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In partially anchored timber frame shear walls, hold-down devices are not provided; hence the uplift forces are transferred by the
fasteners of the sheathing-to-framing joints into the bottom rail and via anchor bolts from the bottom rail into the foundation. Since
the force in the anchor bolts and the sheathing-to-framing joints do not act in the same vertical plane, the bottom rail is subjected to
tensile stresses perpendicular to the grain and splitting of the bottom rail may occur. This paper presents simple analytical models
based on fracture mechanics for the analysis of such bottom rails. An existing model is reviewed and several alternative models are
derived and compared qualitatively and with experimental data. It is concluded that several of the fracture mechanics models lead
to failure load predictions which seem in sufficiently good agreement with the experimental results to justify their application in

practical design.

1. Introduction

A plastic analysis and design method for light-frame timber
shear walls have been presented; see, for example, Kallsner
and Girhammar [1]. In partially anchored shear walls, the
leading stud is not fully anchored against uplift and the
corresponding tying down forces will develop instead in
the sheathing-to-framing joints along the bottom rail. These
tying down forces in the joints will, among other things,
introduce crosswise bending of the bottom rail with possible
splitting failure along the bottom of the rail. Also, splitting
of the bottom rail along the row of the sheathing-to-framing
joints can occur.

In the European timber code, Eurocode 5 [2], no design
recommendations are given regarding these kinds of splitting
failure of the bottom rail, although the European Standard EN
594 [3] addresses the problem of cupping of the bottom rail
due to uplift of the loaded end.

Experimental works devoted to the specific question of
anchoring the bottom rail with respect to both shear and
tensile forces are very scarce. Prion and Lam [4] pointed
out the fact that when designing shear walls, it is important
to understand the differences between hold-downs at the

leading stud and anchor bolts of the bottom rail. In case of
no hold-downs and in order to prevent these brittle failure
modes, they discussed the need to use large washers to trans-
fer the eccentric loads from the sheathing through the nails
into the bottom rail and to the anchor bolts and foundation.
Ni and Karacabeyli [5] presented two methods, one empirical
and one mechanics-based, to account for the partial uplift
when no hold-down connections are used. Most studies have
so far been devoted to the lateral (shear) resistance of anchor-
bolt joints between bottom rails and foundations; see, for
example, Hirai et al. [6-8] and Namura et al. [9]. Leitch
et al. [10], Leitch [11], and Menendez et al. [12] noted the
importance of a robust bottom rail connection and its ability
to offer secure anchorage, with respect to both lateral (shear)
and overturning forces. Duchateau [13] studied the uplift
resistance of bottom rails in wood shear walls without hold-
downs in order to maintain bottom rail structural integrity.
Yeh and Williamson [14] presented an experimental study on
the combined shear and uplift resistance of wood structural
panel shear walls. In the NAHB report [15], an experimental
study is presented, where four types of partially anchored
shear walls with varying nail size and spacing and with small
round or big square washers were tested. Splitting both along
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TABLE 1: Specification of specimen tested in study A and study B. Notation: SS = single-sided specimens, DS = double-sided specimens, b =
width of rail, and s = distance from washer edge to loaded edge of the bottom rail (cf. Figure 1).

Study A Study B Anchor bolt position Size of washer Distance s
Series Set Number of tests Number of tests
SS DS SS DS [mm] [mm] [mm]
1-BC (A}  — — — 16 40 x 40 x 15 40
1 10 10 16 16 b/ 40 x 40 x 15 40
2
1 2 10 10 16 16 60 mm from sheathing 60 x 60 x 15 30
3 10 10 16 16 80 x 70 x 15 20
4 10 10 16 16 100 x 70 x 15 10
1 10 14 40 x 40 x 15 25
2 10 - 16 — 3b/8 60 x 60 x 1 1
2 45 mm from sheathing X 60x 15 >
3 10 16 80 x 70 x 15 5
5 1 10 B 16 B b4 40 x 40 x 15 10
2 9 16 30 mm from sheathing 60 X 60 X 15 0

?Set with boundary conditions as study A.

the bottom side and along the edge side of the bottom rail
occurred.

The problem of splitting of the bottom rail in partially
anchored shear walls due to uplift has, with respect to the
focus of this paper, previously been studied by Girhammar
and Kallsner [16], with an empirical approach, and by Serrano
etal. [17] and Caprolu et al. [18], with an analytical treatment.
In Serrano et al. [19] and Serrano et al. [17], a comparison
between a finite element analysis and analytical solutions was
made. In Caprolu et al. [18], a comparison was made between
the analytical models and experimental results. In the present
paper, the models presented in these papers are reviewed
and alternative models are derived. Model predictions are
compared with experimental data previously presented in
Caprolu et al. [20, 21]. For further work, see also Caprolu et
al. [22] discussed in Section 4 as the last paragraph.

2. Experimental Background

An experimental background based on Caprolu et al. [20,
21] is reviewed here. The aim of this section is to give the
essential information needed to understand and evaluate the
capabilities of the fracture mechanics models presented.

2.1. Test Specimen and Material Properties. The specimen was
made up of a bottom rail joined to sheathing by nails. The
material properties were as follows:

(i) Bottom rail: spruce (PiceaAbies), C24 according to
EN 338 [23].

(ii) Sheathing: hardboard, 8 mm (wet process fibre board,
HB.HLA2, EN 622-2 [24], Masonite AB).

(iii) Sheathing-to-timber joints: annular ringed shank
nails, 50 x 2.1 mm (Duofast, Nordisk Kartro AB). The
holes in the sheathing were predrilled, 1.7 mm.

(iv) Anchor bolt: ¢ 12 (M12). The holes in the bottom rail
were predrilled 13 mm.

2.2. Test Programme and Setup. Two studies on the splitting
failure capacity of bottom rail were carried out, here called
study A and study B. Both of them studied bottom rails with
single- and double-sided sheathing. The differences between
the two studies were for single-sided sheathing. (1) The
boundary conditions: details can be found in Caprolu et al.
[20, 21]. In study A, the load was applied in a distributed way
while in study B a hinge was created allowing the specimen
to rotate. (2) The nail spacing in the sheathing-to-framing
joints: in study A, the nail spacing was 50 mm for series
1 and 25mm for series 2 and 3, while in study B it was
50 mm for all specimens. (3) The torque used to tighten the
bolts: 40 Nm was applied in study A and 50 Nm in study
B. (4) The displacement rate: 2mm/min was used in study
A and, by mistake, 10 mm/min was used in study B. For
double-sided sheathing, the only difference between the two
studies was the boundary conditions. The main aim of the
experimental programme was to study the influence of the
distance between the edge of the washer and the loaded edge
of the bottom rail, here denoted as s, on the failure load and
mode of the bottom rail. The distance was varied changing
the washer size and the anchor-bolt position according to
Table 1 for specimens with single-sided sheathing, and only
the washer size for specimens with double-sided sheathing,
where the anchor bolt was kept at the centre of the bottom
rail for all tests. The specimens were fixed to a supporting
structure and loaded with an uplifting load. Figures 1(a) and
1(b) show the test setup of the experiments for single- and
double-sided sheathing, respectively.

In Table 1, the test program of studies A and B is specified.

2.3. Test Programme and Setup
2.3.1. Failure Modes. Three primary failure modes as shown
in Figure 2 were found during the experimental programmes:

(i) Mode 1: splitting along the bottom side of the rail
according to Figure 2(a).
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FIGURE 1: Cross section view of the specimen tested: (a) single-sided
sheathing and (b) double-sided sheathing.

(ii) Mode 2: splitting along the edge side of the rail
according to Figure 2(b).

(iii) Mode 3: yielding and withdrawal of the nails in the
sheathing-to-framing joints according to Figure 2(c).

The failure mode was found to be mainly dependent on
the distance s in both studies. For distance s > 20 mm, failure
mode 1 was the only failure mode, while for distance s <
20 mm, failure modes 2 and 3 also appeared (for specimens
with pith upwards and single-sided sheathing, the limit for
exclusion of failure modes 2 and 3 was s > 25 mm).

2.3.2. Failure Loads and Crack Development. In Tables 2 and
3, the failure load recorded during the experimental studies is
listed. Table 2 refers to specimens with pith oriented upwards
and Table 3 to specimens with pith oriented downwards. The
mean failure load for each set is shown. Further, the mean
failure load for each failure mode, according to Figure 2, is
listed. In each table, specimens with both single- and double-
sided sheathing are included.

Since the tests were a collection of data for a future
fracture mechanics approach, the crack characteristics, that
is, path and length, were studied. It was found that the crack
formation depends on the bolt position, the pith orientation,
and the annual ring pattern.

For specimens with single-sided sheathing and pith
upwards (PU), three types of cracks were found for mode 1
and one for failure mode 2, as shown in Figure 3. In the same
figure, the cracks for double-sided sheathing are also shown,
for which two additional types of cracks for failure mode 1
and one additional type for failure mode 2 have been found,
with respect to specimens with single-sided sheathing. For
failure mode 1, the crack always initiates at the bottom side
of the bottom rail, usually in line with the bolt position along

the width of the bottom rail, and then it develops in most
specimens vertically in a straight line across the annual rings
towards the pith (Figure 3(a)) or the crack initiates off the
centre and propagates in a straight line towards the pith
(Figure 3(b)). In some cases, the crack develops vertically
for a certain length and then changes direction following the
annual rings (Figure 3(c)). For specimens with double-sided
sheathing in Figures 3(d) and 3(e), two additional crack paths
are shown: the one in Figure 3(d) occurred only twice and
the crack probably propagates in this way because it finds a
weaker crack plane, while the crack shape in Figure 3(e) is
affected by the pith position. In all other specimens, the pith
was on the border of the rail and more or less at the middle of
the cross section width. Usually the crack propagates towards
the pith.

The crack for failure mode 2 is always initiated at the nails
in the sheathing-to-framing joint and it propagates horizon-
tally for a certain length and then deviates in a more vertical
direction across the annual ring (Figure 3(f)) or, for double-
sided sheathing, following the annual rings (Figure 3(g)).

In Figure 4, examples of cracks for specimens with pith
downwards are shown for specimens with both single and
double-sided sheathing. The crack characteristics are similar
to those of specimens with pith upwards. The crack starts at
the bottom side of the rail and develops vertically in a straight
line (Figure 4(a)) or in an oblique line towards the loaded
edge of the bottom rail (Figure 4(b)), the latter only for single-
sided specimens. In some cases, the crack starts along the
annual rings and then it changes in vertical direction across
the annual rings (Figure 4(c)) or “jumps” to another annual
ring and then follows again its orientation (Figure 4(d)),
the latter only in double-sided specimens. In Figure 4(e) an
unusual “zig-zag” crack path is shown for a double-sided
specimen. For failure mode 2, the crack appears at the line of
the nails and propagates horizontally a certain length before
it follows the annual rings (Figure 4(f)).

For most of the specimens, the distance between the
position of crack initiation and the edge of the bottom rail,
denoted as b, in Figures 3 and 4, was measured on the
end of the bottom rail for failure mode 1. For failure mode
2, the length of the horizontal part of the crack before it
changes direction, denoted as b, in Figures 3 and 4, was
measured. In Caprolu et al. [20, 21], the measured b,,,; and
beracko Values are listed. In Tables 4 and 5 the measured values

, are presented for specimens with pith upwards and

for bcrack
downwards, respectively.

3. Theory

A linear elastic body with a preexisting crack with area A
is considered. The body is subjected to a single-force, P, and
the value P, which causes the preexisting crack to propagate,
is sought. The so-called compliance method of fracture
mechanics, which follows from simple energy considerations,
leads to [25-30]

P = \/i, (1)
u dC(A) /dA
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FIGURE 2: (a) Splitting failure along the bottom side of the rail; (b) splitting failure along the edge side of the rail; and (c) yielding and

withdrawal of the nails in the sheathing-to-framing joints.

where P, is the failure load, & is the fracture energy, A is the
crack area, and C is the compliance, that is, the deflection at
the loading point for a unit force.

Bottom rails in partially anchored shears wall are sub-
jected to uplift forces from the sheathing (see, e.g., Ni and
Karacabeyli [5, 31], Girhammar and Kallsner [16], and
Caprolu et al. [18]) which may result in splitting of the bottom
rail. Experiments show (Figure 2) that cracks may form either
at the bottom side of the rail and propagate vertically (mode 1)
or at the side of the rail and propagate horizontally (mode 2).
The first type is presented in Serrano et al. [17] and both types
of cracks are treated in Serrano et al. [19] and Caprolu et al.
(18], and a fracture mechanics solution based on (1) is derived.

In the present paper, the existing fracture mechanics
model is reviewed and alternative models also based on (1)
are derived and compared with each other and with the
experimental data presented in Section 2.

3.1. Horizontal Cracking (Mode 2)

3.1.1. Model 1. Figure 5 shows the geometry, boundary con-
ditions, and loading conditions assumed in Serrano et al. [19]
and Caprolu et al. [18] for a crack propagating horizontally in
a bottom rail.

The out-of-plane width of the bottom rail is denoted as b,
and the crack is assumed to propagate simultaneously over
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TABLE 2: Results from testing of specimens with the pith oriented upwards (PU). Failure modes are defined in Figure 2.

(a) Study A

Mean failure load [kN]

Mean failure load [kN]

Series Set Failure mode Set Failure mode
All failure modes (1) (2) 3) All failure modes (1) 2) (3)
Single-sided tests Double-sided tests
1 12.6 12.6 — — 1 — — — —
P 2 11.3 11.3 — — 2 25.0 25.0 — —
3 17.0 12.9 21.0 — 3 30.8 30.8 — —
4 24.1 24.3 23.8 — 4 — — — —
1 21.5 — 21.5 —
2 2 21.2 — 21.2 — —
3 28.9 30.6 271 —
; 1 19.9 — 19.9 — B
2 27.1 — 27.1 —
(b) Study B
Mean failure load [kN] Mean failure load [kN]
Series  Set Failure mode Set Failure mode
All failure modes (1) (2) (3) All failure modes (1) ) (3)
Single-sided tests Double-sided tests
— 1-BC (A)® 17.0 17.0 — —
1 9.49 9.49 — — 17.6 17.6 — —
1 2 10.6 10.6 — — 19.5 19.5 — —
3 171 16.8 — 18.7 34.0 33.4 35.8 —
4 194 19.4 18.1 20.1 4° 39.5 — 37.8 (39.5) 44.5
1 12.2 12.2 — —
2 2 16.9 16.6 17.5 — —
3 22.6 23.2 22.2 —
5 1 18.6 179 186 189 B
2 21.3 — 21.4 20.8

*Series 1 of study A had a nail distance of 50 mm instead of 25 mm as the other two series of study A. "Set with boundary conditions as in study A. “For two
specimens of this set, it was difficult to establish if the failure mode was mode 2 or 3. The results without parenthesis refer to the case of six results of failure
mode 2 and two results of failure mode 3, while the results in parenthesis refer to the case of eight results of failure mode 2.

the entire width, b. The problem considered in Caprolu et
al. [18] is reduced to determination and differentiation of the
compliance of a simple cantilever beam with depth h,, width
b, and length a, where a is the crack length. The compliance
of such a cantilever beam, if taking flexural as well as shear
deformations into account, is given by

Cla) = i<i>3+

s a
Eb \ h, @)

Gbh,’

where E is the modulus of elasticity, G is the shear modulus,
h, is shown in Figure 5, and f3; is the shear correction factor
(usually 6/5 for a rectangular cross section). E and G are the
appropriate values for the perpendicular-to-grain direction.
It may here be noted that timber has different properties in
the tangential and radial directions. This fact may be taken
properly into account when using numerical methods like
the Finite Element Method (see, e.g., Vessby et al. [32]) but
is difficult to handle in simple analytical models. It is further

for practical applications usually not possible to know with
certainty how the timber is cut and oriented in the structure.
It is thus often in analytical models for simplicity assumed
that the timber has the same properties in the radial and tan-
gential directions. This assumption will also be applied here.

Using (1) with A = ba and the compliance as given by (2),
the following expression for the failure load is obtained:

2G ¢h,
P,=b > ) (3)
12 (G/E) (a/h,)” + B,

It is noted that the solution does not depend on the total
depth, h, of the bottom rail.

Assuming small crack length (a — 0) or assuming that
bending deformations can be ignored as compared with the
shear deformations (i.e., G/E — 0) leads to

2GZ b,
S
Bs

(4)

u
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TABLE 3: Results from testing of specimens with the pith oriented downwards (PD). Failure modes are defined in Figure 2.
(a) Study A
Mean failure load [kN] Mean failure load [kN]
Series Set Failure mode Set Failure mode
All failure modes (1) (2) (3) All failure modes (1) 2) (3)
Single-sided tests Double-sided tests
1 12.0 12.0 — 1 221 2211 — —
P 2 13.5 13.5 — 2 29.2 29.2 — —
3 17.4 17.4 — 3 38.6 39.0 — 35.9
4 22.8 22.1 28.6 20.7 4 39.7 39.3 43.4 —
1 16.0 16.0 —
2 2 20.7 20.3 23.6 —
3 29.1 30.3 28.0
3 1 216 217 231 15.1° _
2 29.2 28.6 29.5
(b) Study B
Mean failure load [kN] Mean failure load [kN]
Series Set Failure mode Set Failure mode
All failure modes (1) (2) 3) All failure modes (1) (2) (3)
Single-sided tests Double-sided tests
— 1-BC (A)° 226 226 — —
1 10.3 10.2 — — 1 20.5 20.5 — —
1 2 13.5 13.5 — — 2 28.0 28.0 — —
3 18.2 17.9 16.7 19.0 3 39.1 39.5 38.0 —
4 21.8 23.5 20.7 21.4 4 45.8 45.4 471 44.2
1 14.0 14.0 — —
2 2 179 19.3 7.70¢ — —
3 23.7 23.5 25.6 21.3
3 1 18.1 159 195 194 B
2 23.8 — 25.4 22.1

“Series 1 of study A had a nail spacing of 50 mm while the other two series of study A had a nail spacing of 25 mm (except for one specimen in series 3 where
the spacing by mistake was 50 mm). PThis specimen had by mistake a nail spacing of 50 mm instead of 25 mm, which is the reason for the ductile failure. “Set

with boundary conditions as in study A. dExceptionally low failure load, cause unknown.

Equations (3)-(4) are the same solutions as derived in
Caprolu et al. [18].

3.1.2. Model 2. In Gustafsson [33], splitting failure of an end-
notched beam as shown in Figure 6 is considered.

While the model presented in Caprolu et al. [18] assumes
that only shear and bending deformations of the cantilever
beam shown in Figure 5 give contributions to the compliance,
the model derived in Gustafsson [33] also takes into account
contributions from the part of the beam with depth / and
from additional rotation of the cantilever due to the fact that
the stiffness of the beam with depth /i cannot be fully activated
in the immediate vicinity of the corner of the notch. The
solution given in Gustafsson [33] reads as follows:

N
VB all—a) + 6 (G/E) (1/a - o?)

P, = bah €

where e and f3 are defined in Figure 6. It should be noted that
(5) is based on (1) and the compliance is determined using
simple beam theory and assuming the shear correction factor
B, =6/5.
Using (5) on a bottom rail as considered in Figure 5, (Bh is
then the cracklength, a) the following failure load is obtained:
P, =bh

u

\JGZ /h
VOB =a) o) + (a/m) 6 (G/E) (1/e — 1) ©

he

0

It is noted that (6) takes into account the effect of the total
depth, h, of the rail.
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FIGURE 3: Crack development for bottom rail with pith oriented upwards (PU). (a) Mode 1 crack developing in a straight line, starting and
propagating vertically at the centre of the bottom rail; (b) mode 1 crack developing in an oblique line initiating at the bottom surface of the
bottom rail at a vertical position close to the edge of the washer and propagating towards the pith; (c) mode 1 crack developing in a straight
line for a certain length and then following the annual rings; (d) mode 1 crack developing in an unusual direction, probably due to a weaker
crack plane; (e) mode 1 crack developing towards the pith (pith in an unusual position); (f) mode 2 crack starting horizontally and then
propagating vertically; and (g) mode 2 crack horizontally and then propagating vertically following the annual rings.
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FIGURE 4: Crack development for bottom rail with pith oriented downwards (PD). (a) Mode 1 crack developing in a straight line starting
and propagating vertically at the centre of the bottom rail; (b) mode 1 crack developing in an oblique line starting at a location close to the
pith and propagating towards the loaded edge of the bottom rail; (c) mode 1 crack first following the annual rings and then propagating in
a straight line towards the line of the anchor bolts; (d) mode 1 crack initiating off the centre on the bottom surface of the bottom rail and
following an annual ring for a certain length and then jumping to another annual ring and propagating towards the centre of the upper surface
of the bottom rail; (e) mode 1 crack propagating in an unusual “zig-zag” line across the annual rings; (f) mode 2 crack development, starting

horizontally and then propagating vertically following the annual rings.

In the special case of a small crack (a — 0) or if assuming
that the bending deformations are negligible as compared
with the shear deformations (G/E — 0), (6) reduces to:

h,
= bCl\] C, = chgf.

7
1-h,/h )
Equation (7) leads to (4), for h,/h — 0.

3.1.3. Model 3. In Jensen [34], a beam loaded perpendicular
to the grain by a bolt located close to the edge and close to the
end of the beam was considered. Figure 7 defines the geom-
etry.

Based on the theory for a Timoshenko-beam on a Win-
kler-foundation, a so-called quasi-nonlinear fracture me-
chanics solution was derived. The general expression for the
failure load does not become simple, but for a small crack
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FIGURE 5: Geometry, boundary conditions, and loading conditions
used in Caprolu et al. [18] for a horizontal crack.
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FIGURE 6: Geometry of end-notched beam as considered in Gustafs-
son [33].
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FIGURE 7: Geometry of beam considered in Jensen [34].

length (a — 0), the relatively simple solution given as (8) was
obtained:

_ 1 bk
2420+1 By

V20 +1

{+1
=206, €= Zos 0= S L
t e

where f, is the perpendicular-to-grain tensile strength.

P, =P, -min

(8)

1

The horizontal crack in a bottom rail may be considered
a special case of (8), namely, for [, — 0, which leads to

1

P—
RN Ta|

c 1
Py = 2Cyh,, €, = gcyf, ¢ = —1\]109—

ft Ehe'

It is noted that (9), for f, — 0, leads to (4) if B, = 6/5.

In van der Put and Leijten [35], a linear elastic fracture
mechanics model was derived for a simply supported beam
loaded perpendicular to grain by a single-load at midspan.
The solution given in (10) was obtained, where again h is the
beam depth and A, is the loaded edge distance:

h,
Pu = Zbcl \jm,

It is noted that (10) gives exactly twice the failure load as
obtained from (7).

It is also noted that (10) for small edge distances (h,/h —
0) leads to P, = Py, where P, is given in (9). P, may therefore
be regarded as a special case of (10). A semiempirical gen-
eralized version of (9) may be proposed:

h
P, = ybC\| ———
u y l\jl_he/h

5
C, =1>G%,. 10
1 \/3 7 (10)

(11)
5 1 ¢ [ G
C :\]—G?, -, (=102~
N3 Y e ﬁ\j Eh,

Equation (11) then leads to (7), for G/E — 0 or f, — co.

Equations (3)-(4) and (9) do not include the total depth
of the bottom rail. This means that cracking is predicted also
for situations, where the loaded edge distance is very close to
the total depth of the bottom rail. Intuitively, the propensity
to splitting should disappear in such situations since the part
with depth (h—h,) has little stiffness as compared with the part
with depth h, and thus offers little resistance against following
the deflection of the part with depth h,. Equations (6)-(7) and
(11) take the effect of the total depth of the bottom rail into
account and predict infinitely high failure loads for, h,/h — 0;
that is, horizontal splitting is not an issue if the nails are placed
sufficiently close to the bottom surface of the bottom rail.

3.2. Vertical Cracking (Mode 1)

3.2.1. Model 1. For a crack propagating vertically from the
bottom surface of a bottom rail, Serrano et al. [19], Serrano et
al. [17], and Caprolu et al. [18] consider a fully clamped beam
as shown in Figure 8.

The problem is in Serrano et al. [17] again, as in the
case of a horizontal crack, reduced to determination and dif-
ferentiation of the compliance of a simple cantilever beam.
Here is a cantilever beam with depth (h — a), width b, and
length [,. The crack length is a; that is, the crack area again
becomes A = ba. The compliance of such a cantilever beam,
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FIGURE 8: Geometry, boundary conditions, and loading conditions
used in Serrano et al. [17] and in Caprolu et al. [18] for a vertical
crack.

if taking flexural as well as shear deformations into account,
is given by

C@=i<

3

h-a Gbh-a

where E is the modulus of elasticity, G is the shear modulus,
B, is the shear correction factor, and the geometry is given in
Figure 8.

It should be noted that the compliance as given by (12)
is a conservative estimate since the part of the cantilever
beam below the crack tip is not considered but in fact gives a
contribution to the stiffness.

Using (1) with A = ba and the compliance as given by (12),
the following expression for the failure load is obtained:

2GY /1,
P,=b(h-a) 5 . (13)
12(G/E) (L/ (h= @) + B
Assuming a small crack length (a — 0) leads to
2GG (/1
P, =bh f/ez : (14)
12(G/E) (I/h)” + P,
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Assuming that bending deformations can be ignored (G/
E — 0), (13) leads to

2GY,
LB

Assuming the small crack length and that bending defor-
mations can be ignored leads to

2GE
P =bh¢ ! (16)

(15)

Puzb(h—a)\j

3.2.2. Model 2. The cantilever beam as shown in Figure 8 is
considered again. However, it is here assumed that the can-
tilever is not completely rigidly clamped at the end, but a finite
rotation occurs. The deflection of the loading point, §, is then
given by

0=0,+6,+9,, 17)

where §,, is the contribution from bending of the cantilever,
0, is the contribution from shear of the cantilever, and 6, is
the contribution from a rotation at the clamped end of the
cantilever. The rotation at the clamped end of the cantilever
may be thought of as a simple linear elastic rotational spring
with compliance c,, and the deflection due to the rotation is
then given by

8, = Pl, (18)
where ¢, in general is a function of the crack length, a.

The compliance due to bending and shear is again given
by (12), and the total compliance thus becomes
l

4 (1L, Y B 5
A Ps _te ) 19
C(a) Eb(h—a> +th_a+lec, (19)

Differentiation of C(a) with respect to a and use of (1)
leads to

P,=b(h-a)
2GY /I, (20)
12 (G/E) (I,/ (h - a))* + bGl, (h - a)? (dc, (a) /da) + B,
If the following choice is made for the spring compliance,
¢ = l\/lzﬁ . (21)
b\ GE (h-a)

A particularly simple expression is obtained for the failure
load, namely,

N
VI2(G/E) (I,/ (h - a)) + \/B;

The similarity/difference between (22) and (13) is noted.

P,=b(h-a) (22)
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For a small crack length, (22) gives

. \2G%, /1, o)

P, = bh .
\V12(G/E) (L,/h) + /B,

Assuming negligible bending deformations, (22) leads to

2G%,
leﬁs .

And both small crack length and insignificant bending
deformations lead to

2GZ
P, = bh\] L. (25)
le:Bs

Equation (24) is the same as (15), and (25) is the same as
(16).

(24)

Pu:b(h—a)\j

3.2.3. Model 3. In the derivation of the end-notched beam
model by Gustafsson [33], the cantilever has been assumed

13

fixed to a rotational spring in exactly the same way as in
model 2. However, in Gustafsson [33], the compliance, c,, of
the rotational spring was chosen as

_ 12 \](1_0‘)(1_0‘3) (26)

ot

C,
" bh’V10GE

wherea = 1 —a/h.

The compliance of the spring was also in Gustafsson [33]
chosen so as to result in a simple expression for the failure
load. However, since the crack propagation considered in
Gustafsson [33] makes the length of the cantilever increase,
while the crack considered here propagates so that the length
of the cantilever is constant but its depth decreases, the
influence of crack propagation becomes different in the two
cases, and thus different expressions ((21) and (26)) for the
spring compliance optimize the simplicity.

The spring compliance as given by (26) has been proven
to give good results for end-notched beams. If (26) is used in
(20), the following expression is obtained for the failure load:

2GZ /I,

P, = bah

For a small crack length, « — 1, and thus

P

u

. 2G% /I, (28)
12(G/E) (I,/h)’ + 6+/(6/5) (G/E) (L,/h) + B,

If the deformations from bending are assumed to be
negligible as compared with the shear deformations, (27)
gives

2GE
P, = boch\j L) (29)
Bdl.
And for small crack length and negligible bending defor-
mations,
2G%
P, = bh\j L. (30)
Bl

Equation (29) is the same as (15) and (24), and (30) is the
same as (16) and (25).

3.3. Additional Failure Modes and Modifications. Figure 2(c)
shows a failure mode (mode 3) where the nails and/or the
wood yield and the nails are pulled out of the bottom rail.
This failure mode is treated in Caprolu et al. [18] and is
outside the scope of the present paper, which focuses on

12(G/E) (L,/ah)’ + /(18/5) (G/E) ((4 “3a-a?) (- (1= oc3)> (L/ah) + B,

(27)

failure of the bottom rail. The models presented in Sections 3.1
and 3.2 consider horizontal and vertical crack propagation,
respectively. However, in addition to crack propagation,
bending and shear failures of the considered cantilever beams
may also occur and cause failure of the bottom rail. Here
simplified models will be used.

For horizontal crack propagation (mode 2), the following
equations should also be considered for bending and shear,
respectively:

b
P, = —¢ (31
u 6a ft
P, - %bhe £, (32)

where f, is the perpendicular-to-grain tensile strength, and
f, the rolling shear strength.

For vertical crack propagation (mode 1), the following
equations for bending and shear should be considered in
addition to the fracture mechanics models:

_b(h-a)
P, = 6—left (33)
2
P= b=, (34)

The failure load of the bottom rail subjected to uplift is
the minimum value of the failure loads given by (31)-(34) and
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two selected models (one for horizontal cracking and one for
vertical cracking) from Sections 3.1 and 3.2.

The fracture mechanics models considered in Sections 3.1
and 3.2 are all based on (1) and consider an existing crack of
length a. All the derived models predict that the load needed
to propagate the crack decreases with increasing crack length,
and the maximum load which the bottom rail can sustain is
thus obtained from the models by assuming zero crack length.
However, it may be relevant to assume a certain minimum or
critical value, a,, of the crack length as suggested in Serrano
and Gustafsson [30]:

E, &
o - 90 f’
f;

where Eq, is the modulus of elasticity in the perpendicular-
to-grain direction. Different values of the material properties
may be used in (35) for the tangential and radial directions if
such distinction is made.

In Caprolu et al. [18], (35) was considered together with
the models presented in Section 3.1.1 for a horizontally prop-
agating crack (mode 2) and in Section 3.2.1 for a vertically
propagating crack (mode 1). The length, [,, of the cantilever
beam considered in Section 3.2 was introduced as [, = s +
¢ as shown in Figure 8, where s is the distance from the
loaded edge of the bottom rail to the edge of the washer
and c is an additional length in recognition of the fact that
the bottom rail may not be fully clamped at the edge of the
washer. From (3) and (13), theoretical expressions, l,,, were
given for the value of I, which determines the limit between
vertical crack propagation (mode 1) and horizontal crack
propagation (mode 2) for general orthotropic conditions and
inclusion of (35). For the special case of isotropic conditions
(assuming the same material properties in the radial and
tangential directions) and assuming zero initial crack length,
they determined the limit to

| pEnt | BERN [ BERY
lo = + +
24Gh, 24Gh, 24G

Lo BER | BERNT [ BERY
24Gh, 24Gh, 24G )

A horizontally propagating crack (mode 2) leads to failure
of the bottom rail if ], < I, and a vertically propagating crack
(mode 1) leads to failure if I, > 1.

Further, in Caprolu et al. [18] ¢ was estimated from

experimental data by fitting using (13).

(35)

(36)

4. Discussion

While the crack path is predetermined for problems such
as end-notched beams or splitting of beams loaded per-
pendicular to grain by bolted connections where the crack
propagates along the grain, this is not the case in a bottom
rail as considered here. The models presented in Sections 3.1
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FIGURE 9: Example of propagation of initial horizontal crack in
bottom rail and possible change to vertical propagation.

and 3.2 assume that the crack propagates either horizontally
or vertically, but it is in fact very likely that the direction
of the crack propagation changes as the crack grows. For
instance, at any stage of the propagation of a horizontal crack
as considered in Section 3.1, the crack may change direction
and start propagating vertically (as considered in Section 3.2)
if this requires less energy.

For simplicity, consider the simplest models for horizon-
tal and vertical crack propagation, that is, the models given
in Sections 3.1.1 and 3.2.1 and first presented in Serrano et al.
[19] and Caprolu et al. [18]. Assume that a horizontal crack
has been initiated and grown to the length, a, as shown in
Figure 5. At what length will the crack start to grow vertically
(if at all at any crack length)? The solution is given by taking
(3) as it is and setting it equal to (14), in which I, = a
and h = h,. These equations lead to the solution that the
crack will start propagating in the vertical direction when
a = h,. Figure 9 illustrates the problem. According to (3),
the horizontal crack will propagate at decreasing load levels
until a = h,, then the crack will start propagating vertically.
Figure 9 shows the failure load per mm of the length of the
bottom rail given as a function of the horizontal crack length,
a, using h = 45mm, h, = 22.5mm, E = 400MPa, G =
70 MPa, ¥ ; = 0.30 N/mm, and f8; = 6/5. The material prop-
erties are those used in Serrano et al. [19] and Caprolu et al.
[18]. Using (3) and (14), the point where the horizontal crack
starts propagating vertically is a = h, and is independent
of the geometry and material properties of the bottom rail.
The same exercise may be done using other models for the
horizontal and vertical crack propagation, but an explicit
expression can in general not be given for the point, where
the horizontal crack starts propagating vertically.

In Serrano et al. [19] and Caprolu et al. [18], the per-
pendicular-to-grain tensile strength is assumed to be f, =
2.5 MPa. If further assuming the (rolling) shear strength f, =
3 MPa, inclusion of (31)-(32) leads to Figure 10 for the initially
horizontally propagating crack also considered in Figure 9.

According to Figure 10, the horizontal crack will propa-
gate to alength of 8.5 mm, and then bending failure will occur
in the cantilever as given by (31).
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FIGURE 10: Example of propagation of horizontal crack including
possible bending and shear failure modes and change of crack
propagation direction.

If the perpendicular-to-grain tensile strength is assumed
to be f, = 4.5 MPa (instead of 2.5 MPa), then (31) leads to a
curve very close to the curve corresponding to the vertical
crack in Figure 10 and intersects with the horizontal crack
curve at a = 22.5mm (for experimental results and dis-
cussion on the tensile strength value, see, e.g., Gustafsson
[28], Bostrom [36], Holmberg [37], and Siimes [38]). The
perpendicular-to-grain tensile strength of wood is always a
debatable property partly due to the fact that different testing
standards may lead to significantly different values, partly due
to the fact that the strength is volume dependent. For a more
detailed discussion, see the appendix.

In the experimental programs, the length of the hori-
zontal part of the crack before it changes direction has been
measured for some of the specimens and is given in Tables
4 and 5. The crack lengths were measured on the ends of
the bottom rail as illustrated in Figure 11 for specimens with
single- and double-sided sheathing.

All test specimens had bottom rails with 4 = 45mm
and h, = 22.5mm. Accordingly, (3) and (14) predict that the
crack will change to propagating in the vertical direction after
having propagated 22.5 mm horizontally. Though the mea-
sured figures given in Tables 4 and 5 are roughly in agreement
with this prediction, the experimental results are too scarce
and the variation is too large to make any firm conclusions
about agreement between theory and experiments. Further,
as illustrated in Figure 10, the change of direction of the
crack may not only be due to vertical crack propagation, but
also due to bending failure of the cantilever beam considered
in the models. The perpendicular-to-grain tensile strength
of wood is associated with significant variation, and, as
illustrated in Figure 10, this may lead to significant variation
in the length of the horizontal crack. It is further uncertain

15

how much the washers influence the measured horizontal
cracks. The influence of the washers is not considered in
any of the models presented in Section 3.1 for horizontally
propagating cracks. Finally, it should be noted that the
fracture models presented are all idealized models, which, for
example, assume that the load is applied as a point load at the
edge of the bottom rail. In reality, the load on the bottom rail is
transferred by the nails over a certain length in the horizontal
direction. This may have some significant effects, which are
not considered in the models.

It should, however, be noted that (14) for the vertical crack
propagation and (31) for the bending failure of the cantilever
predict infinitely high failure loads for an initially horizontal
cracka = 0 (I, = 0), and (3) and (32) will thus determine the
failure load of the bottom rail for a horizontally propagating
crack. For most practical applications, the shear failure will
not be relevant either.

A crack, which starts propagating vertically at the bottom
side of the rail, will usually not change direction and start
propagating horizontally if the timber is considered homo-
geneous and isotropic (i.e., no distinction is made between
radial and tangential directions). For real orthotropic and
inhomogeneous materials, the crack may, however, follow
different paths as exemplified by Figures 3(c) and 4(e).
Figure 10 indicates that shear failure will usually not occur
for horizontal cracks and is even more unlikely for vertical
cracks. The failure of the rail in case of a vertically propa-
gating crack is therefore realistically the minimum of vertical
crack propagation and bending of the cantilever, that is, for
instance, Min {Equation (13); Equation (33)}.

Figure 12 shows a vertical crack propagation using the
material properties that apply to Figure 9 and three different
values of f, (=2 MPa, 3 MPa, or 4 MPa). Here the total depth
of the bottom rail is assumed to be 45mm and the vertical
crack is assumed to initiate 45 mm from the loaded edge.

For the vertical crack, the bending capacity as given
by (33) takes on a finite value for zero crack length and
may thus overrule the fracture mechanics solution for crack
propagation depending on the value of the perpendicular-
to-grain tensile strength. For the example considered in
Figure 12, bending failure will occur if f, = 3 MPa or less;
vertical crack propagation will occur if f, = 4 MPa or above.

Figure 12 also included (3) in the following form

2GY ;h,
P,=b — (37)
12 (G/E) (L./h,)" + B;

where ], is the distance from the loaded edge of the rail to the
crack tip and h, = h — a, a being the distance of the crack
tip above the bottom side of the rail. Equation (37) thus gives
the load at which the crack will propagate horizontally at any
stage of a vertically propagating crack.

The use of (3) and (13) for an initially assumed vertical
crack at the bottom surface of the bottom rail leads to the
fact that the crack will continue its vertical propagation if it
initiates a distance [, > h from the loaded edge. Assuming
I, < hleads to horizontal crack propagation until I, = A,
and then the crack will propagate vertically. Horizontal crack
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FIGURE 12: Example of propagation of vertical crack including
possible bending failure and the possibility for the crack to change
to propagation in the horizontal direction.

propagation along the bottom side of the rail is physically not
meaningful but may be interpreted in the way that (3) and
(13) exclude vertical crack initiation closer to the loaded edge
than the depth of the rail. This prediction seems to be roughly
in agreement with the experimental observations (Figures 3
and 4). However, the alternative models for horizontal crack
propagation as presented in Sections 3.1.2 and 3.1.3 predict
infinitely high failure loads for h, = h; that is, a horizontal
crack will not propagate near the bottom surface of the
bottom rail.

In Figure 13, (14), (23), and (28), which correspond to
Models 1, 2, and 3, respectively, are for vertical crack prop-
agation (mode 1) compared with the experimental data.

Figure 13(a) refers to specimens with single-sided sheathing,
while Figure 13(b) refers to specimens with double-sided
sheathing. All three equations are based on the assumption
that failure occurs for a — 0. The following material prop-
erties were used: h = 45mm, E = 400 MPa, G = 70 MPa,
& = 0.30N/mm, and f3; = 6/5 (for experimental results
on fracture energy values, see, e.g., Smith et al. [29], Reiterer
et al. [39], and Larsen and Gustafsson [40]). The effective
length, I, = s + c, has been used with ¢ = 20 mm which
is roughly the value determined from the experimental data
by minimization of the error using (13) and (35) as described
in Caprolu et al. [18] for all specimens considered. The total
load applied on the 900 mm long bottom rail is plotted as a
function of the distance s. For double-sided sheathing, the
theoretical expressions have been multiplied by two.

Equations (23) and (28) lead to better agreement with the
experimental data than does (14). Equations (23) and (28)
differ from (14) by taking into account an additional rotation
of the cantilever at the clamped end. It may be argued that
the additional contribution, ¢, to the length of the cantilever
accounts for the same effect as the additional rotation and
should not be included when using (23) and (28). However,
since the washer only has a very limited extension in the
length direction of the bottom rail, it is not reasonable to
expect that any 2D model should result in perfect agreement
with tests without some kind of empirical adjustment. Use of
I, = s+ ¢, ¢ = 20mm, seems to render very good results
together with (23) and (28) though the value of ¢ has been
optimized for use with (13).

Figure 14 compares (13) and (22) with the experimen-
tal results. Figure 14(a) refers to specimens with single-
sided sheathing, while Figure 14(b) refers to specimens with
double-sided. Here the initial crack length as given by (35) has
been used. The same material properties as used in Figure 13
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FIGURE 13: Comparison between theory and experiments for vertical cracking of a bottom rail assuming zero initial crack length. (a)
Specimens with single-sided sheathing and (b) specimens with double-sided sheathing. PD = pith downwards, PU = pith upwards.
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FIGURE 14: Comparison between theory and experiments for vertical cracking of a bottom rail assuming a finite initial crack length. (a)
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Specimens with single-sided sheathing and (b) specimens with double-sided sheathing. PD = pith downwards, PU = pith upwards.



18

40 T T T T T T T
35 FTTTTTTTTT T T oo T T T oo
30 ©
D A o
-
Z 25
iad S - 8o ]
o A + T
] +
=} 20 t x * B
: 8
é x ; X A
E 15t x 1
10 ¢ E
A
5 L -
0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Distance s (mm)
O Study A, PD — Eq.(4)
+ Study A, PU --- Eq.(7)
A StudyB,PD Eq. (11)
x Study B, PU

(a)

Advances in Civil Engineering

80 T T T T T T T
JQFTTTTTTTTTTTT T T T T T TTooooooommmm oo
60 R
Z 50 x
5 ..................................... A ........................................
9 ®
=} 40 + 5 b
I x *
= x A
30} A ;
20 + R
10 + E
0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Distance s (mm)
O Study A, PD — Eq.(4)
A Study B, PD --- Eq.(7)
x StudyB,PU Eq. (11)

(®)

FIGURE 15: Comparison between theory and experiments for horizontal cracking of a bottom rail. (a) Specimens with single-sided sheathing
and (b) specimens with double-sided sheathing. PD = pith downwards, PU = pith upwards.

apply, and further f, = 2.5MPa has been assumed. Again
I, = s+ ¢, ¢ = 20 mm, has been assumed.

While (13) in general seems to slightly overestimate the
failure load for ¢ = 20 mm, (22) in general slightly under-
estimates the failure load. Equation (13) with the use of (35),
(23), and (28) leads to approximately equally good agreement
with the experimental data.

In Figure 15, (4), (7), and (11), which correspond to
Models 1, 2, and 3, respectively, are for horizontal crack
propagation (mode 2) compared with the experimental data.
Figure 15(a) refers to specimens with single-sided sheathing,
while Figure 15(b) refers to specimens with double-sided
sheathing. All three equations are based on the assumption
that failure occurs for a — 0. The same material properties as
used in Figure 14 together with h = 45mm and h, = 22.5 mm
are used here.

Equation (11) gives a slightly better prediction of the
failure load than does (4). Equation (3) used together with
(35) gives very precisely the same failure load as (11). Here
it may for practical reasons be recommended to use the
simpler (4). It is, however, again emphasized that (11) takes
into account the total depth of the bottom rail while (3)-(4)
do not. If the theory is applied to bottom rails with larger
depths and the sheathing is nailed to the bottom rail close
to the bottom of the bottom rail, it may be significant to take
into account this effect.

In Caprolu et al. [22], another comparative study con-
cerning the different models presented in this paper was

presented but it compares them with other detailed experi-
mental results, including parameter tests. The experimental
study was divided into three parts with specimens matched to
each other: (1) first the splitting capacity and failure mode of
bottom rails subjected to uplift were studied; (2) then material
properties such as tensile strength perpendicular to the grain
were studied; and (3) fracture energy was determined by
testing specimens cut from the specimens belonging to study
(1). The experimental results were compared with the present
models, using as input values results from (2) and (3). Almost
all tested models did show good agreement with the test
results.

5. Conclusions

New alternative analytical models based on fracture mechan-
ics were presented and compared with an existing model for
determination of the failure load of bottom rails subjected
to uplift in partially anchored timber frame shear walls. All
the models presented are based on the compliance method of
fracture mechanics, and the compliance is determined using
simple beam theory. Beam theory is formally not applicable
to situations where the beam length is short as compared
with the beam depth as is often the case in the applications
to fracture problems. However, the compliance according to
the simple beam theory has previously shown remarkably
good results when used in fracture mechanics analysis of, for
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example, end-notched beams and bolted connections loading
beams perpendicular to the grain.

In addition to the formal problems associated with the
use of beam theory for very short beams, the bottom rail
analysis also includes the difficulty that it is a 3D-problem.
This is due to the fact that the bottom rail is anchored to
the foundation by means of anchor bolts with washers placed
along the length of the bottom rail with spacing relatively
large as compared with the cross section dimensions of the
bottom rail. The analytical models are 2D-models, and the
boundary conditions assumed in the 2D-models cannot be
valid for all positions along the bottom rail. However, in
spite of the seemingly oversimplified analysis, several of the
models presented in this paper were found capable of giving
failure load predictions in surprisingly good agreement with
the experimental data. The only minor empirical adjustment
made in the models is assuming that the length of the beam
considered in the models for analysis of a vertically propagat-
ing crack is the distance from the loaded edge of the bottom
rail to the nearest edge of the washer plus an empirically
estimated length of 20 mm.

For vertically propagating cracks, the existing model
was found to produce excellent predictions if assuming a
certain initial crack length as estimated theoretically. A new
alternative model was found to produce equally good pre-
dictions if assuming that the failure load is obtained for zero
crack length.

For horizontally propagating cracks, the experimental
data show considerably larger variation and the goodness
of the models is harder to estimate. However, a new model
based on a semiempirically modified quasinonlinear fracture
mechanics approach was found to produce equally good
predictions as the existing model. The new model has pre-
viously been applied with considerable success to analysis of
splitting in beams loaded perpendicular to the grain by bolted
connections and has the advantage of taking into account the
total depth of the bottom rail. This effect may become signif-
icant if bottom rails with larger depths are to be analysed.

In addition to failure load prediction, the capability of
the simple analytical models to predict the crack propagation
including change of direction of the crack was explored. The
predictions seem roughly in agreement with the available
experimental data. However, lack of sufficient experimental
data and the large variation in the available data does not
allow for any firm conclusions to be drawn.

A final comparison between failure modes, with respect
to the crack length, shows that the models are able to reflect
the tests results with respect to the failure modes.

6. Code Implications

When partially anchored shear walls are used, it is necessary
to specify the design of the anchoring of the bottom rail.
Eurocode 5 does not give any recommendations concerning
these things. The testing standard EN 594 recommends that
washers of 50 mm diameter should be used for a 90 mm wide
and 38 mm thick framing. For other widths and thicknesses
of the timber framing, recommendations are needed in Euro-
code 5.
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It is important to establish design rules with respect to
splitting failure of the bottom rail. There is a clear relationship
between the failure loads versus the distance from the edge of
the washer to the loaded edge of the bottom rail.

The results of this study and the study by Caprolu et al.
[22] show that the failure load of the bottom rail subjected to
uplift is, for vertical splitting failure, the minimum value of
the failure loads given by (33) due to bending and (13) or (23)
due to vertical cracking and, for horizontal splitting failure, by
(31) due to bending and (3) or (11) due to horizontal cracking.

Appendix

Perpendicular-to-Grain Tensile Strength and
Effects of Knots

The perpendicular-to-grain tensile strength of wood is
known to be volume dependent. This effect is often explained
by means of the Weibull weakest link theory. A large volume
subjected to a certain stress shows lower strength than a
small volume subjected to the same stress. This volume
effect poses a problem for fracture problems since the high
perpendicular-to-grain stresses only occur in a very small
volume at the crack-tip.

The volume effect is also present for wood subjected to
parallel-to-grain stresses. Here we may find mean tensile
strengths of 100 MPa for small clear-wood specimens of ordi-
nary softwood species, while the characteristic value for C24
according to EN 338 is 14 MPa.

In Jensen et al. [41], the perpendicular-to-grain tensile
strength of Radiata Pine LVL was determined by testing on
45 x 70 x 240 mm’ volumes. The mean value was found
to be 1.5MPa. The characteristic value was 1.2 MPa. It is
a well-established fact that Radiata Pine LVL has a lower
perpendicular-to-grain tensile strength than Radiata Pine
solid wood.

The high perpendicular-to-grain tensile stresses at the
crack-tip occur in volumes much smaller than the tested 45
x 70 x 240 mm’ volumes.

In Jensen and Gustafsson [42], the perpendicular-to-
grain tensile strength of Japanese Cedar was determined
using small hour-glass shaped test specimens. The failure load
was recorded and the tensile strength was determined as the
failure load divided by the smallest cross section area. Most
of the specimens did not fail at the smallest cross section, and
the tensile strength at the smallest cross section is thus higher
than the determined value. The tensile strength was found to
be 4.1 MPa with a standard deviation of 1.3 MPa.

Japanese Cedar has a relatively low density and is in
general considered to be considerably weaker than Nordic
softwood.

In problems as considered in the manuscript, the fracture
plane is predetermined by the location of the nails. In the
same way, the smallest cross section in the tested hour-
glass shaped specimens is predetermined. It is unlikely that
the weakest link is located in the fracture plane just at
the crack-tip, and therefore the tensile strength relevant for
the considered fracture problems should be expected to be
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considerably higher than those determined for construction
size timber.

The fracture models presented do not explicitly consider
the effect of knots. It may be said that the models in the usual
way include knots through the material properties.

However, for mode I fracture problems of wood, knots do
in fact not decrease the strength. Very much on the contrary,
knots at the vicinity of crack-tips often severely increase the
strength. This is again due to the fact that the perpendicular-
to-grain tensile stresses at the crack-tips occur in very small
volumes. The grain of the wood wraps around the knot hole,
and the grain direction just in front of a knot is often virtually
perpendicular to the crack plane, that is, we get tensile stresses
parallel to the grain here.

The first author has personally tested numerous beams
and so-called plate specimens (see Jensen et al. [41]; Jensen
and Gustafsson [42]) with bolts loading timber perpendic-
ular to the grain and causing splitting. Knots always serve as
reinforcement in such splitting problems. In several cases, test
specimens with knots in the vicinity of the crack-tip had to be
omitted since they resulted in absurdly high failure loads and
caused very large embedment before failing.
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