1,131 research outputs found

    A Possible Divot in the Size Distribution of the Kuiper Belt's Scattering Objects

    Full text link
    Via joint analysis of a calibrated telescopic survey, which found scattering Kuiper Belt objects, and models of their expected orbital distribution, we measure the form of the scattering object's size distribution. Ruling out a single power-law at greater than 99% confidence, we constrain the form of the size distribution and find that, surprisingly, our analysis favours a very sudden decrease (a divot) in the number distribution as diameters decrease below 100 km, with the number of smaller objects then rising again as expected via collisional equilibrium. Extrapolating at this collisional equilibrium slope produced enough kilometer-scale scattering objects to supply the nearby Jupiter-Family comets. Our interpretation is that this divot feature is a preserved relic of the size distribution made by planetesimal formation, now "frozen in" to portions of the Kuiper Belt sharing a "hot" orbital inclination distribution, explaining several puzzles in Kuiper Belt science. Additionally, we show that to match today's scattering-object inclination distribution, the supply source that was scattered outward must have already been vertically heated to of order 10 degrees.Comment: accepted 2013 January 8; published 2013 January 22 21 pages, 4 figure

    Why are the fastest runners of intermediate size? Contrasting scaling of mechanical demands and muscle supply of work and power

    Get PDF
    The fastest land animals are of intermediate size. Cheetah, antelope, greyhounds and racehorses have been measured running much faster than reported for elephants or elephant shrews. Can this be attributed to scaling of physical demands and explicit physiological constraints to supply? Here, we describe the scaling of mechanical work demand each stride, and the mechanical power demand each stance. Unlike muscle stress, strain and strain rate, these mechanical demands cannot be circumvented by changing the muscle gearing with minor adaptations in bone geometry or trivial adjustments to limb posture. Constraints to the capacity of muscle to supply work and power impose fundamental limitations to maximum speed. Given an upper limit to muscle work capacity each contraction, maximum speeds in big animals are constrained by the mechanical work demand each step. With an upper limit to instantaneous muscle power production, maximal speeds in small animals are limited by the high power demands during brief stance periods. The high maximum speed of the cheetah may therefore be attributed as much to its size as to its other anatomical and physiological adaptations

    Prevalence of functional bowel disorders and faecal incontinence: an Australian primary care survey

    Get PDF
    Accepted Article online 30 October 2014. The copyright line for this article was changed on 14 February, 2017 after original online publication.Aim: Interest in functional bowel disorders (FBDs) and faecal incontinence (FI) has increased amongst coloproctologists. The study aimed to assess the prevalence of FBDs and FI (including its severity) among Australian primary healthcare seekers using objective criteria. Method: A cross-sectional survey was conducted in a primary care setting in Sydney, Australia. A self-administered questionnaire was used to collect demographic information and diagnose FBDs (irritable bowel syndrome, constipation, functional bloating and functional diarrhoea) based on Rome III criteria. The severity of FI was determined using the Vaizey incontinence score. Associations with medical/surgical history and healthcare utilization were assessed. Results: Of 596 subjects approached, 396 (66.4%) agreed to participate. Overall, 33% had FBD and/or FI. Irritable bowel syndrome was present in 11.1% and these participants were more likely to report anxiety/depression (P 8). Participants with FI were more likely to have irritable bowel syndrome, urinary incontinence and previous anal surgery (P < 0.01). Conclusion: FBDs and FI are prevalent conditions amongst primary healthcare seekers and the needs of those affected appear to be complex given their coexisting symptoms and conditions. Currently, the majority do not reach colorectal services, although increased awareness by primary care providers could lead to sufferers being referred for specialist management.K.-S. Ng, N. Nassar, K. Hamd, A. Nagarajah and M. A. Gladma

    Formation of Kuiper Belt Binaries by Gravitational Collapse

    Full text link
    A large fraction of 100-km-class low-inclination objects in the classical Kuiper Belt (KB) are binaries with comparable mass and wide separation of components. A favored model for their formation was capture during the coagulation growth of bodies in the early KB. Instead, recent studies suggested that large objects can rapidly form in the protoplanetary disks when swarms of locally concentrated solids collapse under their own gravity. Here we examine the possibility that KB binaries formed during gravitational collapse when the excess of angular momentum prevented the agglomeration of available mass into a solitary object. We find that this new mechanism provides a robust path toward the formation of KB binaries with observed properties, and can explain wide systems such as 2001 QW322 and multiples such as (47171) 1999 TC36. Notably, the gravitational collapse is capable of producing 100% binary fraction for a wide range of the swarm's initial angular momentum values. The binary components have similar masses (80% have the secondary-over-primary radius ratio >0.7) and their separation ranges from ~1,000 to ~100,000 km. The binary orbits have eccentricities from e=0 to ~1, with the majority having e<0.6. The binary orbit inclinations with respect to the initial angular momentum of the swarm range from i=0 to ~90 deg, with most cases having i<50 deg. Our binary formation mechanism implies that the primary and secondary components in each binary pair should have identical bulk composition, which is consistent with the current photometric data. We discuss the applicability of our results to the Pluto-Charon, Orcus-Vanth, (617) Patroclus-Menoetius and (90) Antiope binary systems.Comment: Astronomical Journal, in pres

    Accretion in the Early Kuiper Belt II. Fragmentation

    Full text link
    We describe new planetesimal accretion calculations in the Kuiper Belt that include fragmentation and velocity evolution. All models produce two power law cumulative size distributions, N_C propto r^{-q}, with q = 2.5 for radii less than 0.3-3 km and q = 3 for radii exceeding 1-3 km. The power law indices are nearly independent of the initial mass in the annulus, the initial eccentricity of the planetesimal swarm, and the initial size distribution of the planetesimal swarm. The transition between the two power laws moves to larger radii as the initial eccentricity increases. The maximum size of objects depends on their intrinsic tensile strength; Pluto formation requires a strength exceeding 300 erg per gram. Our models yield formation timescales for Pluto-sized objects of 30-40 Myr for a minimum mass solar nebula. The production of several `Plutos' and more than 10^5 50 km radius Kuiper Belt objects leaves most of the initial mass in 0.1-10 km radius objects that can be collisionally depleted over the age of the solar system. These results resolve the puzzle of large Kuiper Belt objects in a small mass Kuiper Belt.Comment: to appear in the Astronomical Journal (July 1999); 54 pages including 7 tables and 13 figure

    Asteroids in the Inner Solar System I - Existence

    Full text link
    Ensembles of in-plane and inclined orbits in the vicinity of the Lagrange points of the terrestrial planets are integrated for up to 100 million years. The integrations incorporate the gravitational effects of Sun and the eight planets (Pluto is neglected). Mercury is the least likely planet, as it is unable to retain tadpole orbits over 100 million year timescales. Both Venus and the Earth are much more promising, as they possess rich families of stable tadpole and horseshoe orbits. Our survey of Trojans in the orbital plane of Venus is undertaken for 25 million years. Some 40% of the survivors are on tadpole orbits. For the Earth, the integrations are pursued for 50 million years. The stable zones in the orbital plane are larger for the Earth than for Venus, but fewer of the survivors are tadpoles. Both Venus and the Earth also have regions in which inclined test particles can endure near the Lagrange points. For Venus, only test particles close to the orbital plane are stable. For the Earth, there are two bands of stability, one at low inclinations (i < 16 degrees) and one at moderate inclinations (between 24 degrees and 34 degrees). The inclined test particles that evade close encounters are primarily moving on tadpole orbits. Our survey of in-plane test particles near the Martian Lagrange points shows no survivors after 60 million years. Low inclination test particles do not persist, as their inclinations are quickly increased until the effects of a secular resonance with Jupiter cause de-stabilisation. Numerical integrations of inclined test particles for timespans of 25 million years show stable zones for inclinations between 14 and 40 degrees.Comment: 20 pages, 21 figures, Monthly Notices (in press

    The Canada-France Ecliptic Plane Survey - Full Data Release: The orbital structure of the Kuiper belt

    Get PDF
    We report the orbital distribution of the trans-neptunian objects (TNOs) discovered during the Canada-France Ecliptic Plane Survey, whose discovery phase ran from early 2003 until early 2007. The follow-up observations started just after the first discoveries and extended until late 2009. We obtained characterized observations of 321 sq.deg. of sky to depths in the range g ~ 23.5--24.4 AB mag. We provide a database of 169 TNOs with high-precision dynamical classification and known discovery efficiency. Using this database, we find that the classical belt is a complex region with sub-structures that go beyond the usual splitting of inner (interior to 3:2 mean-motion resonance [MMR]), outer (exterior to 2:1 MMR), and main (in between). The main classical belt (a=40--47 AU) needs to be modeled with at least three components: the `hot' component with a wide inclination distribution and two `cold' components (stirred and kernel) with much narrower inclination distributions. The hot component must have a significantly shallower absolute magnitude (Hg) distribution than the other two components. With 95% confidence, there are 8000+1800-1600 objects in the main belt with Hg <= 8.0, of which 50% are from the hot component, 40% from the stirred component and 10% from the kernel; the hot component's fraction drops rapidly with increasing Hg. Because of this, the apparent population fractions depend on the depth and ecliptic latitude of a trans-neptunian survey. The stirred and kernel components are limited to only a portion of the main belt, while we find that the hot component is consistent with a smooth extension throughout the inner, main and outer regions of the classical belt; the inner and outer belts are consistent with containing only hot-component objects. The Hg <= 8.0 TNO population estimates are 400 for the inner belt and 10,000 for the outer belt within a factor of two.Comment: 59 pages, 9 figures, 7 table

    Cratering Experiments on the Self Armoring of Coarse-Grained Granular Targets

    Full text link
    Recently published crater statistics on the small asteroids 25143 Itokawa and 433 Eros show a significant depletion of craters below approx. 100 m in diameter. Possible mechanisms that were brought up to explain this lack of craters were seismic crater erasure and self armoring of a coarse, boulder covered asteroid surface. While seismic shaking has been studied in this context, the concept of armoring lacks a deeper inspection and an experimental ground truth. We therefore present cratering experiments of glass bead projectiles impacting into granular glass bead targets, where the grain sizes of projectile and target are in a similar range. The impact velocities are in the range of 200 to 300 m/s. We find that craters become fainter and irregular shaped as soon as the target grains are larger than the projectile sizes and that granular craters rarely form when the size ratio between projectile and target grain is around 1:10 or smaller. In that case, we observe a formation of a strength determined crater in the first struck target grain instead. We present a simple model based on the transfer of momentum from the projectile to this first target grain, which is capable to explain our results with only a single free parameter, which is moreover well determined by previous experiments. Based on estimates of typical projectile size and boulder size on Itokawa and Eros, given that our results are representative also for km/s impact velocities, armoring should play an important role for their evolution.Comment: accepted for publication in Icaur
    corecore