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Abstract

A new mathematical model and its finite element formulation for the non-linear

analysis of mechanical behaviour of a two-layer timber planar beam is presented.

A modified principle of virtual work is employed in formulating the finite element

method. The basic unknowns are strains. The following assumptions are adopted

in the mathematical model: materials are taken to be non-linear and can differ

from layer to layer; interacting shear and normal contact tractions between layers

are derived from the non-linear shear contact traction–slip and the non-linear nor-

mal contact traction–uplift characteristics of connectors; the geometrically linear

and materially non-linear Bernoulli’s beam theory is assumed for each layer. The

formulation is found to be accurate, reliable and computationally effective. The

suitability of the theory is validated by the comparison of the numerical solution

and the experimental results of a full-scale laboratory tests on a simply supported

beam. An excellent agreement between measured and calculated results is observed

for all load levels. The further objective of the paper is the analysis of the effect of

different normal contact traction–uplift constitutive relationships on the kinematic
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and static quantities in a statically determined and undetermined structure. While

the shear contact traction–slip constitutive relationship dictates the deformability

of the composite beam and has a substantial infuence on most of the static and kine-

matic quantities of the composite beam, a variable normal contact traction–uplift

constitutive relationship is in most cases neglegible.

Key words: non-linearity, composite beam, slip, uplift, timber, strain-based finite

element

1 Introduction

Composite structure may be highly efficient structural form. If properly com-

posed, they exhibit better bearing capacity and are easier to build. A partic-

ularly strong increase in research and application of composite structures has

been observed in recent years in the rehabilitation of buildings and bridges.

The earliest theories dealing with composite planar beams were introduced

in the middle of the last century after a number of experimental observations

had confirmed the beneficial connected behaviour of layers. First mathematical

theories of beams, composed of flexibly connected layers, were developed in-

dependently in Sweden [1], Soviet Union [2], Switzerland [3] and in the United

States of America [4]. Most of subsequent theories consider linear elastic be-

haviour and small displacements (Girhammar and Gopu [5], Kroflič et al. [6],

Ranzi et al. [7], see also Schnabl et al. [8,9]. A number of theories consider also

non-linearity, as, e. g. Ayoub [10], who considered the material non-linearities,

∗ Corresponding author. E-mail address: iplaninc@fgg.uni-lj.si
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Betti and Gjelsvik [11], Čas et al. [12], Gattesco [13], Hirst and Yeo [14], Ranzi

and Bradford [15], who took into account both material and geometric non-

linearities, Rassam and Goodman [16], Salari et al. [17], Seracino et al. [18],

Thompson et al. [19]. Čas et al. [20] and Hozjan [21] seem to be the first to

introduce a fully consistent materially and geometrically non-linear model of

composite engineering beams.

The majority of the analysis procedures take into consideration solely an inter-

layer slip between the layers while neglecting uplift. The mathematical models

which consider both slip and uplift at the contact were rarely proposed, e. g. in

Adekola [22], Robinson and Naraine [23] who consider geometrically and ma-

terially linear behaviour whereas Gara et al. [24] consider bilinear constitutive

law of materials.

The present paper proposes a finite element formulation for the materially non-

linear analysis of two-layer timber beams. Our formulation employs a modified

principle of virtual work where the basic unknown functions are strains, i. e.

deformation quantities. The Galerkin-type finite element formulation is em-

ployed as in Planinc et al. [25]. The present paper is focused on the effect of

slip and uplift at the contact interface on mechanical behaviour of two-layer

timber beams. The model considers the following assumptions: a composite

structure, applied loading and deformations are planar; material of each layer

is taken to be non-linear and homogeneous and can differ from layer to layer;

interacting shear and normal contact tractions between the layers follow the

non-linear shear traction-slip and normal traction-uplift characteristics of the

connectors; the geometrically linear Bernoulli’s beam theory is assumed for

each layer; only a sufficiently small interlayer slip is assumed and the contact

of layers where slip and uplift are realized, is modelled with an additional layer
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of small thickness. We note that it is straightforward to extend the present

numerical model to a more general model of a multilayered composite beam.

The suitability of the present theoretical approach and its numerical solution

for the analysis of a two-layer timber beam is verified by two characteristic

cases. Firstly, we compare our numerical results to the analytical solution of

an elastic two-layer beam (Kroflič et al. [6]). Then we compare numerical so-

lutions of a simply supported non-linear beam modelled by different finite

element meshes. Validation of the proposed procedure is performed by com-

paring the numerical solution with experimental results ([27], [30]). Finally,

the influence of transverse stiffness of the connecting layers on static and kine-

matic quantities in the two-layer timber beam is examined.

2 Basic equations of two-layer timber beam

The static equilibrium of a two-layer timber beam is governed by the system

of kinematic, equilibrium and constitutive equations with corresponding nat-

ural and essential boundary conditions for each layer. The compatibility of

deformation between the layers is assured by proper constraining conditions

[20].

2.1 Kinematic, equilibrium and constitutive equations

We assume planar, materially non-linear two-layer timber beam of length L.

Equations of a more complex multi-layer timber or general composite beam

can be derived similarly.
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Fig. 1. Undeformed and deformed state of a two-layer timber beam.

We assume that deformations and rotations of each layer are small, so that

the geometrically linear beam model is sufficient.

We consider deformations of a two-layer timber beam in a (X, Z)-plane of

a fixed spatial Cartesian coordinate system (X, Y, Z) with orthonormal base

vectors eX , eY , eZ , where eY = eZ × eX . We suppose the reference axis of

an undeformed two-layer timber beam coincides with axis X. The deformed

configurations of the axes of the two layers are defined by

Ra = xa eX + ua = (xa + ua) eX + waeZ ,

Rb = xb eX + ub =
(
xb + ub

)
eX + wbeZ ,

(1)

where (•)a and (•)b denote quantities related to layer a and layer b, respec-

tively. In Eqs. (1) functions ua and wa denote the X and Z components of the

displacement vector of the axis of layer a; similarly, ub and wb belong to layer

b. Material coordinates of both layers are denoted by xa, za and xb, zb (Fig.

1).
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Bernoulli’s hypothesis of planar cross-sections is assumed for each layer, i.e.

the plane cross-section of each layer remains planar and perpendicular to the

deformed axis. Hence the effect of shear strains is neglected. We can derive

the following kinematic equations for the two layers:

ua′ − εa = 0, ub′ − εb = 0,

wa′ + ϕa = 0, wb′ + ϕb = 0, (2)

ϕa′ − κa = 0, ϕb′ − κb = 0,

where εa and εb are extensional strains, κa and κb bending strains (curvatures),

and ϕa and ϕb rotations of the axes of layers a and b. The prime denotes the

derivative with respect to xa or xb.

Due to Bernoulli’s hypothesis, the extensional strains, Da and Db, of an arbi-

trary fibre in layers a and b are linear with respect to coordinate za or zb:

Da = εa + zaκa,

Db = εb + zbκb.

(3)

The equilibrium equations link axial forces Na, N b, shear forces Qa, Qb and

bending moments Ma, M b of two-layer timber beam with distributed loads

pa
x, pb

x, pa
z , pb

z, pa
t , pa

n, pb
t , pb

n, ma
y, mb

y:

Na′ + pa
x + pa

t = 0, N b′ + pb
x + pb

t = 0,

Qa′ + pa
z + pa

n = 0, Qb′ + pb
z + pb

n = 0, (4)

Ma′ −Qa + ma
y = 0, M b′ −Qb + mb

y = 0,

where pa
t , pb

t and pa
n, pb

n are components of the contact traction vector that

acts in the contact plane. The next set of equations consists of constitutive

equations. There are four equations which relate the equilibrium generalized
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internal forces Na, N b, Ma, M b to the constitutive generalized internal forces

Na
c , N b

c , Ma
c , M b

c through extensional strains Da or Db:

Na = Na
c =

∫
Aa

σa (Da) dA,

N b = N b
c =

∫
Ab

σb
(
Db
)
dA, (5)

Ma = Ma
c =

∫
Aa

zaσa (Da) dA,

M b = M b
c =

∫
Ab

zbσb
(
Db
)
dA.

The constitutive quantities, Na
c , N b

c , Ma
c , M b

c , depend on chosen material

models defined by the relationships σa = σa (Da) and σb = σb(Db), which

need to be determined experimentally. The associated natural and essential

boundary conditions are:

xa, xb = 0 :

Na (0) + Sa
1 = 0, N b (0) + Sb

1 = 0,

Qa (0) + Sa
2 = 0, Qb (0) + Sb

2 = 0, (6)

Ma (0) + Sa
3 = 0, M b (0) + Sb

3 = 0,

ua (0) = ua
1, ub (0) = ub

1,

wa (0) = ua
2, wb (0) = ub

2, (7)

ϕa (0) = ua
3, ϕb (0) = ub

3,

xa, xb = L :

−Na (L) + Sa
4 = 0, −N b (L) + Sb

4 = 0,

−Qa (L) + Sa
5 = 0, −Qb (L) + Sb

5 = 0, (8)

−Ma (L) + Sa
6 = 0, −M b (L) + Sb

6 = 0,
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ua (L) = ua
4, ub (L) = ub

4,

wa (L) = ua
5, wb (L) = ub

5, (9)

ϕa (L) = ua
6, ϕb (L) = ub

6.

In the above equations, ua
i and ub

i (i = 1, ..., 6) denote the prescribed gener-

alized boundary displacements, whereas Sa
i and Sb

i (i = 1, ..., 6) are the pre-

scribed generalized forces at the ends xa = xb = 0 and xa = xb = L of layers

a and b.

2.2 Constraining equations

Layers slip with respect to each other and may eventually separate during the

deformation. If the layers are very stiff compared to the stiffness of connectors,

or if they are not connected at all, a substantial slip and uplift may occur at

the contact. If layers are nearly as stiff as the connectors or if one layer is much

softer than the other, slip and uplift are small and can thus be attributed to

a thin connecting layer.

For this reason, slip and uplift are in the present paper defined as an average

slip and an average uplift over a thin connecting layer made of soft material,

rather than slip and uplift over an actual contact interface (Fig. 2). Hence, the

interaction between the layers a and b is achieved through the connecting layer

of thickness e, thus being more a computational than a geometric property,

yet depending on characteristics of layers and connectors [12]. The character-

istics of layers must be found by a specially designed experiment. Once ob-

tained, the generalized slip (or uplift) is used in a shear traction-slip or normal

traction-uplift relationship. The shear traction-slip and normal traction-uplift
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relationships are assumed to be non-linear which is in accordance with exper-

iments [26]. The introduction of thickness e seems to be physically sound and

adds an additional material parameter to the mathematical model.

The constraining conditions employed to assemble the layers into the compos-

ite beam (Fig. 1) require continuity of the possibly uplifted contact surface

as:

Ra
(
T a′)− daea

n = Rb
(
Qb′)

, (10)

where ea
n presents the unit vector perpendicular to the contact surface of layer

a at the point T a′
. Coordinate xb∗ represents a material, undeformed coordi-

nate of particle Qb of layer b which, in the deformed state, gets in contact with

particle T a of layer a with coordinate xa. Coordinates zsa and zsb present the

vertical coordinate (distance) of points T a and Qb from the corresponding layer

reference axis. After assuming small slips and performing the linearization, the

componential form of Eq. (10) is written as

xa + ua + eϕa = xb∗ + ub, (11)

wa − da = wb, (12)

where da = d+e. The unknown function d of xa stands for uplift at the contact

between layers and can be calculated from Eq. (12) as

d = wa − wb − e. (13)

The slip which occurs between two points that coincide in the undeformed

shape is denoted by ∆. The relation between ∆ and kinematic quantities can

be derived from (11)

∆ = xb∗ − xa = ua − ub + eϕa. (14)
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The geometrical meaning of uplift d, and slip ∆, is further described in Fig.

2. The stiffness of the contact depends on the connecting materials and the

layer

layer

φ

a

b

a
��� u

a
� u �e

a

d w� �
a wb

�e

Fig. 2. Geometrical meaning of slip and uplift.

design details of the contact. Our constitutive contact equations are assumed

to be defined in a general form as

pa
t = −pb

t = F (∆) ,

pa
n = −pb

n = G (d) .

(15)

For a given geometry of the beam, external loadings and boundary conditions,

Eqs. (2), (4–5), (11), (13–15) constitute a system of 23 equations for 23 un-

known functions ua(xa), ub(xb), wa(xa), wb(xb), ϕa(xa), ϕb(xb), εa(xa), εb(xb),

κa(xa), κb(xb), Na(xa), N b(xb), Qa(xa), Qb(xb), Ma(xa), M b(xb), ∆(xa), d(xa),

pa
t (x

a), pb
t(x

b), pa
n(xa), pb

n(xb) and xb∗(xa) with the corresponding natural and

essential boundary conditions (6–9).

3 The finite element formulation

The analytical solution of the stress-strain state of a composite beam is possi-

ble only when material models of layers and contact are linear (Adekola [22],

Kroflič [6], Robinson and Naraine [23]). Otherwise the system of equations

can only be solved by a numerical method, e.g. the finite element method.
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The present numerical method employs the strain-based finite elements [12,20].

It is derived from the modified principle of virtual work, which makes it pos-

sible to introduce the strains in a natural way as the only unknowns of the

system of equation, while the remaining unknowns are included only as bound-

ary values in the functional. The modified principle of virtual work is (Čas et

al. [20]):
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δW ∗ =δW a∗ + δW b∗ =∫ L

0
((Na

c −Na) δεa + (Ma
c −Ma) δκa) dxa+

+

(
ua (L)− ua (0)−

∫ L

0
εadξ

)
δNa(0)+

+

(
wa (L)− wa (0) +

∫ L

0
ϕadξ

)
δQa(0)+

+

(
ϕa (L)− ϕa (0)−

∫ L

0
κadξ

)
δMa (0) +

+ (−Sa
1 −Na (0)) δua (0) + (−Sa

2 −Qa (0)) δwa (0) +

+ (−Sa
3 −Ma (0)) δϕa (0) + (−Sa

4 + Na (L)) δua (L) +

+ (−Sa
5 + Qa (L)) δwa (L) + (−Sa

6 + Ma (L)) δϕa (L) +

+
∫ L

0

((
N b

c −N b
)
δεb +

(
M b

c −M b
)
δκb

)
dxb+

+

(
ub (L)− ub (0)−

∫ L

0
εbdξ

)
δN b (0) +

+

(
wb (L)− wb (0) +

∫ L

0
ϕbdξ

)
δQb (0) +

+

(
ϕb (L)− ϕb (0)−

∫ L

0
κbdξ

)
δM b (0) +

+
(
−Sb

1 −N b (0)
)
δub (0) +

(
−Sb

2 −Qb (0)
)
δwb (0) +

+
(
−Sb

3 −M b (0)
)
δϕb (0) +

(
−Sb

4 + N b (L)
)
δub (L) +

+
(
−Sb

5 + Qb (L)
)
δwb (L) +

(
−Sb

6 + M b (L)
)
δϕb (L) .

(16)

The only unknown variables of the problem are strains εa(xa), εb(xb), κa(xa)

and κb(xb), generalized boundary forces Na(0), Qa(0), Ma(0), N b(0), Qb(0),

M b(0), and boundary kinematic quantities ua(0), ua(L), wa(0), wa(L), ϕa(0),

ϕa(L), ub(0), ub(L), wb(0), wb(L), ϕb(0) and ϕa(L).

The extensional strain, εa, of layer a, the extensional strain, εb, of layer b and
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the bending strains, κa and κb, are interpolated by the Lagrangian polynomials

Lm (m = 1, 2, ...,M) of the same order (M − 1):

εa (xa) =
M∑

m=1

Lm (xa) εa
m,

εb
(
xb
)

=
M∑

m=1

Lm

(
xb
)
εb

m, (17)

κa (xa) =
M∑

m=1

Lm (xa) κa
m,

κb
(
xb
)

=
M∑

m=1

Lm

(
xb
)
κb

m.

Interpolation points are taken to be equidistant. The scalar values εa
m, εb

m, κa
m

and κb
m denote the nodal values of the extensional and bending strains. When

the interpolated strains in Eqs. (17) are inserted into the modified principle of

virtual work (16), we obtain the system of generalized equilibrium equations

of a two-layer timber beam accounting for interlayer slip and uplift:

gi =
∫ L

0
(Na

c −Na) Li dξ = 0, i = 1, ...,M

gM+i =
∫ L

0

(
N b

c −N b
)
Li dξ = 0, i = 1, ...,M

g2M+i =
∫ L

0
(Ma

c −Ma) Li dξ = 0, i = 1, ...,M

g3M+i =
∫ L

0

(
M b

c −M b
)
Li dξ = 0, i = 1, ...,M

g4M+1 = ua (L)− ua (0)−
∫ L

0
εadξ = 0,

g4M+2 = wa (L)− wa (0)−
∫ L

0
ϕadξ = 0,

g4M+3 = ϕa (L)− ϕa (0)−
∫ L

0
κadξ = 0,

g4M+4 = ub (L)− ub (0)−
∫ L

0
εbdξ = 0,

g4M+5 = wb (L)− wb (0)−
∫ L

0
ϕbdξ = 0,

g4M+6 = ϕb (L)− ϕb (0)−
∫ L

0
κbdξ = 0, (18)

g4M+7 = −Sa
1 −Na (0) = 0,

13



g4M+8 = −Sa
2 −Qa (0) = 0,

g4M+9 = −Sa
3 −Ma (0) = 0,

g4M+10 = −Sb
1 −N b (0) = 0,

g4M+11 = −Sb
2 −Qb (0) = 0,

g4M+12 = −Sb
3 −M b (0) = 0,

g4M+13 = Sa
4 −Na (L) = 0,

g4M+14 = Sa
5 −Qa (L) = 0,

g4M+15 = Sa
6 −Ma (L) = 0,

g4M+16 = Sb
4 −N b (L) = 0,

g4M+17 = Sb
5 −Qb (L) = 0,

g4M+18 = Sb
6 −M b (L) = 0.

The above non-linear algebraic system of generalized equilibrium equations of

the two-layer timber beam constitutes a system of 4M + 18 equations with as

many so called primary unknowns. These consist of 4M +6 internal degrees of

freedom, εa
m, εb

m, κa
m, κb

m (m = 1, 2, ...,M), Na(0), N b(0), Qa(0), Qb(0), Ma(0),

M b(0), and 12 external degrees of freedom, ua(0), ub(0), wa(0), wb(0), ϕa(0),

ϕb(0), ua(L), ub(L), wa(L), wb(L), ϕa(L), ϕb(L), of a finite element. The

secondary unknown functions ua, ub, wa, wb, ϕa, ϕb, Na, N b, Qa, Qb, Ma,

M b, ∆, d, pa
t , pa

n, pb
t , pb

n, xb∗ when needed at a particular value of xa or xb in

the above equations are obtained by the equations:

ua (xa) = ua (0) +
∫ xa

0
εadξ,

wa (xa) = wa (0) +
∫ xa

0
ϕadξ,

ϕa (xa) = ϕa (0) +
∫ xa

0
κadξ,

ub
(
xb
)

= ub (0) +
∫ xb

0
εbdξ,
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wb
(
xb
)

= wb (0) +
∫ xb

0
ϕbdξ,

ϕb
(
xb
)

= ϕb (0) +
∫ xb

0
κbdξ,

Na (xa) = Na (0)−
∫ xa

0
(pa

x + pa
t ) dξ,

Qa (xa) = Qa (0)−
∫ xa

0
(pa

z + pa
n) dξ,

Ma (xa) = Ma (0) +
∫ xa

0

(
Qa −ma

y

)
dξ, (19)

N b
(
xb
)

= N b (0)−
∫ xb

0

(
pb

x + pb
t

)
dξ,

Qb
(
xb
)

= Qb (0)−
∫ xb

0

(
pb

z + pb
n

)
dξ,

M b
(
xb
)

= M b (0) +
∫ xb

0

(
Qb −mb

y

)
dξ,

xb∗(xa) = xa + ua − ub + eϕa,

d(xa) = wa − wb − e,

∆(xa) = ua − ub + eϕa,

pa
t (x

a) = F (∆) ,

pa
n(xa) = G (d) ,

pb
t(x

b) = −pa
t (x

a),

pb
n(xb) = −pa

n(xa).

The Newton-Raphson method is employed for the solution of this algebraic

system of equations.

4 Experimental work

• Experiment A

In order to validate the numerical model, we compared our numerical

results with experimentally obtained results of Planinc et al. [27], who per-

formed several full-scale laboratory tests to study the mechanical properties
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of timber, contact parameters between connected timber elements and the

deformability of simply supported timber composite beams. Only a brief re-

view of the testing procedures and their results are presented in this paper,

since the details of the experiment have already been presented in Planinc

et al. [27] and the references therein. A simply supported, 3000 mm long

composite timber beam with a span L = 2800 mm was studied. The beam

was composed from two timber rafters of equal length and width, but differ-

ent heights. They were connected to each other with standard nails 40/100.

The axial distance between the nails was 60 mm.

The deflections of the beam axis, slip along the contact and the following

material characteristics of timber and the interface connection were mea-

sured in the experiment:

· compressive strength along the grain,

· tensile strength along the grain,

· shear stiffness and load bearing capacity of connectors,

· tensile drag characteristics of connectors.

Experiments of the timber compressive and tensile constitutive law, pull-

out strength tests for defining the tensile drag characteristics of connectors,

and the shear flow-slip tests of the contact are fully described in [26].

The two-layer timber cross-section is presented in Fig. 3. In accordance

with the EN 338 [28] classification, timber has been classified in strength

class C24. The nails 40/100 were arranged in two parallel rows and uniformly

distributed along the contact interface as seen in Fig. 3.

A 100 mm long cantilevers at the supports (Fig. 3) were neglected in

mathematical modelling. The assumption appears to be reasonable due to

small relative length and dead load of the cantilevers. The beam is subjected

to dead load and loaded with a slowly increasing point force, P , at the
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Fig. 3. Cross-section of the composite timber beam and the arrangement of connec-

tors.

midspan.

Material parameters of the constitutive law of timber were according

to [27] determined in a series of compressive and tensile tests on timber

specimens. The constitutive law displayed in Fig. 4 was used in the nu-

merical simulations. Based on experiments, the elastic modulus of timber

was estimated as being Et = Ec = 11500 N/mm2 in tension and com-

pression; the remaining material properties of timber were estimated as

being: Dty = 0.32 %, Dtu = 1.00 %, Dcy = 0.35 %, Dcu = 1.03 %, Ech =

0.1Ec, Eth = 0.05Et. Ultimate deformations needed to describe the timber

constitutive law were determined according to Pischl [29].

In a parallel experiment, the shear traction–slip (pa
t –∆) and the normal

traction–uplift (pa
n–d) relations for a nailed contact were obtained. These

experiments are fully described in Čas [26]. There were three specimens

chosen for the determination of each constitutive law. The dimensions and
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Fig. 4. Constitutive law of timber used in the analysis.

the arrangement of nails in the specimens are presented in Fig. 5 (specimens

for the shear traction–slip relation) and in Fig. 6 (the ones for the normal

traction–uplift relation). Both kinds of experiments were performed in the

universal testing machine INSTRON 1345. It should also be noted that the

arrangement of the nails in the test specimen was similar to the arrangement

of the nails in the tested timber composite beams.

The computational contact constitutive law was determined by averaging

the results of all measurements. The goal of the experiments was to gain the

shear traction–slip and the normal traction–uplift relations for a single nail,

so each averaged constitutive diagram was also adequately reduced with the

number of nails used in experiments.

The experiments clearly showed that the relations between the shear con-

tact traction and the related slip, as well as the normal contact traction and

the related uplift between the layers are non-linear. Fig. 7 presents the shear

traction–slip and the normal traction–uplift relations, as obtained experi-

mentally and employed in the numerical simulations.

• Experiment B

18
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Fig. 6. Geometrical data of uplift specimens and the arrangement of nails.

We also compare our numerical results with experimentally obtained results of

McCutcheon [30] who performed several full-scale laboratory tests on T-beam
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n–d).

and I-beam specimens. Yet there is only a portion of the T-beam test results

included in our comparisons.

The beams were constructed from spruce-pine-fir webs (38 x 89 mm x 244

mm) and different flanges (a 19 x 406 mm CDX plywood or a 11 x 406 mm

oriented strandboard). 8d common nails spaced at 152 mm were used to fasten

the flanges to the webs. A double layer of polyethylene was inserted in all slip

planes to reduce the variability of friction at the contact between the layers.

The beams were tested on a 2130 mm span and subjected to two point loadings

P2 = 890 N. Sufficiently low load levels were selected to ensure that the beam

(web) stresses remained below their critical values.

Fig. 8 presents the loading arrangement on the beam and positions of slip (A2)

and vertical deflection (B2) measuring spots.

Prior to the T-beam tests, material property tests (static bending) were run

on the web specimens to determine web stiffness, sheatings (axial tension and

compression to determine flange stiffnesses), and nails (lateral load/slip tests

20
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Fig. 8. Geometrical data, loading and position of slip (A2) and vertical deflection

(B2) measuring.

with each type of sheating to determine interlayer slip properties). As a result

of sheating test, an average elastic moduli of plywood (Eflange = 7708 N/mm2)

and oriented standboard (Eflange = 3309 N/mm2) were estimated. The web

elastic moduli considered in the numerical analysis are reported in the first

column of Table 2 for each specimen. Fig. 9 presents the shear traction–slip

curve used in the analysis. It was calculated from the typical load/slip curve

for 8d nail, presented in McCutcheon [30]. There were no experimental data

available to define the normal traction–uplift curve, however. We presume a

rigid transverse connection between layers in our analysis.

5 Numerical examples

Several numerical examples are presented for verification and validation of the

proposed approach. Verification of the mathematical model is performed: (1)

by comparing numerical results to the analytical solution of linearly elastic

beam [6], and (2) by comparing numerical solutions of a simply supported

non-linear beam modelled by different finite element meshes.

Validation of the procedure is performed by comparing the numerical solution
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Cutcheon [30]).

first, with the experimental results of a full-scale laboratory test on a simply

supported beam investigated by Planinc et al. [27] (Experiment A) and, sec-

ond, with the experimental results of a full-scale laboratory test on a simply

supported beam investigated by McCutcheon [30] (Experiment B). Presumed

thickness of the connecting layer in all cases considered is e = 0 mm. A further

objective of Sec. 5 is to assess the effect of the transverse contact stiffness on

mechanical behaviour of a two-layer timber beam.

5.1 Verification of the mathematical model

The suitability of the present numerical approach is verified by a simply sup-

ported beam with the same characteristics as previously described. In the first

example, we consider a linear elastic behaviour of the beam. All characteristics

of the beam were linearized around the undeformed configuration.
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We considered tangential slip modulus to be K = 352.5 N/mm. The consti-

tutive law of the contact in the transverse direction was also linearized. After

additionally assuming equal behaviour in tension and compression, we chose

the tangential uplift modulus C = 1349.7 N/mm. The beam was loaded at

the midspan with the point force P = 7624 N acting downwards. Each finite

element has four interpolation points.

Fig. 10a presents relative errors of numerical solution of the midspan uplift

with respect to the analytical solution (Kroflič et al. [6]) for different number

of finite elements Ne (errord,1 =
dnum1

A − danal
A

danal
A

100%). It can be clearly seen

that the model with only 6 finite elements gives accurate results.
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Fig. 10. Relative error of numerical solution (in per cent) at the contact of a simply

supported elastic beam: (a) uplift at the midspan errord,1 and (b) slip error∆,1 at

the support.

Fig. 10b presents the comparison of relative errors of numerical solution at

the edge of a simply supported beam with respect to the analytical solution

of the slip (error∆,1 =
∆num1

B −∆anal
B

∆anal
B

100%). We can conclude that the model

with 8 finite elements gives accurate results.
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The second example investigates the accuracy of the model when the loading

approaches the ultimate loading of the beam and the behaviour becomes non-

linear. We considered experimentally obtained non-linear constitutive law of

timber, shear traction–slip law and normal traction–uplift law at the contact.

The value of ultimate force at the midspan of the beam found by the numerical

analysis was P = 42800 N. As the exact solution is not known, the results

were compared to the solution obtained with 56 finite elements.

Fig. 11a presents relative errors of numerical solution of the midspan up-

lift with respect to the uplift obtained with the use of 56 finite elements

(errord,2 =
dnum2

A − d56FE
A

d56FE
A

100%). Only a minor difference between the results

obtained with 20 finite elements is found. Moreover, the difference in results

is progressively smaller for a larger number of finite elements. Therefore the

results for coarse finite element meshes suffice to be presented on the following

figures.

�

�

�

�

� �

�

�

�

�

NNe

(a) relative error of uplift (b) relative error of slipd A � B

NNeNNeNNe

e
r
r
o
r
d

,2

e
r
r
o
r

�
,2

[%
]

[%
]

Fig. 11. Relative error of solution (in per cent) with respect to the results obtained

with the use of 56 finite elements: (a) uplift at the midspan errord,2 and (b) slip

error∆,2 at the support.
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Fig. 11b presents relative errors of numerical solution for slip ∆B at the

edge of a simply supported beam for different numbers of finite elements

with respect to slip obtained with the use of 56 finite elements (error∆,2 =

∆num2
B −∆56FE

B

∆56FE
B

100). It can clearly be seen that there is only a minor devi-

ation between the two results. Therefore we only present results for the 20

finite element mesh.

To clearly verify and strengthen numerical aspects of the present numerical

model, we further study the linear elastic example studied previously, yet with

the T cross-section (Fig. 12).

100

160

100

layer b

layera

mm

mm

mm

200 mm

Fig. 12. T cross-section.

All the remaining geometric and material characteristics of the beam stays

the same.

We consider several combinations of the tangential slip modulus, K, and the

tangential uplift modulus, C:

• K = 0, C = 1349.7 N/mm (without shear connection - WSC)

• K ≈ ∞, C = 1349.7 N/mm (rigid shear connection - RSC)

• K ≈ ∞, C ≈ ∞ (completely rigid connection - CRC).
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It is worth mentioning that, for the case without shear connection, we had

to additionally support the upper beam layer to be able to satisfy boundary

conditions of a two-layer beam. The numerical solutions are compared with the

analytical solutions (Kroflič et al. [6]) for a different number of finite elements

Ne.

The results for the vertical deflection wA of the midpoint of the bottom layer

are presented in Table 1. As a result of a good convergence, we present only

relative errors for 4 (error4FE) and 8 (error8FE) element meshes.

Table 1

Analytical and numerical results and convergence properties of the midpoint vertical

deflection for different shear and uplift connections.

Cross-section Connection Analytical [mm] error4FE [%] error8FE [%]

Original WSC 10.5682 -0.08020 -0.08155

Original RSC 4.43766 -0.67189 -0.67119

Original CRC 4.42244 -0.00289 -0.00327

T WSC 5.98058 -0.62352 -0.62336

T RSC 1.55624 -2.66826 -2.66452

T CRC 1.51032 -0.01377 -0.01893

Considered tolerance of Newton method is 10−8 in all presented cases. All

numerical results are within expected limits. There is a small convergence

problem noticed in the sense of decrease of an error with growing number of

finite elements. Especially, in the case of rigid shear connection (RSC) relative

errors stabilize and do not decrease with growing number of finite elements.

26



5.2 Validation of the mathematical model

• Experiment A

Deflections and slip between layers were measured at several points along

the beam axis.

Fig. 13a compares the measured and the calculated load-deflection curves

at the midspan for the bottom layer a. All experimentally obtained charac-

teristics of the tested beam were considered in the numerical analysis: the

non-linear material model for timber, the non-linear shear traction–slip and

the non-linear normal traction–uplift relationships.

An excellent agreement between measured and calculated load-displacement

curves can be observed at all load levels. The experimentally observed col-

lapse mechanism of the beam agrees with the collapse mechanism found in

our numerical calculation which showed that the collapse occurred due to

tensile failure of timber fibres at the bottom of layer a at the midspan.

The experimentally obtained ultimate loading is P exp
ult = 43600 N, whereas

the numerically obtained one is P num
ult = 42900 N. The finite elements that

were employed are denoted by Ej−k, where the first subscript (j) indicates

the number of interpolation points and (k) the number of the Gaussian

integration nodes along the beam length. The numerical results shown here

were obtained with the mesh having 20 finite elements per one half of the

beam.

Fig. 13b presents the comparison between the measured and the calcu-

lated load–end slip curves. The end slip was measured just at the end points

of the beam. These points were marked as IND1 (left end) and IND2 (right

end). A good general agreement could be observed again, although the mea-

sured load–end slip curves differ somewhat this time. Note that the scatter
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Fig. 13. Measured and calculated (a) load–deflection (P − wa
A) and (b) load–slip

(P −∆B) curves.

of the experimental results could be the reason for these small discrepancies.

The measured (full line) and the calculated (circles) deformed shapes are

presented in Fig. 14. A very good agreement between the measured and the

calculated deformed shapes can be observed for all load levels.
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Fig. 14. Measured and calculated deformed shapes of the beam at different load

levels.

• Experiment B

In the original experiment, three different specimens were tested for each type

of the flange. Comparisons of the experimental and numerical results are pre-

sented in Table 2.

The above comparisons indicate a good agreement among the experimental

and numerical results. Some deviations may be the result of averaged values

of elastic modulus of the flange used in numerical calculations.

5.3 The effect of transverse stiffness of connecting layer

It is interesting to study the effect of transverse stiffness of the connecting layer

on the static and kinematic quantities in the two-layer timber beam. The in-

fluence of the normal traction–uplift constitutive law on the beam analysed
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Table 2

Comparisons of analytical and numerical results; results in [N/mm2] (elastic mod-

ulus) and [mm] (vertical deflection, slip).

Flange Eweb wtest
B2

wnum
B2

errorw[%] ∆test
A2

∆num
A2

error∆[%]

PLY 10342 8.961 8.865 1.07 0.603 0.6062 -0.53

PLY 9446 9.745 9.54 2.10 0.6891 0.652 5.38

PLY 8687 10.37 10.22 1.45 0.739 0.698 5.55

OSB 9791 10.599 9.68 8.67 0.64 0.623 2.66

OSB 11307 9.65 8.57 11.19 0.574 0.549 4.36

OSB 11170 8.84 8.66 2.04 0.509 0.555 -9.04

in Sec. 5.2 was studied first. Then, the same procedure is applied on a con-

tinuous, statically indetermined two-span beam. In all cases we consider the

realistic non-linear shear traction–slip (pa
t –∆) relationship for arrangement of

nails at distance 230 mm (N23).

There are three types of the nail arrangement considered in vertical direc-

tion: nails applied at distances 40 mm, resulting in a rather stiff contact (N4),

230 mm (N23) and 460 mm, a very flexible contact (N46). Furthermore, in

order to assess the compressive stiffness of the connection, we reduce the com-

pression part of the normal traction–uplift constitutive law N46 by factors 0.1(
10 %, N46red10%

)
and 0.01

(
1 %, N46red1%

)
of the original (i.e. experimentally

obtained) value (Fig. 15). Considering such a variety of constitutive relation-

ships in transverse direction, results in an extensive review of influence on the

rest of the quantities of a composite beam. Most of them correspond to feasible
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values for composite timber beams. Although some of the considered values

of the transverse stiffness may have a questionable physical significance, the

results prove a wide range of applicability of the method.
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Fig. 15. Non-linear normal traction–uplift constitutive laws in the parametric study.

5.3.1 Simply supported beam

In order to assess the effect of the point of application of the load, we consider

two cases of point load P = 34900 N acting at the midspan of the beam

considered in Sec. 5.2: (i) the load is acting on the upper layer, and (ii) the

load is acting on the bottom layer.

• Point load at the midspan of the upper layer

First we examine the influence of the variable normal traction–uplift consti-

tutive law on slip (∆) and uplift (d). Fig. 16a presents the influence of the

non-linear normal traction–uplift constitutive law on slip ∆. It is clearly seen

that the effect is only minor.
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Fig. 16b presents the influence of the non-linear normal traction–uplift consti-

tutive law on uplift d. We notice that the reduction of the normal compression

stiffness has a significant influence on uplift d; in contrast, the basic nail ar-

rangements behave roughly the same.
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Fig. 16. Slip ∆ and uplift d distributions along the contact surface for different nail

arrangements and different types of the normal contact traction–uplift relationships

(load acting on the upper layer).

Fig. 17a presents the influence of the non-linear normal traction–uplift consti-

tutive law on shear force Qa in the bottom layer. As for uplift d, there is no

effect of the considered arrangements of the nails. By contrast, the reduced

normal contact laws result in a significant change of the bottom layer shear

force Qa distribution in the vicinity of the point of application of the load.

Fig. 17b presents the influence of the non-linear normal traction–uplift con-

stitutive law on the upper layer shear force Qb. Again the influence on Qb is

substantial, yet only in the region of the point of application of the load and

if a reduced normal traction–uplift constitutive law is used.
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Fig. 17. Influence of different normal contact traction-uplift relationships on the

shear forces Qa and Qb (load acting on the upper layer).

• Point load at the midspan of the bottom layer

Fig. 18a shows that, again, the influence of the non-linear normal traction–

uplift constitutive law on slip ∆ is minor.

Fig. 18b shows the effect of the non-linear normal traction–uplift law on uplift

d. This time a considerable influence of the basic nail arragements on the uplift

is observed. The further reduction of normal traction–uplift law in compression

has a negligible effect.

Fig. 19a presents the effect of the non-linear normal traction–uplift law on

the bottom layer shear force Qa. We may observe that the effect of different

contact relations is small. Fig. 19b depicts these effects on the upper layer

shear force Qb. Different arrangements of nails have a significant effect on the

distribution of the upper layer shear force Qb. Similar results have also been

obtained for bending moments in the bottom and upper layers.

33



�

�

x/L x/L

P

P

(a) slip � (b) uplift d

10.25 0.5 0.750 10.25 0.5 0.750
�

�

�

�
[m

m
]

d
[m

m
]

red10%

N46red1%

N46

N46

N23

N4

red10%

N46red1%

N46

N46

N23

N4
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Fig. 19. Influence of different normal contact traction–uplift relationships on shear

forces Qa and Qb (load acts on the bottom layer).

5.3.2 Continuous two-span beam

We consider two cases of the point load P = 33700 N acting at the midpoint

of the first span of a continuous beam: (i) the load acts at the upper layer
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downwards and (ii) the load acts at the bottom layer downwards. The total

length of the continuous beam is L = 7000 mm. The lengths of the particular

spans are L1 = 4000 mm and L2 = 3000 mm. All the remaining material and

geometrical characteristics are those of the simply supported beam, presented

in Sec. 5.2.

• Point load at the midspan of the upper layer

Fig. 20a shows the influence of the normal contact traction laws on slip ∆. It

is clearly seen that the effect is negligible. Fig. 20b presents effects on uplift

d. As observed from the figure, the results of all three basic nail arrangements

practically coincide. In contrast, the reduction of the normal contact law in

compression largely affects uplift d, particularly in the vicinity of the point of

application of the load.
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Fig. 20. (a) Slip (∆) and uplift (d) distribution along the contact for different types

of normal contact traction–uplift relationships (force acts on the upper layer).

Fig. 21a shows that the influence of the three basic nail arrangements on the

bottom layer shear force Qa is negligible. The reduced normal contact laws
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results in a small change of the bottom layer shear force Qa distribution, yet

only locally. Fig. 21b displays effects on the upper layer shear force Qb. Again,

the effect on Qb is localized to the vicinity of the point of application of the

load and is considerable only for reduced normal contact laws.
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Fig. 21. Influence of different normal contact traction–uplift relationships on shear

forces Qa and Qb (force acts on the upper layer).

• Point load at the midspan of the bottom layer

Fig. 22a shows that the influence of the non-linear normal traction–uplift

constitutive law on slip ∆ in a continuous beam is negligible.

Fig. 22b shows that the influence on uplift d is considerable, particularly with

regard to the arrangements of nails.

Fig. 23 presents results for shear force Q. Fig. 23a displays the variation of the

bottom layer shear force Qa, and Fig. 23b for the upper layer shear force Qb.

As observed, different arrangements of nails can have a substantial influence

on the distribution of the upper layer shear force Qb. Similar results have also
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contact traction–uplift relationships (force acts on the upper layer).

been obtained regarding the distribution of bending moments in the layers.
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Fig. 23. Influence of different normal contact traction–uplift relationships on the

shear forces Qa and Qb (force acts on the upper layer).

We have seen that the effect of the normal contact traction law on behaviour

of beams is not negligible where considerable variations in results can be ob-

37



served.

6 Conclusion

A new mathematical model and its numerical solution method for the analysis

of two-layer timber beams was presented. We derived an effective, strain-based

finite element method for the non-linear analysis of two-layer timber beams

with flexible connections experiencing interlayer slip and uplift. The formula-

tion considers the geometrically linear and materially non-linear planar beam

theory. The shear traction–slip and the normal traction–uplift relationships of

the contact surface as well as the stress–strain relationship of the timber are

taken to be non-linear.

The suitability of the present numerical approach was verified by two numer-

ical examples, considering linear and non-linear material behaviour. The con-

vergence of the proposed numerical method was found appropriate. Validity,

accuracy and reliability of the model was studied by comparing the numerical

results with the experimentally obtained ones of McCutcheon [30] and Planinc

et al. [27]. An excellent agreement between the measured and the calculated

results is observed for all load levels. After the verification and the validation

have been concluded, it was clear that the present new mathematical model

and its solution method represent a suitable practical tool for the analysis of

two-layer timber beams with a partial interface connection.

The influence of different normal traction–uplift constitutive relationships on

the kinematic and static quantities of simply supported and continuous beams

was investigated in detail. It was observed that, for the range of the realistic
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normal traction–uplift constitutive relationships in timber structures employed

in the analysis, the connection in normal direction was relatively rigid. In

contrast, the flexible contact relationship can have a visible influence on the

uplift. In some cases, there was also a considerable effect detected on the

distribution of shear forces and bending moments along the composite beam.

A significant differences in the uplift distribution may appear between the

cases, when the point of application of the force was on the top or on the

lower layer. If the top layer is loaded, uplift is negative and highly localized in

the loaded zone. When the load acts on the bottom layer, uplift is still highly

localized in the loaded zone, but is positive.

It can be concluded that the effect of the normal contact traction–uplift consti-

tutive relationship on most of the kinematic and static quantities is negligible.

In some rare cases, however, appreciable variations in results for uplift, and

internal and contact forces can be observed.
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[12] B. Čas, M. Saje, I. Planinc, Non-linear analysis of composite steel-concrete

beams with incomplete interaction, Steel and Composite Structures 4(6), 489–

507, 2004.

[13] N. Gattesco, Analytical modeling of nonlinear behavior of composte beams with

deformable connection, Journal of Constructional Steel Research 52, 195–218,

1999.

[14] M. J. S. Hirst, M. Y. Yeo, The analysis of composite beams using standard finite

element programs, Computers and Structures 11(3), 233–237, 1980.

[15] G. Ranzi, M. A. Bradford, Direct stiffness analysis of a composite beam-column

element with partial interaction, Computers and Structures 85(15–16), 1206–

1214, 2007.

[16] H. Y. Rassam, Y. R. Goodman, Buckling behavior of layered wood columns,

Wood Science 2(4), 238–246, 2007.

[17] R. Salari, E. Spacone, P. B. Shing, D. M. Frangopol, Nonlinear analysis of

composite beams with deformable shear connectors, ASCE Journal of Structural

Engineering 124(10), 1148–1158, 1998.

[18] R. Seracino, D. J. Oehlers, M. F. Yeo, Partial-interaction flexural stresses in

composite steel and concrete bridge beams, Engineering Structures 23, 1186–

1193, 2001.

[19] E. G. Thompson, J. R. Googman, M. D. Vanderbilt, Finite element analysis

of layered wood system, Journal of Structural Division, Proceeding ASCE

101(ST12), 2659–2672, 1975.
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