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Exact slip-buckling analysis of two-layer

composite columns

A. Kryžanowski, S. Schnabl, G. Turk and I. Planinc ∗

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,

SI-1115 Ljubljana, Slovenia

Abstract

A mathematical model for slip-buckling has been proposed and its analytical solu-

tion has been found for the analysis of layered composite columns with inter-layer

slip between the layers. The analytical study has been carried out for evaluating ex-

act critical forces and comparing them to those in the literature. Particular emphasis

has been given to the influence of interface compliance on decreasing the bifurcation

loads. For this purpose, a parametric study has been performed by which the in-

fluence of various material and geometric parameters on buckling forces have been

investigated.
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1 Introduction

Layered columns arise in a wide range of applications. Slender columns made

of composite materials are widely used in aerospace engineering, civil engineer-

ing, shipbuilding, and in other branches of industry because of their high load-

carrying capacity and preferential strength-to-weight ratio. The behaviour of

these structures largely depends on the type of their connection between lay-

ers.

Since full compliance between the layers can hardly be realized in practice an

inter-layer slip developes. If the slip has a sufficient magnitude it significantly

effects the mechanical behaviour of the composite system. Consequently, the

inter-layer slip has to be taken into consideration in the so-called partial in-

teraction analysis of composite structures. Accordingly, there exist a large

amount of literature where composite beams and beam-columns are analysed

analytically and numerically, see, e.g., Ayoub (2005), Čas et al. (2004a), Čas

et al. (2004b), Čas et al. (2007), Dall’Asta and Zona (2004), Gara et al. (2006),

Schnabl et al. (2007a), Schnabl et al. (2007b), Ranzi et al. (2003), and Ranzi

and Zona (2007). An extensive literature review on linear and non-linear anal-

ysis of layered structures is given by Leon and Viest (1998), and Schnabl et

al. (2007b).

The strength of perfectly straight layered columns to a great extent depends

on their buckling resistance and cohesion between the layers. It is therefore of

practical interest to employ analytical formulations of such a problem. There

has been relatively few analytical investigations of this problem and to date

only a few exact slip-buckling models of composite columns have been de-
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veloped. Rassam and Goodman (1970) derived a simplified governing equa-

tions for buckling behaviour of layered wood columns with both equal and

unequal layer thicknesses. Buckling parameter for a wide range of geometric

and physical parameters of a three layered wood column is presented in design

charts. Subsequently, an analytical solution of buckling problem are derived by

Girhammar and Gopu (1993). Their solution is based on the so-called ”mod-

ified second-order theory” and approximate buckling length coefficients. An

extension and generalization of the later theory is presented in Girhammar

and Pan (2007) where exact buckling length coefficients are used. A recent

papers by Xu and Wu (2007a), Xu and Wu (2007b), and Xu and Wu (2007c),

have presented an interesting approach to the solution of slip-buckling and vi-

bration problem of composite beam-columns when shear deformation is taken

into account. If shear deformation is neglected the equations for buckling load

obtained by the later authors are the same as presented in the Girhammar

and Pan (2007).

The goal of this paper is the exact formulation of slip-buckling problem of

two-layer composite beams. As a result, the exact analytical solutions are de-

rived. However, in contrast to other researchers a linearized stability theory

is employed (Keller, 1970). Therefore, a solution of slip-buckling problem is

obtained without simplification of the governing equations. The critical buck-

ling forces are determined from the solution of a linear eigenvalue problem,

i.e., detK = 0 (see, Planinc and Saje (1999)).

In the numerical examples critical buckling loads are compared to those of

Girhammar and Pan (2007). Afterwards, the exact solution is used to inves-

tigate the effect of the inter-layer slip on the buckling of two-layer column for

various boundary conditions. A parametric study is conducted by which an
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influence of different geometric and material parameters on buckling forces of

two-layer composite column is investigated.

2 Analytical model — Model description

2.1 Assumptions

A formulation of the planar Euler-Bernoulli two-layer composite column used

in this paper is based on the following assumptions: (1) material is linear

elastic; (2) displacements, strains and rotations are finite (each of the layers

satisfies the assumptions of geometrically exact Reissner beam theory); (3) the

effect of shear deformations is negligible; (4) strains vary linearly over each

layer (the ”Bernoulli hypothesis” is assumed); (5) the layers are continuously

connected and the slip modulus of the connection is constant; (6) shapes of

the cross-sections are symmetrical with respect to the plane of deformation

and remain unchanged in the form and size during deformation; (7) friction

between the layers is not considered. An additional assumption (8) is that an

interlayer tangential slip can occur at the interface between the layers but no

transverse separation (uplift) between them is possible.

2.2 Governing equations

We consider an initially straight, planar, two-layer composite column of unde-

formed length L. Layers as shown in Fig. 1 are marked by letters a and b. The

column is placed in the (X, Z) plane of spatial Cartesian coordinate system

with coordinates (X, Y, Z) and unit base vectors EX , EY and EZ = EX×EY .
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The undeformed reference axis of the layered column is common to both layers

and is defined as an intersection of the (X,Z)-plane and their contact plane.

It is parametrized by the undeformed arc-length x. Local coordinate system

(x, y, z) is assumed to coincide initially with spatial coordinates, and then fol-

lows the deformation of the column. Thus, xa ≡ xb ≡ x ≡ X, ya ≡ yb ≡ y ≡ Y ,

and za ≡ zb ≡ z ≡ Z in the undeformed configuration. The so called ideal

composite column is subjected to a conservative compressive axial point force

P at both ends and in the direction of the column’s neutral axis. For fur-

ther details an interested reader is refered to e.g., Schnabl et al. (2007a) and

Schnabl et al. (2007b).

Figure 1. Geometry and notation for a straight two-layer composite column.
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2.2.1 Kinematic equations

The deformed configurations of the reference axes of layers a and b are defined

by vector-valued functions (see, Fig. 1)

Ra
0 = XaEX + Y aEY + ZaEZ = (xa + ua)EX + yaEY + waEZ ,

Rb
0 = XbEX + Y bEY + ZbEZ = (xb + ub)EX + ybEY + wbEZ ,

(1)

where superscripts a and b denote that quantities are related to layer a and

b, respectively. Further, functions ua and wa denote the components of the

displacement vector of layer a at the reference axis with respect to the base

vectors EX and EZ . Similarly, variables ub and wb are related to layer b. The

geometrical components ua, wa, ub, and wb of the the vector-valued functions

Ra
0 and Rb

0 are related to the deformation variables with the equations derived

by Reissner (1972):

layer a:

1 + ua′ − (1 + εa) cos ϕa = 0,

wa′ + (1 + εa) sin ϕa = 0,

ϕa′ − κa = 0,

(2)

layer b:

1 + ub′ − (1 + εb) cos ϕb = 0,

wb′ + (1 + εb) sin ϕb = 0,

ϕb′ − κb = 0.

(3)

Here, the prime (′) denotes the derivative with respect to x. In (2)–(3) the

deformation variables εa and εb are the extensional strains of the reference

axes of layers a and b; κa and κb are the pseudocurvatures (Vratanar and

Saje, 1999); while ϕa and ϕb are the rotations of layers’ reference axes.
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2.2.2 Equilibrium equations

The composite column is subjected to a concentrate point force P each layer

is subjected also to interlayer contact tractions measured per unit of layer’s

undeformed length. They are defined by

p a = pa
XEX + pa

ZEZ ,

p b = pb
XEX + pb

ZEZ .

(4)

Furthermore, it is suitable to express the (X,Z) components of the interlayer

contact tractions with the tangential and normal components of the interlayer

tractions pa
t , pb

t , pa
n, and pb

n:

pa
X = pa

t cos ϕa + pa
n sin ϕa,

pa
Z = −pa

t sin ϕa + pa
n cos ϕa,

pb
X = pb

t cos ϕb + pb
n sin ϕb,

pb
Z = −pb

t sin ϕb + pb
n cos ϕb.

(5)

Using (4)–(5) the equilibrium equations of each layer are (Čas et al., 2007):

layer a:

Ra′
X + pa

X = Ra′
X + pa

t cos ϕa + pa
n sin ϕa = 0,

Ra′
Z + pa

Z = Ra′
Z − pa

t sin ϕa + pa
n cos ϕa = 0,

Ma′
Y − (1 + εa)Qa + ma

Y = 0,

(6)

layer b:

Rb′
X + pb

X = Rb′
X + pb

t cos ϕb + pb
n sin ϕb = 0,

Rb′
Z + pb

Z = Rb′
Z − pb

t sin ϕb + pb
n cos ϕb = 0,

M b′
Y − (1 + εb)Qb + mb

Y = 0,

(7)
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where

N a = Ra
X cos ϕa −Ra

Z sin ϕa,

Qa = Ra
X sin ϕa + Ra

Z cos ϕa,

Ma = Ma
Y ,

N b = Rb
X cos ϕb −Rb

Z sin ϕb,

Qb = Rb
X sin ϕb + Rb

Z cos ϕb,

Mb = M b
Y .

(8)

Ra
X , Ra

Z , Rb
X , Rb

Z , Ma
Y , and M b

Y in (6)–(8) represent the generalized equilibrium

internal forces and moments of a cross-section of layers a and b with respect to

the fixed coordinate basis. On the other hand, N a, Qa, N b, and Qb represent

the equilibrium axial and shear internal forces of the layers’ cross-sections with

respect to the rotated local coordinate system. Functions Ma and Mb are the

equilibrium bending moments.

2.2.3 Constitutive equations

To relate the equilibrium internal forces N a, Qb, N a, and Qb and equilibrium

internal moments Ma and Mb to a material model the following set of equa-

tions which assure the balance of equilibrium and constitutive cross-sectional

forces and bending moments of the composite column have been introduced.

Due to the assumption that the transverse shear deformations are neglected
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the constitutive equations of a two-layer composite column are

N a −N a
C(x, εa, κa) = N a −

∫
Aa

σa
C(Da) dAa = 0,

Ma −Ma
C(x, εa, κa) = Ma −

∫
Aa

zaσa
C(Da) dAa = 0,

N b −N b
C(x, εb, κb) = N b −

∫
Ab

σb
C(Db) dAb = 0,

Mb −Mb
C(x, εb, κb) = Mb −

∫
Ab

zbσb
C(Db) dAb = 0.

(9)

The constitutive functions N a
C , Mb

C , N b
C , and Mb

C introduced in (9) are de-

pendent only on deformation variables εa, κa, εb, and κb and are subordinated

to the adopted constitutive model which is in our case of linear elastic material

defined by stress-strain relations

σa
C(Da) = EaDa = Ea(εa + zaκa),

σb
C(Db) = EbDb = Eb(εb + zbκb),

(10)

where σa
C and σb

C are the longitudinal normal stresses of layers a and b; Da,

Db are the mechanical extensional strains of the longitudinal fibres of layers a

and b; and Ea, Eb are elastic moduli of layers a and b.

By introducing (10) into (9) well known constitutive equations of linear elastic

columns can be rewritten as

N a − Ea
∫
Aa

(εa + zaκa) dAa = N a − Ca
11ε

a − Ca
12κ

a = 0,

Ma − Ea
∫
Aa

za(εa + zaκa) dAa = Ma − Ca
21ε

a − Ca
22κ

a = 0,

N b − Eb
∫
Ab

(εb + zbκb) dAb = N b − Cb
11ε

b − Cb
12κ

b = 0,

Mb − Eb
∫
Ab

zb(εb + zbκb) dAb = Mb − Cb
21ε

b − Cb
22κ

b = 0,

(11)

in which material and geometrical constants are marked by Ca
11, Ca

12, . . ., Cb
22;

e.g., Ca
11 = EaAa, where Aa denotes the cross-sectional area of layer a, see,

e.g., Kryžanowski at al. (2008) and Rodman et al. (2008).
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Moreover, the contact constitutive law must also be introduced. In the analysis

presented the linear constitutive law of bond slip between the layers is assumed

as

pa
t (x) = H

(
∆(x)

)
= K∆(x). (12)

In the above the constant K is called the inter-layer-slip modulus.

2.2.4 Constraining equations

Once the layers are connected together the upper layer b is constrained to

follow the deformation of the lower layer a and vice versa. As already stated,

the layers can slip along each other but their transverse separation (uplift) or

penetration is not allowed. This fact is expressed by a kinematic-constraint

requirement

Ra
0(x

∗) = Rb
0(x), (13)

where x and x∗ are undeformed coordinates of two distinct particles of layers

a and b which are in the deformed configuration in contact and thus their

vector-valued functions Rb
0(x) and Ra

0(x
∗) coincide, (see, Fig. 1). Eq. (13) can

be written equivalently in componential form as

x∗ + ua(x∗) = x + ub(x),

wa(x∗) = wb(x).

(14)

The relative displacement (slip) that occurs between the two particles of layers

a and b that coincide in the undeformed configuration is denoted by ∆ and

is defined as a difference of their deformed arc-lengths, see, e.g., Čas et al.

(2004a), Čas et al. (2004b). Then,

∆(x) + sb(x) = ∆(0) + sa(x) −→ ∆(x) = ∆(0) +
∫ x

0

(
εa(ξ)− εb(ξ)

)
dξ. (15)
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By differentiating (14), adding the results with (2)–(3) the following relations

by which the rotations and pseudocurvatures of layers are constrained to each

other are obtained as

ϕa(x∗) = ϕb(x), (16)

κa(x∗)
1 + εb(x)

1 + εa(x∗)
= κb(x). (17)

In addition to the above presented constraining equations equilibrium of the

interlayer contact tractions of the particles in contact is expressed in vector-

valued function form as

p a(x) + p b(x) = 0, (18)

and substituting (4)–(5) to (18) in componential form as

pa
X + pb

X = pa
t cos ϕa + pa

n sin ϕa + pb
t cos ϕb + pb

n sin ϕb = 0,

pa
Z + pb

Z = −pa
t sin ϕa + pa

n cos ϕa − pb
t sin ϕb + pb

n cos ϕb = 0.

(19)

A complete set of non-linear governing equations of two-layer composite beam

Eqs. (2)–(19) consists of 32 equations for 32 unknown functions ua, ub, wa, wb,

ϕa, ϕb, εa, εb, κa, κb, Ra
X , Rb

X , Ra
Z , Rb

Z , Ma
Y , M b

Y ,N a,N b,Qa,Qb,Ma,Mb, pa
X , pb

X ,

pa
Z , pb

Z , pa
t , p

b
t , p

a
n, p

b
n, ∆, and, x∗.

2.3 Linearized equations

In order to investigate the stability of a boundary value problem non-linear

equations that govern the behaviour of that problem have to be introduced.

The non-linear stability problems are considerably more complicated to solve

than linear problems. Therefore, an approximation methods should be used.

One of the most applicable method for stability analysis of non-linear systems

is the so-called linearized theory of stability or linear theory of stability. It

is founded on the fact that the bifurcation (critical) points of the non-linear
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system coincide with the critical points of its equivalent linearized system

(Keller, 1970). The application of the linearized stability theory, regarding the

existence and uniqueness of the solution of Reissner’s elastica, is presented by

Flajs et al. (2003).

The linearized theory of stability is based upon the variation of a functional

F , which will here be made in the sense of the continuous linear Gateaux

operator or directional derivative defined as follows (Hartmann, 1985)

δF(x, δx) = lim
α→0

F(x + αδx)−F(x)

α
=

d

dα


α=0

F(x + αδx), (20)

where the x and δx respresent the generalized displacement field and its incre-

ment, respectively, and α is an arbitrary small scalar parameter. δF(x, δx) is

called also the linearization or linear approximation of δF at x. Accordingly,

it is convenient for Eqs. (2)–(19) to be re-written in compact form as F =

{F1,F1, . . . ,F32}T , and their arguments as x = {ua, ub, wa, wb, ϕa, ϕb, εa, εb, κa,

κb, Ra
X , Rb

X , Ra
Z , Rb

Z , Ma
Y , M b

Y ,N a,N b,Qa,Qb,Ma,Mb, pa
X , pb

X , pa
Z , pb

Z , pa
t , p

b
t , p

a
n,

pb
n, ∆, x∗}T .

After linearization of the governing Eqs. (2)–(19) is completed linearized equa-

tions can be evaluated at an arbitrary configuration of the two-layer composite

column. In order to apply linearized equations to the two-layer composite col-

umn buckling problem these equations have to be evaluated at the primary

configuration of the column. The fundamental or primary configuration of the

column is an arbitrary deformed configuration in which the composite column
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remains straight

εa = εa = − 1

Ca
11 + Cb

11

P,

κa = κb = 0,

ua = ub = ua(0)− x

Ca
11 + Cb

11

P

wa = wb = 0,

ϕa = ϕb = 0,

x∗ = x,

∆ = 0,

(21)

subjected to the centric compressive axial force, P , along its neutral axis only

Ra
X = N a = − Ca

11

Ca
11 + Cb

11

P,

Rb
X = N b = − Cb

11

Ca
11 + Cb

11

P

Ra
Z = Qa = 0,

Rb
Z = Qb = 0,

Ma
Y = Ma = − Ca

21

Ca
11 + Cb

11

P,

M b
Y = Mb = − Cb

21

Ca
11 + Cb

11

P,

pa
X = pa

t = 0,

pb
X = pb

t = 0,

pa
Z = pa

n = 0,

pb
Z = pb

n = 0.

(22)

Finally, the linearized system of equilibrium Eqs. (2)–(19) when written at the

primary configuration (21)–(22) of the composite column is easily derived in
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the following form

δF1 = δua′ − δεa = 0,

δF2 = δub′ − δεb = 0,

δF3 = δw′ + (1 + ε)δϕ = 0,

δF4 = δϕ′ − δκ = 0,

δF5 = δRa′
X − δpt = 0,

δF6 = δRb′
X + δpt = 0,

δF7 = δR′
Z = 0,

δF8 = δM ′
Y + RXδw′ − (1 + ε)δRZ = 0,

δF9 = δRa
X − Ca

11δε
a − Ca

12δκ = 0,

δF10 = δRb
X − Cb

11δε
b − Cb

12δκ = 0,

δF11 = δMY − Ca
21δε

a − Cb
21δε

b − (Ca
22 + Cb

22)δκ = 0,

δF12 = δ∆− δua + δub = 0,

δF13 = δpt −Kδ∆ = 0,

δF14 = δx∗ + δua − δx− δub = 0,

(23)

where

ε = − 1

Ca
11 + Cb

11

P,

δw = δwa = δwb,

δϕ = δϕa = δϕb,

δκ = δκa = δκb,

RX = −P,

δRZ = δRa
Z + δRb

Z ,

δMY = δMa
Y + δM b

Y ,

δpt = δpa
t = δpb

t .

(24)
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Eqs. (23) constitute a linear system of 14 algebraic-differential equations of

the first order with constant coefficients for 14 unknown functions of x: δua,

δub, δw, δϕ, δεa, δεb, δκ, δRa
X , δRb

X , δRZ , δMY , δpt, δ∆, and δx∗ along with

the corresponding natural and essential boundary conditions which may be

written in the following general forms, see, e.g., Čas et al. (2004b):

x = 0 :

s0
1δR

a
X(0)+s0

2δu
a(0) = 0,

s0
3δR

b
X(0)+s0

4δu
b(0) = 0,

s0
5δRZ(0)+s0

6δw(0) = 0,

s0
7δMY (0)+s0

8δϕ(0) = 0,

(25)

x = L :

sL
1 δRa

X(L)+sL
2 δua(L) = 0,

sL
3 δRb

X(L)+sL
4 δub(L) = 0,

sL
5 δRZ(L)+sL

6 δw(L) = 0,

sL
7 δMY (L)+sL

8 δϕ(L) = 0,

(26)

where si are parameters whose values will be explained in the numerical ex-

ample. The superscript ”0” (”L”) of s indentifies its value at x = 0 (x = L).

2.4 Analytical solution for critical buckling load

Due to the simple form of Eqs. (23) and boundary conditions (25)–(26) a crit-

ical buckling load can be determined analytically. After the systematic elimi-

nation of the primary unknowns is completed, the set of linearized equations

(23) is reduced to a system of three higher-order linear homogeneous ordinary

differential equations with constant coefficients for unknown functions δw, δua,
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and δ∆, which uniquely describe an arbitrary deformed configuration of the

linearized column

A δwIV + B δw′′ + C δ∆′ = 0,

D δua′′ + E δw′′′ −K δ∆ = 0,

F (δua′′ − δ∆′′) + G δw′′′ + K δ∆ = 0,

(27)

where

A = − 1

1 + ε

(
C22 −

Ca
12C

a
21

Ca
11

− Cb
12C

b
21

Cb
11

)
,

B = RX ,

C = K

(
Ca

21

Ca
11

− Cb
21

Cb
11

)
,

D = Ca
11,

E = − Ca
12

1 + ε
,

F = Cb
11,

G = − Cb
12

1 + ε
.

(28)

The aforementioned system of differential equations (27) may further be sim-

plified and as a result only a fifth-order non-homogeneous linear differential

equations with constant coefficients for unknown δw is derived

H δwV + I δw′′′ + J δw′ = L C1, (29)

where H, I, J, L are constants defined as

H =
F A

C
,

I =
ABF − CEF + ACG− A(A + F )K

AC
,

J = −KB

C
(F + 1) .

(30)

The corresponding general solution of (29) is the superposition of the com-

plementary solution δwH(x) which is the general solution of the associated
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homogeneous equations and the particular solution δwP (x) satisfying Eq. (29)

δw(x) = δwH(x) + δwP (x). (31)

The homogeneous solution of (29) is obtained by the solution of the corre-

sponding characteristic polynomial of the Eq. (29) which is

H r5 + I r3 + J r = 0. (32)

The solution of (32) is investigated parametrically for different geometric and

material parameters and as a result three real (λ1 = 0, λ2 and λ3) and two

complex roots (λ5 = β i, λ6 = −β i) are obtained. According to the superpo-

sition principle the homogeneous solution of the (29) is therefore

δwH(x) = C1 sin βx + C2 cos βx + C3 eλ2x + C4 eλ3x + C5. (33)

On the other hand, a particular solution is obtained by the method of unde-

termined coefficients and is in this simple case given as

δwP (x) = C6
L

J
x. (34)

Consequently, the general solution of (29) is

δw(x) = C1 sin βx + C2 cos βx + C3 eλ2x + C4 eλ3x + C5 + C6
L

J
x. (35)

Using the 12th(23) and substituting (35) into the last two equations of (27)

we obtain the solution for δua and δ∆ as

δua(x) = C1
(Mβ2 −N) cos βx

β
+ C2

(N −Mβ2) sin βx

β
+ C3

(Mλ2
2 + N) eλ2x

λ2

+

+ C4
(Mλ2

3 + N) eλ3x

λ3

+ C5Nx + C6

(
LNx

J
+

O

2
x2
)

+ C7x + C8,

(36)
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δ∆(x) = C1 β(R− Pβ2) cos βx− C2 β(R− Pβ2) sin βx+

+ C3 λ2(Pλ2
2 + R)eλ2x + C4 λ3(Pλ2

3 + R)eλ3x + C6,

(37)

where

M = −CE + AK

CD
, N = −KB

CD
, O = −K

D
,

P = −A

C
, R = −B

C
.

(38)

When δw, δua, and δ∆ are known functions of x the remaining quantities of

the column δub, δϕ, δRa
X , δRb

X , δRZ , δMY , and δx∗ and thus the general so-

lution of the system of Eqs. (23) can easily be obtained. In order to prop-

erly consider the boundary conditions (25)–(26), it is suitable to express

δϕ, δRa
X , δRb

X , δRZ , δMY , with (35)–(37) and their derivatives. Finally, the

unknown integration constants C1, C2, C3, C4, C5, C6, C7, and C8 are determined

from the boundary conditions (25)–(26). Applaying (35)–(37) to (23) and (25)–

(26) and rearranging the following system of eight homogeneous linear alge-

braic equations for eight unknown constants is obtained. These equations can

be expressed in a matrix form as

Kc = 0, (39)

where K and c denote a tangent matrix of the current equilibrium state on

the fundamental path and a vector of unknown constants, respectively. A

non-trivial solution of (39) where c 6= 0 is obtained only if determinant of the

aforementioned system matrix K is zero, see, e.g., Planinc and Saje (1999)

detK = 0. (40)

The condition (40) represents a linear eigenvalue problem and its solution,

namely the lowest eigenvalue corresponds to the smallest critical buckling

load, Pcr, of the column. The explicit form of the matrix K and the analytical
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solution for the lowest buckling load, Pcr, can easiliy be determined but are

unfortunately too cumbersome to be presented as closed-form expressions.

This general stability criterion applies to all kinds of boundary conditions

which are embedded in the general boundary conditions given in (25)–(26).

The critical buckling loads for two-layer composite columns with various forms

of boundary conditions will be presented in the next section. For further details

on calculus of critical points and their classification an interested reader is

reffered to Planinc and Saje (1999).

3 Numerical examples

Numerical examples will demonstrate applicability of the presented exact an-

alytical model to predict critical buckling loads for various composite columns

with partial interaction between the layers. Thus, the analytical model pre-

sented in the paper will be numerically evaluated through the analysis of two

examples: (i) a comparison of the analytical results with existing results in the

literature; (ii) a parametric analysis of various parameters on critical buckling

loads of two-layer composite columns.

3.1 Exact critical buckling loads and comparison with existing results in the

literature

This numerical example presents a comparison of the analytical results for

critical buckling loads of two-layer composite columns with interlayer slip with

existing buckling loads in the literature, proposed by Girhammar and Gopu

(1993), Girhammar and Pan (2007), Xu and Wu (2007a), Xu and Wu (2007c),
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and Čas et al. (2007).

In order to compare critical buckling loads of the presented analytical model to

the above-mentioned buckling models, the critical buckling loads of two-layer

timber columns with different type of end conditions have been evaluated.

Four kinds of two-layer Euler column end conditions: clamped-free column

(C-F), clamped-clamped column (C-C), clamped-pinned column (C-P) and

pinned-pinned column (P-P) have been considered, see, Fig 2.

Figure 2. Original and deflected (buckled) configurations of classical Euler columns

for different end conditions.

In accordance to the boundary conditions (25)–(26) the classical boundary

conditions of two-layer Euler columns and the corresponding non-zero values

of parameters si and effective length coefficient, µ, are summarized in Table

1.

The results for critical buckling loads of the presented analytical model are

compared to those obtained with the so-called ”modified second-order the-

ory” which has been proposed by Girhammar and Gopu (1993), Girhammar
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Table 1

Classical two-layer Euler column boundary conditions and effective length factors

Classical cases Non-zero values of si Effective length coefficient

s0
2 = s0

4 = s0
6 = s0

8 = 1C-F βE = 2
sL
1 = sL

3 = sL
5 = sL

7 = 1

s0
2 = s0

4 = s0
6 = s0

8 = 1C-C βE = 0.5
sL
1 = sL

3 = sL
6 = sL

8 = 1

s0
2 = s0

4 = s0
6 = s0

8 = 1C-P βE = 0.699
sL
1 = sL

3 = sL
6 = sL

7 = 1

s0
2 = s0

4 = s0
6 = s0

7 = 1P-P βE = 1
sL
1 = sL

3 = sL
6 = sL

7 = 1

C =clamped (fixed); F= free; P= pinned

and Pan (2007), Xu and Wu (2007a), and Xu and Wu (2007c), and to those

obtained numerically by Čas et al. (2007)

Hence, a simple but indicative example of the two-layer column with different

kinds of column end conditions is considered. The mechanical and geometric

properties of the two-layer composite column are characterized by the fol-

lowing parameters: elastic moduli of layers a and b, Ea = Eb = 800 kN/cm2;

interlayer-slip modulus K ∈
[
10−10kN/cm2 ≤ K ≤ 1010kN/cm2

]
; length of the

column L = 500 cm; layer heights ha = hb = 10 cm; and widths ba = bb = 20

cm.

Critical buckling loads as a function of K and different end conditions have

been computed by the presented analytical model and compared to the results

21



of Girhammar and Pan (2007). In Fig.3, a relative error which is defined as

ε[%] =
Pcr − P ∗

cr

Pcr

× 100, (41)

is shown as a function of K for different end conditions where P ∗
cr represents a

critical buckling load obtained with the formula proposed by Girhammar and

Gopu (1993), Girhammar and Pan (2007), Xu and Wu (2007a), and Xu and

Wu (2007c).

Figure 3. Comparison of critical buckling loads of two-layer composite column for

different analytical models, end conditions, and different Ks.

Positive errors indicate that formula derived in Girhammar and Pan (2007)

underestimates the critical buckling loads of two-layer composite columns. It

is also interesting to note that the discrepancy between the exact buckling

loads and buckling loads obtained by the ”modified second-order theory” is

interlayer-slip modulus and boundary conditions dependent. Of the values

shown in Fig. 3, the maximum discrepancy is for the pinned-pinned column (P-

P) and is about 18.5%, while for the clamped-free column (C-F), is negligible.

It is also apparent from Fig. 3 that critical force, Pcr, obtained by Girhammar
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and Pan (2007) can be in C-C column case about 14.5% higher than the exact

ones. Thus, in the C-C column case the buckling load calculated by Girhammar

and Pan (2007), is rather conservative. On the other hand, the exact critical

buckling loads are practically identical compared to the numerically obtained

critical loads, see, Čas et al. (2007)

The critical buckling loads of two-layer pinned-pinned composite column are

studied in detail and the results are presented in Table 2.

Table 2

Comparison of buckling loads of pinned-pinned two-layer composite column with

different analytical models and different Ks.

Pcr[kN]

K [kN/cm2] Girhammar and Pan (2007)∗ present εr [%] Čas et al. (2007)∗∗

10−10 105.2757803 105.3104375 0.0329 105.3104374∗∗∗

10−5 105.2767803 105.3134393 0.0331 −

10−3 105.3757486 105.6099848 0.2218 105.615

10−2 106.2726240 108.2487730 1.8256 −

10−1 114.9688693 130.0907979 11.624 130.117

1 181.2273375 217.1489159 16.542 217.190

101 345.2976517 355.6165146 2.9017 355.617

102 411.4338134 412.4908988 0.2563 412.530

103 420.1087924 420.6795391 0.1357 −

105 421.0931467 421.6487510 0.1317 421.617

1010 421.1031210 421.6587338 0.1317 421.6587339∗∗∗

∗ Girhammar and Pan (2007), Xu and Wu (2007a), and Xu and Wu (2007c)

∗∗ Numerical solution; ∗∗∗ Flajs et al. (2003) (Analytical solution for K = 0,∞)

As anticipated, there is a general trend showing that critical buckling load,
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Pcr, of two-layer pinned-pinned column reduces with decreasing the inter-layer

stiffness K. The discrepancy is the largest for values of inter-layer slip modulus

K which usually exists in actual practice. Hence, a large effect of inter-layer

slip is evident especially when actual buckling loads of two-layer composite

column are compared with the one for an equivalent solid column obtained

by e.g., Flajs et al. (2003). Note also that in the limiting case when there

is absolutely stiff connection (∆ = 0; K → ∞) or there exist no connection

between the layers (∆ = ∆max 6= 0; K → 0) the exact buckling loads of

two-layer composite columns converge completely to the analytical buckling

loads of the corresponding solid column. In these special cases only minor

disagreement is observed between the critical buckling loads obtained by the

present method and analytical buckling loads obtained by Girhammar and

Gopu (1993), Girhammar and Pan (2007), Xu and Wu (2007a), and Xu and

Wu (2007c).

From this example we conclude (see, Fig. 4) that incomplete interaction be-

tween the layers has a considerable influence on critical buckling loads of

two-layer composite columns.

3.2 Parametric analysis of various parameters on critical buckling loads of

two-layer composite columns

This section presents a parametric studies performed on a two-layer composite

column subjected to a concentrated compressive axial force P , see Fig. 2,

with the aim to investigate the influence of boundary conditions, material

and geometric parameters such as inter-layer slip modulus K, depth-to-depth

ratios ha/hb, column slenderness λ, etc., on critical buckling loads of the two-
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Figure 4. Critical buckling load, Pcr, for different Ks, λ, and different types of end

conditions.

layer composite column.

The critical buckling loads have been calculated for different kinds of boundary

conditions, different values of parameters K, λ, and ha/hb. Results are given

in Figs. 4 and 5.

In Fig. 4 the critical buckling load, Pcr, of the two-layer composite columns

with partial inter-layer interaction between the layers are calculated for vari-

ous inter-layer slip moduli K and for different column slenderness λ which is

defined as

λ =
βEL

√
baha + bbhb√

ba
∫ ha

0 z2dz + bb
∫ 0
−hb z2dz

, (42)

where βE represents the effective length coefficient of Euler columns with stiff
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connection between the layers. Effective length parameters, βE, are given in

Table 1 for different types of end conditions along with schematic illustrations

of the buckling modes. Variation in column slenderness has been achieved by

considering a range of column lengths.

It can be observed in Fig. 4, that decreasing the column slenderness, λ, and

increasing the inter-layer slip modulus, K, increases critical buckling load, Pcr,

in all cases of boundary conditions. The influence of K on critical buckling

loads is considerable and is the biggest in P-P column case where the difference

between critical buckling loads Pcr for λ = 60 ranges between 215.0 kN and

861.7 kN. It is interesting to note, that the multiplication factor by which

Pcr changes with K does not depend on column slenderness. Furthermore,

the results shown in Fig. 4, indicate, that critical buckling loads depend on

boundary conditions. Consequently, for K = 10kN/cm2 and L = 800 cm a

critical force Pcr is in the C-F case 151.02 kN in the P-P case 519.29 kN in

the C-P case 821.09 kN and finally in the C-C case 1220.7 kN.

A parametric study has also been conducted to asses the effect of depth-

to-depth ratios ha/hb and K on critical buckling loads of layered composite

columns. For this purpose, critical forces have been calculated for various

ha/hb, Ks and different end conditions. In treating various structural stability

problems it is often useful to express the buckling load, Pcr, in the form of

the Euler formula with a suitable modification of the column length. Thus,

the critical load of a layered composite column with interlayer slip may be

expressed in terms of the classical Euler formula for solid column as

Pcr =
π2(EJ)s

(βcrL)2
, (43)

in which (EJ)s is the flexural rigidity of the corresponding solid column and βcr
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denotes the so-called critical effective length parameter which depends entirely

on the particular buckling mode, inter-layer contact stiffness K, and depth-

to-depth ratio ha/hb and should not be confused with the effective length

coefficient that gives the distance between the points of inflection in a solid

column. The effective length coefficient βcr is obtained by a comparison of

the critical force Pcr calculated with the presented exact model and the Euler

critical force, PE, for a solid column

βcr =

√
PE

Pcr

βE. (44)

The critical effective length coefficient, βcr, against the depth-to-depth ratio,

ha/hb, is shown for different Ks and different end conditions in Fig. 5. In

all four kinds of end conditions, the parametric study reveals, that minimum

critical forces, on the other hand, maximum effective length parameters are

obtained when layers have approximately equal depths, i.e., ha/hb ≈ 1. In Fig

5, it is also shown, that βcr is higher for smaller values of K and can be in

case of fully flexible connection (K = 10−5kN/cm2) as much as about two

times higher than in the case of absolutely stiff interaction between the layers.

Consecutively, the corresponding critical forces can be four times smaller in

comparison with the critical forces of the geometrical and material equivalent

solid column. The effect of the ha/hb ratio on the βcr becomes much less

pronounced for higher values of K. This effect becomes negligible in the case

of a complete contact interaction where βcr equals βE. Similarly, this effect

may also be neglected for composite columns where the depth of one layer is

very small compared to the depth of the other one. For example, for ha/hb = 3

and K = 1kN/cm2, the effective length parameter, βcr, is in the C-F column

case 2.248, in the C-C column case 0.716, in the C-P column case 0.960, and
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in the P-P column case 1.206, while for ha/hb = 19 and K = 1kN/cm2, the

βcr[C-F] = 2.018; βcr[C-C] = 0.528; βcr[C-P] = 0.728; and βcr[P-P] = 1.018.

Partial interaction between the layers have a considerable influence on critical

buckling loads of two-layer composite columns and hence should be taken into

consideration when composite columns with inter-layer slip are analysed.

Figure 5. Critical effective length parameter, βcr, for different Ks, ha/hb, and dif-

ferent types of end conditions.

4 Conclusions

A mathematical model for slip-buckling has been proposed and its analyt-

ical solution has been found for the analysis of layered composite columns

with inter-layer slip between the layers. The analytical study has been car-
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ried out for evaluating exact critical forces and comparing them to those in

the literature. Particular emphasis has been given to the influence of interface

compliance on decreasing the bifurcation loads. For this purpose, a paramet-

ric study has been performed by which the influence of various material and

geometric parameters on buckling forces have been investigated. Based on the

analytical results and the parametric study undertaken the following impor-

tant conclusions can be drawn:

(1) The present formulation of slip-buckling problem is general and relatively

easy to comprehend and agrees well in accordance with the classical re-

sults for solid columns.

(2) Since a solution of slip-buckling problem has been obtained without sim-

plification of the governing equations the results for buckling forces can

be called more accurate than those proposed by other researchers, e.g.,

Girhammar and Pan (2007), Xu and Wu (2007a), and others.

(3) The discrepancy between the exact buckling loads and buckling loads

obtained by the ”modified second-order theory” depends on interlayer-

slip modulus and boundary conditions. The maximum discrepancy is

for the pinned-pinned column (P-P), and is about 18.5%, while for the

clamped-free column (C-F), it is negligible. A critical force, Pcr, obtained

by Girhammar and Pan (2007) can be in C-C column case about 14.5%

higher than the exact ones. In the C-C column case the buckling load

calculated by Girhammar and Pan (2007), is rather conservative.

(4) The parametric study has shown that reduced cohesion between the layers

can promote buckling which can lead to a drastic reduction of bifurcation

load. Thus, partial interaction between the layers should be taken into

consideration when composite columns with inter-layer slip are consid-
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ered.

(5) Decreasing the column slenderness, λ, and increasing the inter-layer slip

modulus, K, increases critical buckling load, Pcr, in all cases of boundary

conditions. The influence of K on critical buckling loads is considerable,

and is the biggest in P-P column case. The ratio between Pcr for K =

10kN/cm2 and K →∞ are 3.67, 3.16, 2.44, and 1.86 for C-F, P-P, C-P,

and C-C cases, respectively.

(6) In all four kinds of end conditions, the minimum critical forces or maxi-

mum effective length parameters are obtained when layers have approxi-

mately equal depths, i.e. ha/hb ≈ 1. βcr is higher for smaller values of K

and can be, in the case of fully flexible connection (K = 10−5kN/cm2),

as much as about two times higher than in the case of absolutely stiff

interaction. The corresponding critical forces can be four times smaller

in comparison with the critical forces of the equivalent solid column.

The effect of the ha/hb ratio on the βcr becomes much less pronounced

for higher values of K. This effect becomes negligible in the case of a

complete contact interaction where βcr equals to βE. The effect may be

neglected for composite columns where the depth on one layer is very

small compared to the depth of the other one.

References

Ayoub, A., 2005. A force-based model for composite steel-concrete beams with

partial interaction. Journal of constructional steel research 61(3) 387–414.
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