53 research outputs found
Targeting the leukemic stem cell: the Holy Grail of leukemia therapy
Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological
properties have been elucidated, including their distinct replicative properties, cell surface
phenotypes, their increased resistance to chemo-therapeutic drugs and the involvement of growthpromoting
chromosomal translocations. Of particular importance is their ability to transfer
malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice.
Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at
the level of stem cell, and chronic myeloid leukemia is also a stem cell disease. In this review, we
will evaluate the main characteristics of LSCs elucidated in several well-documented leukemias. In
addition, we will discuss points of therapeutic intervention. Promising therapeutic approaches include
the targeting of key signal transduction pathways (for example, PI3K, Rac and Wnt) with smallmolecule
inhibitors and specific cell surface molecules (for example, CD33, CD44 and CD123), with
effective cytotoxic antibodies. Also, statins, which are already widely therapeutically used for a
variety of diseases, show potential in targeting LSCs. In addition, drugs that inhibit ATP-binding
cassette transporter proteins are being extensively studied, as they are important in drug resistance
â a frequent characteristic of LSCs. Although the specific targeting of LSCs is a relatively new field,
it is a highly promising battleground that may reveal the Holy Grail of cancer therapy. Originally published Leukemia, Vol. 23, No. 1, Jan 200
Vascular dysfunction in aged mice contributes to persistent lung fibrosis
Idiopathic pulmonary fibrosis (IPF) is a progressive disease thought to result from impaired lung repair following injury and is strongly associated with aging. While vascular alterations have been associated with IPF previously, the contribution of lung vasculature during injury resolution and fibrosis is not well understood. To compare the role of endothelial cells (ECs) in resolving and non‐resolving models of lung fibrosis, we applied bleomycin intratracheally to young and aged mice. We found that injury in aged mice elicited capillary rarefaction, while injury in young mice resulted in increased capillary density. ECs from the lungs of injured aged mice relative to young mice demonstrated elevated pro‐fibrotic and reduced vascular homeostasis gene expression. Among the latter, Nos3 (encoding the enzyme endothelial nitric oxide synthase, eNOS) was transiently upregulated in lung ECs from young but not aged mice following injury. Young mice deficient in eNOS recapitulated the non‐resolving lung fibrosis observed in aged animals following injury, suggesting that eNOS directly participates in lung fibrosis resolution. Activation of the NO receptor soluble guanylate cyclase in human lung fibroblasts reduced TGFβ‐induced pro‐fibrotic gene and protein expression. Additionally, loss of eNOS in human lung ECs reduced the suppression of TGFβ‐induced lung fibroblast activation in 2D and 3D co‐cultures. Altogether, our results demonstrate that persistent lung fibrosis in aged mice is accompanied by capillary rarefaction, loss of EC identity, and impaired eNOS expression. Targeting vascular function may thus be critical to promote lung repair and fibrosis resolution in aging and IPF.Bleomycin‐induced lung injury promotes transient fibrosis accompanied by increased capillary density in young mice. In contrast, persistent fibrosis, capillary rarefaction, loss of endothelial cell identity, and reduction of Nos3 are observed in aged mice. eNOS/NO signal is an important driver of fibroblast quiescence and fibrosis resolution, that is lost with aging. Lung vascular bed plays a critical role during lung repair and fibrosis resolution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156458/2/acel13196_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156458/1/acel13196.pd
Advances in Targeting Signal Transduction Pathways
Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies
Alteration of AKT Activity Increases Chemotherapeutic Drug and Hormonal Resistance in Breast Cancer yet Confers an Achilles Heel by Sensitization to Targeted Therapy
The PI3K/PTEN/Akt/mTOR pathway plays critical roles in the regulation of cell growth. The effects of this pathway on drug resistance and cellular senescence of breast cancer cells has been a focus of our laboratory. Introduction of activated Akt or mutant PTEN constructs which lack lipid phosphatase [PTEN(G129E)] or lipid and protein phosphatase [PTEN(C124S)] activity increased the resistance
of the cells to the chemotherapeutic drug doxorubicin, and the hormonal drug tamoxifen. Activated Akt and PTEN genes also inhibited the induction of senescence after doxorubicin treatment; a phenomenon associated with unrestrained proliferation and tumorigenesis. Interference with the lipid phosphatase domain of PTEN was sufficient to activate Akt/mTOR/p70S6K as MCF-7 cells
transfected with the mutant PTEN gene lacking the lipid phosphatase activity [PTEN(G129E)] displayed elevated levels of activated Akt and p70S6K compared to empty vector transfected cells. Cells transfected with mutant PTEN or Akt constructs were hypersensitive to mTOR inhibitors when compared with the parental or empty vector transfected cells. Akt-transfected cells were cultured for over two months in tamoxifen from which tamoxifen and doxorubicin resistant cells were isolated that were >10-fold more resistant to tamoxifen and doxorubicin than the original Akt-transfected cells. These cells had a decreased induction of both activated p53 and total p21Cip1 upon doxorubicin
treatment. Furthermore, these cells had an increased inactivation of GSK-3β and decreased expression of the estrogen receptor-α. In these drug resistant cells, there was an increased activation of ERK which is associated with proliferation. These drug resistant cells were hypersensitive to mTOR inhibitors and also sensitive to MEK inhibitors, indicating that the enhanced p70S6K and ERK expression was relevant to their drug and hormonal resistance. Given that Akt is overexpressed in greater than 50% of breast cancers, our results point to potential therapeutic targets, mTOR and MEK. These studies indicate that activation of the Akt kinase or disruption of the normal activity of the PTEN phosphatase can have dramatic effects on activity of p70S6K and other downstream substrates and thereby altering the therapeutic sensitivity of breast cancer cells. The effects of doxorubicin and tamoxifen on induction of the Raf/MEK/ERK and PI3K/Akt survival pathways were examined in unmodified MCF-7 breast cells. Doxorubicin was a potent inducer of activated ERK and to a lesser extent Akt. Tamoxifen also induced ERK. Thus a consequence of doxorubicin and tamoxifen therapy of breast cancer is the induction of a pro-survival pathway which may contribute to the development of drug resistance. Unmodified MCF-7 cells were also sensitive to MEK and mTOR inhibitors which synergized with both tamoxifen and doxorubicin to induce death. In summary, our results point to the key interactions between the PI3K/PTEN/Akt/mTOR and Raf/ MEK/ERK pathways in regulating chemotherapeutic drug resistance/sensitivity in breast cancer and indicate that targeting these pathways may prevent drug and hormonal resistance. Orignally published Advances in Enzyme Regulation, Vol. 48, No. 1, 2008
Kidney endothelial cell heterogeneity, angiocrine activity and paracrine regulatory mechanisms
The blood microvascular endothelium consists of a heterogeneous population of cells with regionally distinct morphologies and transcriptional signatures in different tissues and organs. In addition to providing an anti-thrombogenic surface for blood flow, endothelial cells perform a multitude of additional regulatory tasks involving organogenesis, metabolism, angiogenesis, inflammation, repair and organ homeostasis. To commu-nicate with surrounding cells and accomplish their many functions, endothelial cells secrete angiocrine factors including growth factors, chemokines, cytokines, extracellular matrix components, and proteolytic enzymes. Nonendothelial parenchymal and stromal cells in turn regulate endothelial growth, differentiation and survival during embryonal development and in the adult by paracrine mechanisms. Driven by advances in molecular biology, animal genetics, single cell transcriptomics and microscopic imaging, knowledge of organotypic vas-culatures has expanded rapidly in recent years. The kidney vasculature, in particular, has been the focus of intensive investigation and represents a primary example of how endothelial heterogeneity and crosstalk with nonendothelial cells contribute to the development and function of a vital organ. In this paper, we review the morphology, function, and development of the kidney vasculature, with an emphasis on blood microvascular endothelial heterogeneity, and provide examples of endothelial and nonendothelial-derived factors that are critically involved in kidney development, growth, response to injury, and homeostasis
The acute phase reactant orosomucoid-1 is a bimodal regulator of angiogenesis with time- and context-dependent inhibitory and stimulatory properties.
BACKGROUND: Tissues respond to injury by releasing acute phase reaction (APR) proteins which regulate inflammation and angiogenesis. Among the genes upregulated in wounded tissues are tumor necrosis factor-alpha (TNFα) and the acute phase reactant orosomucoid-1 (ORM1). ORM1 has been shown to modulate the response of immune cells to TNFα, but its role on injury- and TNFα-induced angiogenesis has not been investigated. This study was designed to characterize the role of ORM1 in the angiogenic response to injury and TNFα. METHODS AND RESULTS: Angiogenesis was studied with in vitro, ex vivo, and in vivo angiogenesis assays. Injured rat aortic rings cultured in collagen gels produced an angiogenic response driven by macrophage-derived TNFα. Microarray analysis and qRT-PCR showed that TNFα and ORM1 were upregulated prior to angiogenic sprouting. Exogenous ORM1 delayed the angiogenic response to injury and inhibited the proangiogenic effect of TNFα in cultures of aortic rings or isolated endothelial cells, but stimulated aortic angiogenesis over time while promoting VEGF production and activity. ORM1 inhibited injury- and TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in aortic rings, but not of NFκB. This effect was injury/TNFα-specific since ORM1 did not inhibit VEGF-induced signaling, and cell-specific since ORM1 inhibited TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in macrophages and endothelial cells, but not mural cells. Experiments with specific inhibitors demonstrated that the MEK/ERK pathway was required for angiogenesis. ORM1 inhibited angiogenesis in a subcutaneous in vivo assay of aortic ring-induced angiogenesis, but stimulated developmental angiogenesis in the chorioallantoic membrane (CAM) assay. CONCLUSION: ORM1 regulates injury-induced angiogenesis in a time- and context-dependent manner by sequentially dampening the initial TNFα-induced angiogenic response and promoting the downstream stimulation of the angiogenic process by VEGF. The context-dependent nature of ORM1 angioregulatory function is further demonstrated in the CAM assay where ORM1 stimulates developmental angiogenesis without exerting any inhibitory activity
Mesenchymal Cells in The Lung: Evolving Concepts and Their Role in Fibrosis
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis
Regulation of the Extrinsic Apoptotic Pathway by the Extracellular Matrix Glycoprotein EMILIN2▿ †
Elastin microfibril interface-located proteins (EMILINs) constitute a family of extracellular matrix (ECM) glycoproteins characterized by the presence of an EMI domain at the N terminus and a gC1q domain at the C terminus. EMILIN1, the archetype molecule of the family, is involved in elastogenesis and hypertension etiology, whereas the function of EMILIN2 has not been resolved. Here, we provide evidence that the expression of EMILIN2 triggers the apoptosis of different cell lines. Cell death depends on the activation of the extrinsic apoptotic pathway following EMILIN2 binding to the TRAIL receptors DR4 and, to a lesser extent, DR5. Binding is followed by receptor clustering, colocalization with lipid rafts, death-inducing signaling complex assembly, and caspase activation. The direct activation of death receptors by an ECM molecule that mimics the activity of the known death receptor ligands is novel. The knockdown of EMILIN2 increases transformed cell survival, and overexpression impairs clonogenicity in soft agar and three-dimensional growth in natural matrices due to massive apoptosis. These data demonstrate an unexpected direct and functional interaction of an ECM constituent with death receptors and discloses an additional mechanism by which ECM cues can negatively affect cell survival
- …