doctor?	

	
o	 o	 2.	 Do	you	feel	pain	in	your	chest	when	you	do	physical	activity?	
	
o	 o	 3.	 In	the	past	month,	have	you	had	chest	pain	when	you	were	not	

doing	physical	activity?	
	
o	 o	 4.	 Do	you	lose	your	balance	because	of	dizziness	or	do	you	ever		
	 	 	 	 lose	consciousness?	
	
o	 o	 5.	 Do	you	have	a	bone	or	joint	problem	that	could	be	made	worse	

by	a	change	in	your	physical	activity?	
	
o	 o	 6.			Is	your	doctor	currently	prescribing	drugs	(for	example,	water	

pills)	for	your	blood	pressure	or	heart	condition?	
	
o	 o	 7.	 Do	you	know	of	any	other	reason	why	you	should	not	do		
	 	 		 	 physical	activity?	
	
	
PAR-Q	(Thomas,	Reading,	&	Shephard,	1992)	
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Participant	ID:	__________	 	 	 	 	 Date:	______________	
	
Physical Activity Status 

Using	the	descriptions	below,	record	the	highest	number	(0	to	7)	which	best	describes	
your	general	activity	level	during	the	previous	month.	If	you	did	more	than	section	
1,	then	move	on	to	section	2,	and	so	on.	You	want	to	pick	the	highest	number	in	this	
list	to	represent	your	activity	level.	
	
Section	1:	Did	not	participate	regularly	in	programmed	recreational	sport	or	heavy	
physical	activity.	
	

0 Avoided	 walking	 or	 exertion,	 e.g.	 always	 used	 the	 elevator,	 drove	

whenever	possible	instead	of	walking.	

	
1 Walked	for	pleasure,	routinely	used	the	stairs,	occasionally	exercised	

sufficiently	to	cause	heavy	breathing	or	perspiration.	

	
Section	2:	Participated	 regularly	 in	 recreation	or	work	 requiring	modest	physical	
activity,	such	as	golf,	horseback	riding,	calisthenics,	gymnastics,	table	tennis,	bowling,	
weight	lifting,	yard	work.	
	

2 10	to	60	minutes	per	week.	

	
3 Over	1	hour	per	week.	

	
Section	 3:	 Participated	 regularly	 in	 heavy	 physical	 exercise	 such	 as	 running	 or	
jogging,	 swimming,	 cycling,	 rowing,	 skipping	 rope,	 running	 in	place	or	 engaged	 in	
vigorous	aerobic	activity	type	of	exercise	such	as	tennis,	basketball,	or	handball.	
	

4 Ran	less	than	1	mile	per	week	or	spent	less	than	30	minutes	per	week	

in	comparable	physical	activity.	

	
5 Ran	 1	 to	 5	miles	 per	 week	 or	 spent	 30	 to	 60	minutes	 per	 week	 in	

comparable	physical	activity.	
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6 Ran	 5	 to	 10	 miles	 per	 week	 or	 spent	 1	 to	 3	 hours	 per	 week	 in	

comparable	physical	activity.	

	
7 Ran	more	than	10	miles	per	week	or	spent	over	3	hours	per	week	in	

comparable	physical	activity.	

	
Physical	Activity	Status	during	the	previous	month	(highest	score):	______	
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Device Apple 

iWatch 
Sport 

Fitbit Flex Fitbit One 
 

Garmin 
Vívofit 

New 
Lifestyles 
NL-1000 

Microsoft 
Band 

 Misfit 
Flash 

Misfit 
Shine 

Polar loop Withings 
Pulse 

Cost $350.99 $79.95 $99.95 $99.99 $54.95 $199.99  $29.99 $69.99 $109.95 $119.95 
Wear location Wrist 

 
Wrist 

 
Clip on 

(multiple 
locations) 

Wrist 
 

Hip 
 

Wrist 
 

 Clip on 
(multiple 
locations) 

Clip on 
(multiple 
locations) 

Wrist Clip on and 
wrist band 

 

Tracks Calories 
Burned 

✓ ✓ ✓ ✓ ✗ ✓  ✓ ✓ ✓ ✓ 

Tracks Active 
Time 

✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

Tracks Steps ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 
Tracks 
Distance 

✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ 

Tracks 
Elevation/Stairs 

✗ ✗ ✓ ✗ ✗ ✗  ✗ ✗ ✗ ✓ 

Tracks Sleep ✓ ✓ ✓ ✓ ✗ ✓  ✓ ✓ ✓ ✓ 
Tracks Heart 
Rate 

✓ ✗ ✗ ✗ ✗ ✓  ✗ ✗ ✓ ✓ 

Battery or 
Chargeable 

Chargeable 
(every 18 

hours) 

Chargeable 
(every 5 

days) 

Chargeable 
(every 10+ 

days) 

Battery 
(every 1+ 

years) 

Battery 
(up to 18 
months) 

Chargeable 
(every 48 

hours) 

 Battery 
(lasts up to 
6 months) 

Battery 
(lasts up to 
6 months) 

Chargeable 
(up to 6 
days) 

Chargeable 
(every 2 

days) 
Uploading Data Bluetooth Bluetooth Bluetooth Bluetooth Real-time 

data 
USB    USB Bluetooth 

Tracker Display Real-time 
data 

LED 
progress 
indicator 

Real-time 
data 

Real-
time data 

Real-time 
data 

Real-time 
data 

 LED 
progress 
indicator 

LED 
progress 
indicator 

Real-time 
data 

Real-time 
data 

LED, Light-Emitting Diode; USB, Universal Serial Bus
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ACTIVITY TRACKER  

VALIDATION STUDY 
• The Physical Activity and Health Lab is conducting a study to test the accuracy of 

consumer activity trackers in estimating how active people are 
• Participants are directly observed (recorded with a GoPro) while engaging in 

their daily activities while wearing several activity trackers  
• We are sensitive to participants privacy and those persons of the surrounding 

environment 
• To ensure privacy preservation: 

• Sound is not recorded 
• Identities (faces) of all individuals in the video will be blurred 
• Individuals will not be identifiable 

• This study protocol has been approved by the UMass Amherst Human Subjects 
Board (IRB) 

• If further clarification is needed please contact: 
• Dr. Patty Freedson at 413-545-2620 or psf@kin.umass.edu 
• Albert Mendoza at 413-545-1583 or amendoza@kin.umass.edu 
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STEPS: CRITERION MEASURED VISIT-TO-VISIT CHANGE WITH DEVICE 

ESTIMATED VISIT-TO-VISIT CHANGE 
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ENERGY EXPENDITURE: CRITERION MEASURED VISIT-TO-VISIT 

CHANGE WITH DEVICE ESTIMATED VISIT-TO-VISIT CHANGE 
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APPENDIX I 

MODERATE-TO-VIGOROUS PHYSICAL ACTIVITY (MVPA): CRITERION 

MEASURED VISIT-TO-VISIT CHANGE WITH DEVICE ESTIMATED VISIT-

TO-VISIT CHANGE 
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APPENDIX J SEDENTARY MINUTES: CRITERION MEASURED VISIT-TO-

VISIT CHANGE WITH DEVICE ESTIMATED VISIT-TO-VISIT CHANGE 
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