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BACKGROUND: Infants born <37 weeks’ gestation are of public body mass index, race, and treatment group in a multivariable analysis.
health concern since complications associated with preterm birth are the

leading cause of mortality in children<5 years of age and a major cause of

morbidity and lifelong disability. The administration of 17-alpha hydrox-

yprogesterone caproate reduces preterm birth by 33% in women with

history of spontaneous preterm birth. We demonstrated previously that

plasma concentrations of 17-alpha hydroxyprogesterone caproate vary

widely among pregnant women and that women with 17-alpha hydrox-

yprogesterone caproate plasma concentrations in the lowest quartile had

spontaneous preterm birth rates of 40% vs rates of 25% in those women

with higher concentrations. Thus, plasma concentrations are an important

factor in determining drug efficacy but the reason 17-alpha hydrox-

yprogesterone caproate plasma concentrations vary so much is unclear.

Predominantly, 17-alpha hydroxyprogesterone caproate is metabolized by

CYP3A4 and CYP3A5 enzymes.

OBJECTIVE: We sought to: (1) determine the relation between 17-

alpha hydroxyprogesterone caproate plasma concentrations and single

nucleotide polymorphisms in CYP3A4 and CYP3A5; (2) test the association

between progesterone receptor single nucleotide polymorphisms and

spontaneous preterm birth; and (3) test whether the association between

plasma concentrations of 17-alpha hydroxyprogesterone caproate and

spontaneous preterm birth varied by progesterone receptor single

nucleotide polymorphisms.

STUDY DESIGN: In this secondary analysis, we evaluated genetic

polymorphism in 268 pregnant women treated with 17-alpha hydrox-

yprogesterone caproate, who participated in a placebo-controlled trial to

evaluate the benefit of omega-3 supplementation in women with history of

spontaneous preterm birth. Trough plasma concentrations of 17-alpha

hydroxyprogesterone caproate were measured between 25-28 weeks of

gestation after a minimum of 5 injections of 17-alpha hydroxyprogester-

one caproate. We extracted DNA from maternal blood samples and

genotyped the samples using TaqMan (Applied Biosystems, Foster City,

CA) single nucleotide polymorphism genotyping assays for the following

single nucleotide polymorphisms: CYP3A4*1B, CYP3A4*1G, CYP3A4*22,

and CYP3A5*3; and rs578029, rs471767, rs666553, rs503362, and

rs500760 for progesterone receptor. We adjusted for prepregnancy
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Differences in the plasma concentrations of 17-alpha hydroxyprogester-

one caproate by genotype were evaluated for each CYP single nucleotide

polymorphism using general linear models. The association between

progesterone receptor single nucleotide polymorphisms and frequency of

spontaneous preterm birth was tested using logistic regression. A logistic

model also tested interaction between 17-alpha hydroxyprogesterone

caproate concentrations with each progesterone receptor single nucleo-

tide polymorphism for the outcome of spontaneous preterm birth.

RESULTS: The association between CYP single nucleotide poly-

morphisms *22, *1G, *1B, and *3 and trough plasma concentrations of

17-alpha hydroxyprogesterone caproate was not statistically significant

(P¼ .68, .44, .08, and .44, respectively). In an adjusted logistic regression

model, progesterone receptor single nucleotide polymorphisms

rs578029, rs471767, rs666553, rs503362, and rs500760 were not

associated with the frequency of spontaneous preterm birth (P¼ .29, .10,

.76, .09, and .43, respectively). Low trough plasma concentrations of

17-alpha hydroxyprogesterone caproate were statistically associated with

a higher frequency of spontaneous preterm birth (odds ratio, 0.78; 95%

confidence ratio, 0.61e0.99; P¼ .04 for trend across quartiles), however

no significant interaction with the progesterone receptor single nucleotide

polymorphisms rs578029, rs471767, rs666553, rs503362, and

rs500760 was observed (P ¼ .13, .08, .10, .08, and .13, respectively).

CONCLUSION: The frequency of recurrent spontaneous preterm birth

appears to be associated with trough 17-alpha hydroxyprogesterone

caproate plasma concentrations. However, the wide variation in trough 17-

alpha hydroxyprogesterone caproate plasma concentrations is not

attributable to polymorphisms in CYP3A4 and CYP3A5 genes. Proges-

terone receptor polymorphisms do not predict efficacy of 17-alpha

hydroxyprogesterone caproate. The limitations of this secondary anal-

ysis include that we had a relative small sample size (n ¼ 268) and race

was self-reported by the patients.
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Introduction
The best single predictor of spontaneous
preterm birth (SPTB) is a history of
SPTB.1 The administration of 17-alpha
hydroxyprogesterone caproate (17 OHP-
C) reduces recurrent preterm birth by a
third in women with singleton gestation
yet an important percentage of at-risk
women do not benefit from the treat-
ment.2-5 With the current drug adminis-
tration regimen applied to women with
recurrent preterm birth it was estimated
that 17 OHP-C therapy would prevent
about 10,000 preterm births, which
would impact the overall US preterm
birth rate from 12.1% down to 11.8%.6

In a previous secondary analysis from
the Eunice Kennedy Shriver National
Institute of Child Health and Human
Development Maternal-Fetal Medicine
Unit (MFMU) Network omega-3 study7

we demonstrated that plasma concen-
trations of 17 OHP-C vary widely (3-56
ng/mL) among pregnant women
receiving a weekly dose of 250 mg. More
importantly, women with 17 OHP-C
plasma concentrations in the lowest
quartile had SPTB rates of 40% vs rates
of 25% in those women with higher
concentrations. Thus, plasma concen-
trations are one of the factors that
determine drug efficacy, but the reason
why 17 OHP-C plasma concentrations
vary so much is unclear. Because 17
OHP-C is predominantly metabolized
by CYP3A4 and CYP3A5 enzymes,8 it
seemed plausible that polymorphisms in
CYP3A4 and CYP3A5 genes may affect
17 OHP-C plasma concentrations. Sin-
gle nucleotide polymorphisms (SNPs) in
CYP3A genes can impact the meta-
bolism of several medications such as
cyclosporine and tacrolimus.9 The SNPs
CYP3A4*22 (rs35599367) and
CYP3A5*3 (rs776746) are associated
with decreased enzymatic activity.9-17

Conversely, CYP3A4*1G (rs2242480)
increases enzymatic activity.18,19 Finally,
the SNP CYP3A4*1B (rs2740574) has
been associated with higher enzymatic
expression in vitro,20 however in vivo
studies suggest a reduced catalytic ac-
tivity for this allele.21

Progesterone is crucial for the estab-
lishment and maintenance of pregnancy
and has profound effects on target cells
by their expression of progesterone re-
ceptors (PR).22,23 Supplementation with
progesterone both vaginally and intra-
muscularly has proven effective in
reducing preterm birth rates in various
at-risk women.24-26 An understanding of
the interaction of such exogenous pro-
gesterone with PR is key to determining
an optimal treatment regimen that
might improve efficacy of current regi-
mens. Several publications report that
maternal or fetal polymorphisms in PR
are associated with increased suscepti-
bility to preterm birth.27-32 Genomic
analysis of the MFMU trial of 17 OHP-C
reported byMeis et al2 suggested that the
clinical efficacy of 17OHP-C may be
altered by PR gene polymorphisms
rs471767, rs578029, rs503362, and
rs666553.33 In that study plasma levels of
17 OHP-C were not available and
therefore no statement could be made
regarding the relationship between
plasma 17 OHP-C concentrations and
PR SNPs and their relationship to effi-
cacy. We speculated that any perceived
difference in 17 OHP-C efficacy would
be associated with differences in plasma
concentrations due to polymorphisms in
CYP3A4 and CYP3A5 and that PR
polymorphisms could modulate the
clinical response to 17 OHP-C.
The objectives of this study were to:

(1) determine the relation between 17
OHP-C plasma concentrations and
SNPs in CYP3A4 and CYP3A5; (2) test
the association between PR SNPs and
SPTB; and (3) test whether the associa-
tion between plasma concentrations of
17 OHP-C and SPTB varied by PR SNPs.

Materials and Methods
This study is a secondary analysis that
used blood samples obtained from
women who participated in a MFMU
Network randomized, double-masked,
placebo-controlled trial that evaluated
the benefit of omega-3 supplementation
in reducing the rate of recurrent SPTB.34

All women in the parent study received
17 OHP-C and either omega-3 supple-
mentation or placebo. Eligibility criteria
are listed in detail in the previous pub-
lication.34 The trial demonstrated that
omega-3 supplementation offered no
benefit in reducing preterm birth. The
parent study was approved by the insti-
tutional review boards of the 13 clinical
centers and the data coordinating center.
The current secondary analysis was
approved by the institutional review
board of the University of Pittsburgh.
This is a secondary analysis of a clinical
trial (ClinicalTrials.gov Identifier:
NCT00135902).

The methods for determination of
plasma concentrations of 17 OHP-C
were reported previously.7 Briefly, we
used high-performance liquid
chromatography-mass spectrometry
with a limit of detection of 1 ng/mL.
Blood samples were labeled with a study
identification number, thus, researchers
were blinded to the patient’s informa-
tion. Only researchers in charge of the
statistical analysis had access to the key
linking the study identification number
with clinical and demographic data.

DNA extraction and genotyping
As a part of the original trial protocol,
maternal blood samples were collected
and frozen at e80�C for future analysis.
We extracted the DNA fromwhole blood
samples by using the QIAamp DNA
Mini Kit (Qiagen Systems, Valencia, CA)
following the manufacturer’s in-
structions. We genotyped the samples
using TaqMan SNP genotyping assays
(Applied Biosystems, Foster City, CA)
for SNPs in CYP3A4 (rs35599367,
rs2242480, rs2740574), CYP3A5
(rs776746), and PR (rs578029, rs471767,
rs666553, rs503362, rs500760). TaqMan
Genotyper software (Applied Bio-
systems) was used to automatically
determine sample genotypes and
generate cluster plots. The SNPs are lis-
ted, along with their known function or
previously published data, in Table 1.

Statistical methods
We calculated allele and genotype fre-
quencies for each SNP. All analyses are
adjusted for self-reported race as the
frequency of genotypes for some SNPs
show evidence of population stratifica-
tion. Markers were evaluated for devia-
tion from Hardy-Weinberg equilibrium
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TABLE 1
Single nucleotide polymorphisms of selected genes included in analysis

Allele variant Reference SNP identification no. Substitution Functionality

CYP3A4*22 rs35599367 C>T Decreased enzymatic activity9-17

CYP3A4*1B rs2740574 A>G Higher enzymatic expression in vitro,20 however in vivo
studies suggest reduced catalytic activity for this
allele21

CYP3A4*1G rs2242480 C>T Gain-in-function polymorphism that increases
enzymatic activity18,19

CYP3A5*3 rs776746 A>G Decreased enzymatic activity9-17

PR SNP rs578029 A>T May affect clinical efficacy of 17OHP-C33

PR SNP rs471767 A>G May affect clinical efficacy of 17OHP-C33

PR SNP rs666553 C>T May affect clinical efficacy of 17OHP-C33

PR SNP rs503362 C>G May affect clinical efficacy of 17OHP-C33

PR SNP rs500760 A>G May affect clinical efficacy of 17OHP-C33

PR SNP rs653752 C>G May affect clinical efficacy of 17OHP-C33

PR, progesterone receptor; SNP, single nucleotide polymorphism; 17 OHP-C, 17-alpha hydroxyprogesterone caproate.
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using the exact test. SNPs not in Hardy-
Weinberg equilibrium were eliminated
from the analysis since we cannot
exclude that other evolutionary in-
fluences such as mate choice, mutation,
selection, genetic drift, gene flow, and
meiotic drive can affect the allele fre-
quencies. All models tested the interac-
tion between SNP and treatment group.

The patients were stratified by race
into 3 groups: Caucasian, African
American, and other. Using this
approach some Caucasian and African
American women with Hispanic
ethnicity were stratified as either Cau-
casians or African Americans.

In previous findings from our group
only prepregnancy body mass index
(BMI) affected maternal 17 OHP-C
concentrations.35 Based on the data
presented above we adjusted for poten-
tial confounders including BMI, race,
and treatment group. The blood samples
we used to calculate the trough plasma
concentrations of 17 OHP-C were taken
when the patients had at least 5 consec-
utive injections of 17 OHP-C to ensure
the drug levels were in steady state. To
determine if the variation in plasma
concentrations of 17 OHP-C observed in
the subjects could be attributed to
polymorphisms in CYP3A4 and
CYP3A5, we tested trough plasma con-
centrations of 17 OHP-C predicted by
each CYP SNP included as an additive
term using general linear models. The
additive genetic effect assumes that
having 2 copies of the minor allele has
twice the effect of having 1 copy of the
minor allele. The association between PR
SNPs and the frequency of SPTB was
tested in logistic regression models. To
assess if the clinical response to 17 OHP-
C is mediated by PR polymorphisms, we
tested the interaction between 17 OHP-
C concentrations with each PR SNP for
the outcome of SPTB in separate logistic
regression models. We report Akaike
information criterion and R2 to assess
the relative quality of each model.
Model fit for logistic models was

assessed using Hosmer and Lemeshow
goodness-of-fit statistics. Residual anal-
ysis was used to assess model fit for
general linear models. The log-
transform of the concentration of 17
OHP-C was used in analyses as this
variable has a log-normal distribution.
We also analyzed 17 OHP-C concentra-
tion in quartiles of the distribution. The
Cochran-Armitage trend test was used to
assess the association between quartiles
of 17 OHP-C and SPTB. The cut-off
values for significance tests of the
genetic markers were adjusted for mul-
tiple testing after considering the corre-
lation among SNPs using the methods of
Li and Ji36 in 2005. A Bonferroni
correction was applied by dividing 0.05
by the number of effective markers. For
CYP genes there were 4 effective SNPs
resulting in an adjusted P value of .0125.
For PR, there were 3 effective markers
resulting in an adjusted P value of .0167.
Therefore, a P value <.0125 for CYP
SNPs and a value <.0167 for PR SNPs
was considered statistically significant. All
other analyses used a P value of .05. SAS
9.2 software (SAS Institute Inc, Cary, NC)
and R software (Bell Laboratories, Mur-
ray Hill, NJ) were used in the analysis.

Results
The original trial analyzed 852 women;
271 DNA samples were available, 268 of
which were of adequate quality for sub-
sequent analyses. We analyzed 10 SNPs
in CYP3A4, CYP3A5, and PR from 268
women representing 31.5% of the total
women in the parent study. One marker
(rs653752) failed Hardy-Weinberg
equilibrium and was left out of the
analysis leaving 9 SNPs in the analysis.
Table 2 summarizes the demographic
and clinical characteristics of the study
cohort. Of patients in this study, 28%



TABLE 2
Baseline characteristics of study cohort

Characteristic

Treatment group, n (%) 137 (51.1)

Race, n (%)

African American 75 (28.0)

Caucasian 174 (64.9)

Other 19 (7.1)

Maternal age, mean (SD), y 28 (5.8)

Prepregnancy BMI, mean (SD), kg/m2 26.0 (6.5)

No. of previous SPTB, n (%)

1 196 (73.1)

2 63 (23.5)

3 6 (2.2)

4 3 (1.1)

Gestational age at delivery, mean (SD), wk 37.4 (2.5)

Current smoker, n (%) 29 (10.8)

BMI, body mass index; SPTB, spontaneous preterm birth.
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self-identified as African American,
64.9% self-identified as Caucasian, and
7.1% self-identified as other race
including Asian, Native Hawaiian, and
Pacific Islander. All of these women had
a documented history of at least 1
singleton preterm delivery. We used
general estimating equations to test for
differences in maternal age, parity, drug
use, and current smoking between the
subsample of patients in the current
study and the omega-3 cohort. There
were more smokers in the omega-3
cohort (16%, n ¼ 852) compared to
the current study (11%, n¼ 268). There
were no other statistical differences be-
tween the groups.

The association between CYP SNPs
*22, *1G, *1B, and *3 and trough
plasma concentrations of 17OHP-C was
not statistically significant (P ¼ .68, .44,
.08, and .44, respectively). Table 3
compares the plasma 17 OHP-C con-
centrations according to the presence of
CYP3A4 and CYP3A5 SNPs. There were
no significant interactions between
treatment group and CYP SNP.
Adjusting for the number of injections
of 17 OHP-C did not alter the results of
the analysis.
PR SNPs rs578029, rs471767,
rs666553, rs503362, and rs500760 were
not associated with the frequency of
SPTB (P ¼ .29, .10, .76, .09, and .43,
respectively). Table 4 compares the fre-
quency of SPTB according to the 5 allelic
variants of PR studied. None of the
interaction tests between treatment
group and SNPs was statistically
significant.
After adjustment for race and treat-

ment group, the quartiles of 17 OHP-C
concentration were statistically associ-
ated with SPTB (odds ratio, 0.78; 95%
confidence ratio, 0.61e0.99, P ¼ .04 for
trend across quartiles). The data for
these findings are detailed in Table 5. In
an adjusted logistic regressionmodel low
trough plasma concentrations of 17
OHP-C as a continuous variable were
also statistically associated with an
increased risk of SPTB (odds ratio, 0.46;
95% confidence ratio, 0.21e0.98; P ¼
.04). The interaction between 17 OHP-C
and treatment group was not statistically
significant in either model.
No significant interaction between 17

OHP-C concentrations and SPTB rates
with the PR SNPs rs578029, rs471767,
rs666553, rs503362, and rs500760 was
observed (P ¼ .11, .08, .10, .08, and .13,
respectively). Table 6 evaluates how well
models that include 17 OHP-C concen-
trations, PR SNPs, and 17OHP-C � PR
SNP interaction terms predict SPTB.
The base model of the independent
variables log 17 OHP-C concentration,
race, BMI, and treatment group pre-
dicting SPTB did not reach statistical
significance. No model reached statisti-
cal significance after adding each PR SNP
separately to the base model.

Comment
In this study we demonstrate that the
wide variation in plasma concentrations
of 17 OHP-C cannot be explained by
polymorphisms in the drug’s primary
metabolizing enzymes CYP3A4 and
CYP3A5. We also affirm previous find-
ings that the efficacy of 17 OHP-C is
related to the plasma concentration
achieved. Given that a fixed weekly dose
of 250 mg 17 OHP-C results in a wide
range of plasma concentrations and that
efficacy is impacted by plasma concen-
tration, it is likely that efficacy could be
improved if higher concentrations could
be achieved. The cause of the wide
variation in plasma concentrations is
unclear but data derived from pregnant
women with singleton gestation
demonstrate that maternal body weight
significantly impacts both clearance and
volume of distribution of 17 OHP-C37

and these effects probably account for
the impact of BMI on plasma 17 OHP-C
concentrations. Alternative factors that
may account for the variation in 17
OHP-C plasma concentrations include
other polymorphisms located in pro-
moters, enhancer or silencer regions of
the genes, and drug-drug interactions,
specifically commonly used medications
that compete with 17 OHP-C for meta-
bolism such as esomeprazole, nelfinavir,
fluconazole, and sertraline.38 Finally, the
plasma concentration of 17 OHP-C is
also affected by progesterone concen-
trations, which are affected by gesta-
tional age and/or placental number.39

However, none of the factors above can
account for the wide variation seen in
plasma concentrations.

Even though the biological samples
we used in this study were obtained from



TABLE 4
Frequency of spontaneous preterm birth by genotype of progesterone receptor single nucleotide polymorphisms

PR SNP Genotype N
Genotypic
frequencies SPTB, n (%) OR (95% CI)a P value

rs578029 AA 20 0.073 5 (25.0) 0.8 (0.5e1.2) .29

AT 115 0.419 28 (24.3)

TT 139 0.507 43 (30.9)

rs471767 AA 140 0.509 45 (32.1) 0.7 (0.4e1.1) .10

AG 117 0.425 26 (22.2)

GG 18 0.065 5 (27.8)

rs666553 CC 190 0.696 53 (27.9) 0.9 (0.5e1.6) .76

CT 78 0.285 21 (26.9)

TT 5 0.018 0 (0.0)

rs503362 CC 14 0.051 3 (21.4) 0.7 (0.4e1.1) .09

CG 108 0.394 25 (23.1)

GG 152 0.554 47 (30.9)

rs500760 CC 20 0.072 7 (35.0) 1.2 (0.8e1.8) .43

CT 119 0.432 33 (27.7)

TT 136 0.494 36 (26.5)

CI, confidence ratio; OR, odds ratio; PR, progesterone receptor; SNP, single nucleotide polymorphism; SPTB, spontaneous preterm birth.

a PR SNPs entered as additive term in logistic regression models adjusted for prepregnancy body mass index, race, and treatment group.
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TABLE 3
Plasma concentrations of 17-alpha hydroxyprogesterone caproate according to genotype
of cytochrome P450 single nucleotide polymorphisms

CYP SNP Genotype N
Genotypic
frequencies

17 OHP-C ng/mL median
(25the75th percentile) Estimatea SE P value

CYP3A4*22
(rs35599367)

GG 243 0.931 9.8 (8e12.4) 0.0339 0.0823 .68

GA 17 0.065 10.2 (7.1e16.5)

AA 1 0.004 10.9 (10.9e10.9)

CYP3A4*1G
(rs2242480)

CC 128 0.559 9.9 (8.2e12.3) 0.0321 0.0416 .44

CT 64 0.279 10.0 (7.2e12.5)

TT 37 0.162 10.0 (8.2e13.5)

CYP3A4*1B
(rs2740574)

TT 184 0.689 9.9 (8.4e12.4) 0.0832 0.0476 .08

CT 58 0.217 11.0 (8.3e13.6)

CC 25 0.094 9.8 (7.9e12.1)

CYP3A5*3
(rs776746)

CC 154 0.592 9.9 (8.3e12.4) e0.0318 0.0414 .44

CT 73 0.281 10.0 (7.2e12.1)

TT 33 0.127 9.9 (8.4e13.3)

SNP, single nucleotide polymorphism; 17 OHP-C, 17-alpha hydroxyprogesterone caproate.

a Beta estimate, SE, and P value from test of general linear model of genotype in additive model predicting log 17OHP-C; analysis adjusted for prepregnancy body mass index,
race, and treatment group.

Bustos et al. Association of CYP3A and PR SNPs and 17 OHP-C. Am J Obstet Gynecol 2017.



TABLE 5
Frequency of spontaneous preterm birth by quartile of 17-alpha hydroxyprogesterone caproate and race

Quartile
17OHP-C

Self-reported race

African American
N ¼ 75

Caucasian
N ¼ 174

Other
N ¼ 19

Alla

N ¼ 268

SPTB

nb %c nb %c nb %c nb %c

1 5 27.8 19 44.2 1 25 25 38.5

2 6 31.6 12 27.3 0 0 18 26.5

3 6 31.6 12 27.3 1 20 19 27.9

4 3 15.8 11 25.6 0 0 14 20.9

SPTB, spontaneous preterm birth; 17 OHP-C, 17-alpha hydroxyprogesterone caproate.

a Cochran-Armitage trend test, P ¼ .04; b In each quartile; c With respect to total patients in that quartile.
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women with a history of SPTB, it is very
unlikely that 17 OHP-C administration
in a previous pregnancy may have re-
sidual effects in the current pregnancy,
considering the half-life of 17 OHP-C is
16.2 � 6 days.35 On the other hand,
previous studies reported an increased
activity in CYP3A enzymes during
pregnancy. However, CYP3A activity
goes back to basal levels during the
postpartum period,40 therefore it would
be very unlikely that changes in CYP
enzymes from an earlier pregnancy
would residual effects in the current
pregnancy.

The current study also found that
among women receiving 17 OHP-C,
polymorphisms in PR (rs578029,
rs471767, rs666553, rs503362, and
TABLE 6
Association between spontaneous pret
progesterone receptor single nucleotid

PR SNP LR

Base modelb 9.07

rs578029 9.98

rs471767 11.27

rs666553 10.60

rs503362 11.26

rs500760 9.82

AIC, Akaike information criterion; LR, likelihood ratio; PR, proges

a Model P values; b Model predicting spontaneous preterm birth

Bustos et al. Association of CYP3A and PR SNPs and 17 OH
rs500760) are not related to SPTB and
that the effectiveness of 17 OHP-C is not
modified by PR polymorphisms even
when plasma 17 OHP-C concentrations
are incorporated into the analysis. These
findings may be compared to a second-
ary analysis performed on salivary sam-
ples from the trial of Manuck et al.33 In
that study, however, women were ran-
domized to 17 OHP-C or placebo and
the analysis relating PR SNPs and treat-
ment success included both placebo and
17 OHP-C groups. This difference in
study design limits the comparability of
the 2 studies. The limitations of this
study include that we performed a sec-
ondary analysis from a study that was
not designed for pharmacogenetic pur-
poses, therefore we had a small sample
erm birth and 17-alpha hydroxyprogester
e polymorphisms with measures of relati

P valuea

.11

.13

.08

.10

.08

.13

terone receptor; SNP, single nucleotide polymorphism.

includes log 17-alpha hydroxyprogesterone caproate, race, body ma

P-C. Am J Obstet Gynecol 2017.
size (n¼ 268). In addition, we had more
smokers in the omega-3 cohort
compared to the current study, which
could either be a selection bias or chance.
Finally, race was self-reported by the
patients and our analysis did not include
the genotype of the baby.

In conclusion, we confirm that the
frequency of recurrent SPTB is statisti-
cally related to plasma 17 OHP-C con-
centrations. The wide variation in 17
OHP-C concentrations with a weekly
dose of 250 mg is not attributable to
polymorphisms in CYP3A4 and CYP3A5
enzymes, although we cannot exclude
that our limitation of small sample size
for this study may account for a type 2
error. Selected polymorphisms of the PR
do not predict efficacy. Since SPTB
one caproate concentrations with
ve quality of each model

R2 AIC

0.034 319

0.037 320

0.042 318

0.039 315

0.042 315

0.036 321

ss index, and treatment group.



remains a leading cause of neonatal 
morbidity and mortality more studies 
need to be done to identify the reasons 
for the variability in the clinical efficacy 
of 17 OHP-C. 
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