144 research outputs found

    Radion Stabilization in Compact Hyperbolic Extra Dimensions

    Full text link
    We consider radion stabilization in hyperbolic brane-world scenarios. We demonstrate that in the context of Einstein gravity, matter fields which stabilize the extra dimensions must violate the null energy condition. This result is shown to hold even allowing for FRW-like expansion on the brane. In particular, we explicitly demonstrate how one putative source of stabilizing matter fails to work, and how others violate the above condition. We speculate on a number of ways in which we may bypass this result, including the effect of Casimir energy in these spaces. A brief discussion of supersymmetry in these backgrounds is also given.Comment: 16 pages, 1 figur

    Cmr is a redox-responsive regulator of DosR that contributes to M. tuberculosis virulence.

    Get PDF
    Mycobacterium tuberculosis (MTb) is the causative agent of pulmonary tuberculosis (TB). MTb colonizes the human lung, often entering a non-replicating state before progressing to life-threatening active infections. Transcriptional reprogramming is essential for TB pathogenesis. In vitro, Cmr (a member of the CRP/FNR super-family of transcription regulators) bound at a single DNA site to act as a dual regulator of cmr transcription and an activator of the divergent rv1676 gene. Transcriptional profiling and DNA-binding assays suggested that Cmr directly represses dosR expression. The DosR regulon is thought to be involved in establishing latent tuberculosis infections in response to hypoxia and nitric oxide. Accordingly, DNA-binding by Cmr was severely impaired by nitrosation. A cmr mutant was better able to survive a nitrosative stress challenge but was attenuated in a mouse aerosol infection model. The complemented mutant exhibited a ∼2-fold increase in cmr expression, which led to increased sensitivity to nitrosative stress. This, and the inability to restore wild-type behaviour in the infection model, suggests that precise regulation of the cmr locus, which is associated with Region of Difference 150 in hypervirulent Beijing strains of Mtb, is important for TB pathogenesis

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Genetically Determined Height and Risk of Non-hodgkin Lymphoma

    Get PDF
    Although the evidence is not consistent, epidemiologic studies have suggested that taller adult height may be associated with an increased risk of some non-Hodgkin lymphoma (NHL) subtypes. Height is largely determined by genetic factors, but how these genetic factors may contribute to NHL risk is unknown. We investigated the relationship between genetic determinants of height and NHL risk using data from eight genome-wide association studies (GWAS) comprising 10,629 NHL cases, including 3,857 diffuse large B-cell lymphoma (DLBCL), 2,847 follicular lymphoma (FL), 3,100 chronic lymphocytic leukemia (CLL), and 825 marginal zone lymphoma (MZL) cases, and 9,505 controls of European ancestry. We evaluated genetically predicted height by constructing polygenic risk scores using 833 height-associated SNPs. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between genetically determined height and the risk of four NHL subtypes in each GWAS and then used fixed-effect meta-analysis to combine subtype results across studies. We found suggestive evidence between taller genetically determined height and increased CLL risk (OR = 1.08, 95% CI = 1.00\u20131.17, p = 0.049), which was slightly stronger among women (OR = 1.15, 95% CI: 1.01\u20131.31, p = 0.036). No significant associations were observed with DLBCL, FL, or MZL. Our findings suggest that there may be some shared genetic factors between CLL and height, but other endogenous or environmental factors may underlie reported epidemiologic height associations with other subtypes

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    The association among cytochrome P450 3A, progesterone receptor polymorphisms, plasma 17-alpha hydroxyprogesterone caproate concentrations, and spontaneous preterm birth

    Get PDF
    Background Infants born <37 weeks’ gestation are of public health concern since complications associated with preterm birth are the leading cause of mortality in children <5 years of age and a major cause of morbidity and lifelong disability. The administration of 17-alpha hydroxyprogesterone caproate reduces preterm birth by 33% in women with history of spontaneous preterm birth. We demonstrated previously that plasma concentrations of 17-alpha hydroxyprogesterone caproate vary widely among pregnant women and that women with 17-alpha hydroxyprogesterone caproate plasma concentrations in the lowest quartile had spontaneous preterm birth rates of 40% vs rates of 25% in those women with higher concentrations. Thus, plasma concentrations are an important factor in determining drug efficacy but the reason 17-alpha hydroxyprogesterone caproate plasma concentrations vary so much is unclear. Predominantly, 17-alpha hydroxyprogesterone caproate is metabolized by CYP3A4 and CYP3A5 enzymes. Objective We sought to: (1) determine the relation between 17-alpha hydroxyprogesterone caproate plasma concentrations and single nucleotide polymorphisms in CYP3A4 and CYP3A5; (2) test the association between progesterone receptor single nucleotide polymorphisms and spontaneous preterm birth; and (3) test whether the association between plasma concentrations of 17-alpha hydroxyprogesterone caproate and spontaneous preterm birth varied by progesterone receptor single nucleotide polymorphisms. Study Design In this secondary analysis, we evaluated genetic polymorphism in 268 pregnant women treated with 17-alpha hydroxyprogesterone caproate, who participated in a placebo-controlled trial to evaluate the benefit of omega-3 supplementation in women with history of spontaneous preterm birth. Trough plasma concentrations of 17-alpha hydroxyprogesterone caproate were measured between 25-28 weeks of gestation after a minimum of 5 injections of 17-alpha hydroxyprogesterone caproate. We extracted DNA from maternal blood samples and genotyped the samples using TaqMan (Applied Biosystems, Foster City, CA) single nucleotide polymorphism genotyping assays for the following single nucleotide polymorphisms: CYP3A4*1B, CYP3A4*1G, CYP3A4*22, and CYP3A5*3; and rs578029, rs471767, rs666553, rs503362, and rs500760 for progesterone receptor. We adjusted for prepregnancy body mass index, race, and treatment group in a multivariable analysis. Differences in the plasma concentrations of 17-alpha hydroxyprogesterone caproate by genotype were evaluated for each CYP single nucleotide polymorphism using general linear models. The association between progesterone receptor single nucleotide polymorphisms and frequency of spontaneous preterm birth was tested using logistic regression. A logistic model also tested interaction between 17-alpha hydroxyprogesterone caproate concentrations with each progesterone receptor single nucleotide polymorphism for the outcome of spontaneous preterm birth. Results The association between CYP single nucleotide polymorphisms *22, *1G, *1B, and *3 and trough plasma concentrations of 17-alpha hydroxyprogesterone caproate was not statistically significant (P =.68,.44,.08, and.44, respectively). In an adjusted logistic regression model, progesterone receptor single nucleotide polymorphisms rs578029, rs471767, rs666553, rs503362, and rs500760 were not associated with the frequency of spontaneous preterm birth (P =.29,.10,.76,.09, and.43, respectively). Low trough plasma concentrations of 17-alpha hydroxyprogesterone caproate were statistically associated with a higher frequency of spontaneous preterm birth (odds ratio, 0.78; 95% confidence ratio, 0.61–0.99; P =.04 for trend across quartiles), however no significant interaction with the progesterone receptor single nucleotide polymorphisms rs578029, rs471767, rs666553, rs503362, and rs500760 was observed (P =.13,.08,.10,.08, and.13, respectively). Conclusion The frequency of recurrent spontaneous preterm birth appears to be associated with trough 17-alpha hydroxyprogesterone caproate plasma concentrations. However, the wide variation in trough 17-alpha hydroxyprogesterone caproate plasma concentrations is not attributable to polymorphisms in CYP3A4 and CYP3A5 genes. Progesterone receptor polymorphisms do not predict efficacy of 17-alpha hydroxyprogesterone caproate. The limitations of this secondary analysis include that we had a relative small sample size (n = 268) and race was self-reported by the patients

    Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes

    Get PDF
    Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P &lt; 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P &lt; 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture

    Effects of eight neuropsychiatric copy number variants on human brain structure

    Full text link
    peer reviewedMany copy number variants (CNVs) confer risk for the same range of neurodevelopmental symptoms and psychiatric conditions including autism and schizophrenia. Yet, to date neuroimaging studies have typically been carried out one mutation at a time, showing that CNVs have large effects on brain anatomy. Here, we aimed to characterize and quantify the distinct brain morphometry effects and latent dimensions across 8 neuropsychiatric CNVs. We analyzed T1-weighted MRI data from clinically and non-clinically ascertained CNV carriers (deletion/duplication) at the 1q21.1 (n = 39/28), 16p11.2 (n = 87/78), 22q11.2 (n = 75/30), and 15q11.2 (n = 72/76) loci as well as 1296 non-carriers (controls). Case-control contrasts of all examined genomic loci demonstrated effects on brain anatomy, with deletions and duplications showing mirror effects at the global and regional levels. Although CNVs mainly showed distinct brain patterns, principal component analysis (PCA) loaded subsets of CNVs on two latent brain dimensions, which explained 32 and 29% of the variance of the 8 Cohen’s d maps. The cingulate gyrus, insula, supplementary motor cortex, and cerebellum were identified by PCA and multi-view pattern learning as top regions contributing to latent dimension shared across subsets of CNVs. The large proportion of distinct CNV effects on brain morphology may explain the small neuroimaging effect sizes reported in polygenic psychiatric conditions. Nevertheless, latent gene brain morphology dimensions will help subgroup the rapidly expanding landscape of neuropsychiatric variants and dissect the heterogeneity of idiopathic conditions. © 2021, The Author(s)

    The Immune Landscape of Cancer

    Get PDF
    We performed an extensive immunogenomic anal-ysis of more than 10,000 tumors comprising 33diverse cancer types by utilizing data compiled byTCGA. Across cancer types, we identified six im-mune subtypes\u2014wound healing, IFN-gdominant,inflammatory, lymphocyte depleted, immunologi-cally quiet, and TGF-bdominant\u2014characterized bydifferences in macrophage or lymphocyte signa-tures, Th1:Th2 cell ratio, extent of intratumoral het-erogeneity, aneuploidy, extent of neoantigen load,overall cell proliferation, expression of immunomod-ulatory genes, and prognosis. Specific drivermutations correlated with lower (CTNNB1,NRAS,orIDH1) or higher (BRAF,TP53,orCASP8) leukocytelevels across all cancers. Multiple control modalitiesof the intracellular and extracellular networks (tran-scription, microRNAs, copy number, and epigeneticprocesses) were involved in tumor-immune cell inter-actions, both across and within immune subtypes.Our immunogenomics pipeline to characterize theseheterogeneous tumors and the resulting data areintended to serve as a resource for future targetedstudies to further advance the field
    • …
    corecore