31 research outputs found

    Inhibition of translesion DNA polymerase by archaeal reverse gyrase

    Get PDF
    Reverse gyrase is a unique DNA topoisomerase endowed with ATP-dependent positive supercoiling activity. It is typical of microorganisms living at high temperature and might play a role in maintenance of genome stability and repair. We have identified the translesion DNA polymerase SsoPolY/Dpo4 as one partner of reverse gyrase in the hyperthermophilic archaeon Sulfolobus solfataricus. We show here that in cell extracts, PolY and reverse gyrase co-immunoprecipitate with each other and with the single strand binding protein, SSB. The interaction is confirmed in vitro by far-western and Surface Plasmon Resonance. In functional assays, reverse gyrase inhibits PolY, but not the S. solfataricus B-family DNA polymerase PolB1. Mutational analysis shows that inhibition of PolY activity depends on both ATPase and topoisomerase activities of reverse gyrase, suggesting that the intact positive supercoiling activity is required for PolY inhibition. In vivo, reverse gyrase and PolY are degraded after induction of DNA damage. Inhibition by reverse gyrase and degradation might act as a double mechanism to control PolY and prevent its potentially mutagenic activity when undesired. Inhibition of a translesion polymerase by topoisomerase-induced modification of DNA structure may represent a previously unconsidered mechanism of regulation of these two-faced enzymes

    hSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex

    Get PDF
    hSSB1 is a newly discovered single-stranded DNA (ssDNA)-binding protein that is essential for efficient DNA double-strand break signalling through ATM. However, the mechanism by which hSSB1 functions to allow efficient signalling is unknown. Here, we show that hSSB1 is recruited rapidly to sites of double-strand DNA breaks (DSBs) in all interphase cells (G1, S and G2) independently of, CtIP, MDC1 and the MRN complex (Rad50, Mre11, NBS1). However expansion of hSSB1 from the DSB site requires the function of MRN. Strikingly, silencing of hSSB1 prevents foci formation as well as recruitment of MRN to sites of DSBs and leads to a subsequent defect in resection of DSBs as evident by defective RPA and ssDNA generation. Our data suggests that hSSB1 functions upstream of MRN to promote its recruitment at DSBs and is required for efficient resection of DSBs. These findings, together with previous work establish essential roles of hSSB1 in controlling ATM activation and activity, and subsequent DSB resection and homologous recombination (HR).Publisher PDFPeer reviewe
    corecore