13 research outputs found

    NEID Rossiter–McLaughlin Measurement of TOI-1268b: A Young Warm Saturn Aligned with Its Cool Host Star

    Get PDF
    Close-in gas giants present a surprising range of stellar obliquity, the angle between a planet's orbital axis and its host star's spin axis. It is unclear whether the obliquities reflect the planets' dynamical history (e.g., aligned for in situ formation or disk migration versus misaligned for high-eccentricity tidal migration) or whether other mechanisms (e.g., primordial misalignment or planet-star interactions) are more important in sculpting the obliquity distribution. Here we present the stellar obliquity measurement of TOI-1268 (TIC-142394656, V mag ∼10.9), a young K-type dwarf hosting an 8.2 day period, Saturn-sized planet. TOI-1268's lithium abundance and rotation period suggest the system age between the ages of the Pleiades cluster (∼120 Myr) and the Prasepe cluster (∼670 Myr). Using the newly commissioned NEID spectrograph, we constrain the stellar obliquity of TOI-1268 via the Rossiter-McLaughlin effect from both radial velocity and Doppler tomography signals. The 3σ upper bounds of the projected stellar obliquity λ from both models are below 60°. The large host star separation (a/R ∗ ∼17), combined with the system's young age, makes it unlikely that the planet has realigned its host star. The stellar obliquity measurement of TOI-1268 probes the architecture of a young gas giant beyond the reach of tidal realignment (a/R ∗ ≲10) and reveals an aligned or slightly misaligned system

    Der Mensch als Hausherr der Schöpfung bei Aurelius Prudentius

    No full text

    A close-in puffy Neptune with hidden friends : the enigma of TOI 620

    Get PDF
    We present the validation of a transiting low-density exoplanet orbiting the M2.5 dwarf TOI 620 discovered by the NASA Transiting Exoplanet Survey Satellite (TESS) mission. We utilize photometric data from both TESS and ground-based follow-up observations to validate the ephemerides of the 5.09 day transiting signal and vet false-positive scenarios. High-contrast imaging data are used to resolve the stellar host and exclude stellar companions at separations ≳0farcs2. We obtain follow-up spectroscopy and corresponding precise radial velocities (RVs) with multiple precision radial velocity (PRV) spectrographs to confirm the planetary nature of the transiting exoplanet. We calculate a 5σ upper limit of MP < 7.1 M⊕ and ρP < 0.74 g cm−3, and we identify a nontransiting 17.7 day candidate. We also find evidence for a substellar (1–20 MJ) companion with a projected separation ≲20 au from a combined analysis of Gaia, adaptive optics imaging, and RVs. With the discovery of this outer companion, we carry out a detailed exploration of the possibilities that TOI 620 b might instead be a circum-secondary planet or a pair of eclipsing binary stars orbiting the host in a hierarchical triple system. We find, under scrutiny, that we can exclude both of these scenarios from the multiwavelength transit photometry, thus validating TOI 620 b as a low-density exoplanet transiting the central star in this system. The low density of TOI 620 b makes it one of the most amenable exoplanets for atmospheric characterization, such as with the James Webb Space Telescope and Ariel, validated or confirmed by the TESS mission to date

    Literaturverzeichnis

    No full text

    VIII. Literatur

    No full text

    Literatur

    No full text
    corecore