178 research outputs found

    Variationally-based theories for buckling of partial composite beam-columns including shear and axial effects

    Get PDF
    International audienceThis paper is focused on elastic stability problems of partial composite columns: the conditions for the axial load not to introduce any pre-bending effects in composite columns; the equivalence, similarities and differences between different sandwich and partial composite beam theories with and without the effect of shear, with and without the effect of axial extensibility, and also the effect of eccentric axial load application. The basic modelling of the composite beam-column uses the Euler-Bernoulli beam theory and a linear constitutive law for the slip. In the analysis of this reference model, a variational formulation is used in order to derive relevant boundary conditions. The specific loading associated with no pre-bending effects before buckling is geometrically characterized, leading to analytical buckling loads of the partial composite column. The equivalence between the Hoff theory for sandwich beam-columns, the composite action theory for beam-columns with interlayer slip and the corresponding Bickford-Reddy theory, is shown from the stability point of view. Special loading configurations including eccentric axial load applications and axial loading only on one of the sub-elements of the composite beam-column are investigated and the similarity of the behaviour to that of imperfect ordinary beam-columns is demonstrated. The effect of axial extensibility on kinematical relationships (according to the Reissner theory), is analytically quantified and compared to the classical solution of the problem. Finally, the effect of incorporating shear in the analysis of composite members using the Timoshenko theory is evaluated. By using a variational formulation, the buckling behaviour of partial composite columns is analysed with respect to both the Engesser and the Haringx theory. A simplified uniform shear theory (assuming equal shear deformations in each sub-element) for the partial composite beam-column is first presented, and then a refined differential shear theory (assuming individual shear deformations in each sub-element) is evaluated. The paper concludes with a discussion on this shear effect, the differences between the shear theories presented and when the shear effect can be neglected

    Locking-free two-layer Timoshenko beam element with interlayer slip

    Get PDF
    A new locking-free strain-based finite element formulation for the numerical treatment of linear static analysis of two-layer planar composite beams with interlayer slip is proposed. In this formulation, the modified principle of virtual work is introduced as a basis for the finite element discretization. The linear kinematic equations are included into the principle by the procedure, similar to that of Lagrangian multipliers. A strain field vector remains the only unknown function to be interpolated in the finite element implementation of the principle. In contrast with some of the displacement-based and mixed finite element formulations of the composite beams with interlayer slip, the present formulation is completely locking-free. Hence, there are no shear and slip locking, poor convergence and stress oscillations in these finite elements. The generalization of the composite beam theory with the consideration of the Timoshenko beam theory for the individual component of a composite beam represents a substantial contribution in the field of analysis of non-slender composite beams with an interlayer slip. An extension of the present formulation to the non-linear material problems is straightforward. As only a few finite elements are needed to describe a composite beam with great precision, the new finite element formulations is perfectly suited for practical calculations. (c) 2007 Elsevier B.V. All rights reserved

    Boundary layer effect in composite beams with interlayer slip

    Get PDF
    International audienceAn apparent analytical peculiarity or paradox in the bending behavior of elastic-composite beams with interlayer slip, sandwich beams, or other similar problems subjected to boundary moments exists. For a fully composite beam subjected to such end moments, the partial composite model will render a nonvanishing uniform value for the normal force in the individual subelement. This is from a formal mathematical point of view in apparent contradiction with the boundary conditions, in which the normal force in the individual subelement usually is assumed to vanish at the extremity of the beam. This mathematical paradox can be explained with the concept of boundary layer. The bending of the partially composite beam expressed in dimensionless form depends only on one structural parameter related to the stiffness of the connection between the two subelements. An asymptotic method is used to characterize the normal force and the bending moment in the individual subelement to this dimensionless connection parameter. The outer expansion that is valid away from the boundary and the inner expansion valid within the layer adjacent to the boundary (beam extremity) are analytically given. The inner and outer expansions are matched by using Prandtl’s matching condition over a region located at the edge of the boundary layer. The thickness of the boundary layer is the inverse of the dimensionless connection parameter. Finite-element results confirm the analytical results and the sensitivity of the bending solution to the mesh density, especially in the edge zone with stress gradient. Finally, composite beams with interlayer slip can be treated in the same manner as nonlocal elastic beams. The fundamental differential equation appearing in the constitutive law associated with the partial-composite action in a nonlocal elasticity framework is discussed. Such an integral formulation of the constitutive equation encompassing the behavior of the whole of the beam allows the investigation of the mechanical problem with the boundary-element method

    Exact slip-buckling analysis of two-layer composite columns

    Get PDF
    A mathematical model for slip-buckling has been proposed and its analytical solution has been found for the analysis of layered and geometrically perfect composite columns with inter-layer slip between the layers. The analytical study has been carried out to evaluate exact critical forces and to compare them to those in the literature. Particular emphasis has been placed on the influence of interface compliance on decreasing the bifurcation loads. For this purpose, a preliminary parametric study has been performed by which the influence of various material and geometric parameters on buckling forces have been investigated. (C) 2009 Elsevier Ltd. All rights reserved

    Fire analysis of timber composite beams with interlayer slip

    Get PDF
    The purpose of this paper is to model the behaviour of timber composite beams with interlayer slip, when simultaneously exposed to static loading and fire. A transient moisture-thermal state of a timber beam is analysed by the Luikov equations, and mechanical behaviour of timber composite beam is modelled by Reissner's kinematic equations. The model can handle layers of different materials. Material properties are functions of temperature. The thermal model is validated against the experimental data presented in the literature. Generally, the model provides excellent agreement with the experimental data. It is shown that the material properties of timber play an important role in the fire resistance analysis of timber structures when exposed to fire

    Horizontal Stabilisation of Sheathed Timber Frame Structures Using Plastic Design Methods – Introducing a Handbook Part 3: Basics of the Plastic Design Method

    Get PDF
    AbstractDesign of shear walls has been a topic of major discussions to develop a common European code for design of timber structures. The main problem has been that shear walls are fastened to the substrate in different ways in different countries and that this fact must be reflected in the code. In this part the requirements are given that must be met for the ductile characteristics of the sheathing-to-framing joints in order for the plastic design method to be applicable. The method is based on the plastic lower bound theory. The fundamental prerequisites for the method are that the static equilibrium for the structure is fulfilled and that the sheathing-to-framing joints are ductile. What requirements that should be made on the mechanical properties of the joints for the plastic design methods to be applicable and the precaution measures to take to avoid brittle behaviour are discussed. The two main principles for anchoring of sheathed timber frame shear walls, fully and partially anchored, are illustrated showing the static behaviour of the walls and the force distribution in the framing members and the sheathings. In addition, a general description of the design in the serviceability limit state is given. For medium-rise and taller buildings the serviceability limit state needs to be taken into account. There are no specified criteria for deformations in the present code

    Non-linear analysis of two-layer timber beams considering interlayer slip and uplift

    Get PDF
    A new mathematical model and its finite element formulation for the non-linear analysis of mechanical behaviour of a two-layer timber planar beam is presented. A modified principle of virtual work is employed in formulating the finite element method. The basic unknowns are strains. The following assumptions are adopted in the mathematical model: materials are taken to be non-linear and can differ from layer to layer; interacting shear and normal contact tractions between layers are derived from the non-linear shear contact traction-slip and the non-linear normal contact traction-uplift characteristics of the connectors; the geometrically linear and materially non-linear Bernoulli's beam theory is assumed for each layer. The formulation is found to be accurate, reliable and computationally effective. The suitability of the theory is validated by the comparison of the numerical solution and the experimental results of full-scale laboratory tests on a simply supported beam. An excellent agreement between measured and calculated results is observed for all load levels. The further objective of the paper is the analysis of the effect of different normal contact traction-uplift constitutive relationships on the kinematic and static quantities in a statically determined and undetermined structure. While the shear contact traction-slip constitutive relationship dictates the deformability of the composite beam and has a substantial influence on most of the static and kinematic quantities of the composite beam, a variable normal contact traction-uplift constitutive relationship is in most cases negligible

    Mechanical behaviour of pre-stressed spruce timber–timber 2.5-mm-step grooved connections under shearing tests

    Get PDF
    A smart shear connection system was tested in order to be used in manufactured elements of a lattice of wooden slats and a cross offset. This type of floor element can present advantages both in terms of weight and suitable insulating filler (Adalberth et al. 2001; Kawasaki and Kawai 2006; Kermani and Hairstans 2006; Dodoo et al. 2014). This connection is made to provide a substitute for a glue connection. The shear connection proposed is made by double-sided grooving timber interfaces to form a cross section. A specifically designed test assembly was constructed to measure and guarantee homogeneous contact pressure in interface test specimens. Shear test results are presented and compared in terms of capacity and stiffness with glue connections. The principal conclusions are as follows: the allowable shearing resistance of the grooved timber–timber joints can approximately reach the resistance of glued connections. The stiffness of the joints is improved by increasing the pre-stress applied for holding contact in the assembly. The grooved timber-to-timber joints exhibit non-linear behaviour which dominates the behaviour of the whole system. Therefore, the behaviour of a unit connection must be determined to obtain the mean load-carrying capacity and stiffness of a system with grooved connections
    corecore