69 research outputs found

    EDELWEISS dark matter search: Latest results and future plans

    No full text
    International audienceEDELWEISS is a direct search for WIMP dark matter using cryogenic heat-and-ionization germanium detectors. We report the final results of the second stage of the experiment, EDELWEISS-II, obtained with an array of ten 400 g detectors. A total effective exposure of 384 kg.day has been achieved, obtained following fourteen months of continuous operation at the Laboratoire Souterrain de Modane. Five nuclear recoil candidates are observed above 20 keV, while the estimated background is less than 3 events. We also present the prospects of EDELWEISS-III, which plans to accumulate more than 3000 kg.day of data with fourty new 800 g detectors

    A gamma- and X-ray detector for cryogenic, high magnetic field applications

    Full text link
    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector is presented, as well as information on operation of APDs at cryogenic temperatures

    Energy partition in Sapphire and BGO scintillating bolometers

    No full text
    International audienceScintillating bolometers are particle detectors with a high particle discrimination power with many applications in nuclear and particle physics. This discrimination power is based on the different scintillation yield for different particles, and is strongly dependent on the target used. At the very low temperatures required for the operation of the bolometers, very few data about the scintillation yields are available. In this paper we present estimates of absolute light yields and energy partition among heat, light and trapping channels in Sapphire (AlO) and BGO (BiGeO) scintillating bolometers operated at 20 mK. The estimate relies on the observed negative correlation between the light and heat signals produced by γ-ray absorption in scintillating bolometers and on the study of the x-ray stimulated luminescence properties of BGO at temperatures down to 77 K

    Neutron Spectrometry with Scintillating Bolometers of LiF and Sapphire

    Get PDF
    Two scintillating bolometers of LiF (33 g) and Al2O3 (50 g) at 20 mK, inside a lead shielding at the Canfranc Underground Laboratory, were irradiated with neutrons from a source of 252Cf. The analysis of nuclear recoils registered by sapphire and (n, a) captures by 6Li shows the feasibility of these cryogenic devices to measure the spectral flux of a neutron field. Data unfolding was done assuming that the spectral flux is a piecewise constant function defined on six energy groups. It can be solved by using non-negative least squares without additional assumptions on the neutron flux. The model provides consistent results with the spectra of the observed events in bolometers, giving a fast neutron flux of F(E > 0.1 MeV) = 0.20 n s-1cm-2 with a 15% uncertainty after 3 hours of live time. After our analysis, it can be concluded that nuclear recoils in sapphire are more useful than (n, a) captures in LiF for spectrometry of fast neutrons

    Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes

    Get PDF
    The EDELWEISS-II collaboration has completed a direct search for WIMP dark matter with an array of ten 400-g cryogenic germanium detectors in operation at the Laboratoire Souterrain de Modane. The combined use of thermal phonon sensors and charge collection electrodes with an interleaved geometry enables the efficient rejection of gamma-induced radioactivity as well as near-surface interactions. A total effective exposure of 384 kg.d has been achieved, mostly coming from fourteen months of continuous operation. Five nuclear recoil candidates are observed above 20 keV, while the estimated background is 3.0 events. The result is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 4.4x10^-8 pb is excluded at 90%CL for a WIMP mass of 85 GeV. New constraints are also set on models where the WIMP-nucleon scattering is inelastic.Comment: 23 pages, 5 figures; matches published versio

    A search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors

    Full text link
    We report on a search for low-energy (E < 20 keV) WIMP-induced nuclear recoils using data collected in 2009 - 2010 by EDELWEISS from four germanium detectors equipped with thermal sensors and an electrode design (ID) which allows to efficiently reject several sources of background. The data indicate no evidence for an exponential distribution of low-energy nuclear recoils that could be attributed to WIMP elastic scattering after an exposure of 113 kg.d. For WIMPs of mass 10 GeV, the observation of one event in the WIMP search region results in a 90% CL limit of 1.0x10^-5 pb on the spin-independent WIMP-nucleon scattering cross-section, which constrains the parameter space associated with the findings reported by the CoGeNT, DAMA and CRESST experiments.Comment: PRD rapid communication accepte

    Performance of scintillation materials at cryogenic temperatures

    Full text link
    An increasing number of applications of scintillators at low temperatures, particularly in cryogenic experiments searching for rare events, has motivated the investigation of scintillation properties of materials over a wide temperature range. This paper provides an overview of the latest results on the study of luminescence, absorption and scintillation properties of materials selected for rare event searches so far. These include CaWO4, ZnWO4, CdWO4, MgWO4, CaMoO4, CdMoO4, Bi4Ge3O12, CaF2, MgF2, ZnSe and AL2O3-Ti. We discuss the progress achieved in research and development of these scintillators, both in material preparation and in the understanding of scintillation mechanisms, as well as the underlying physics. To understand the origin of the performance limitation of self-activated scintillators we employed a semi-empirical model of conversion of high energy radiation into light and made appropriate provision for effects of temperature and energy transfer. We conclude that the low-temperature value of the light yield of some modern scintillators, namely CaWO4, CdWO4 and Bi4Ge3O12, is close to the theoretical limit. Finally, we discuss the advantages and limitations of different materials with emphasis on their application as cryogenic phonon-scintillation detectors (CPSD) in rare event search experiments
    corecore