1,181 research outputs found

    Deposit formation and heat transfer in hydrocarbon rocket fuels

    Get PDF
    An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation

    Streak instability in near-wall turbulence revisited

    Get PDF
    The regeneration cycle of streaks and streamwise vortices plays a central role in the sustainment of near-wall turbulence. In particular, the streak breakdown phase in the regeneration cycle is the core process in the formation of the streamwise vortices, but its current understanding is limited particularly in a real turbulent environment. This study is aimed at gaining fundamental insight into the underlying physical mechanism of the streak breakdown in the presence of background turbulent fluctuation. We perform a numerical experiment based on direct numerical simulation, in which streaks are artificially generated by a body forcing computed from previous linear theory. Upon increasing the forcing amplitude, the artificially driven streaks are found to generate an intense fluctuation of the wall-normal and spanwise velocities in a fairly large range of amplitudes. This cross-streamwise velocity fluctuation shows its maximum at λ+ x ≈ 200 − 300 (λ+ x is the inner-scaled streamwise wavelength), but it only appears for λ+ x ≲ 3000 − 4000. Further examination with dynamic mode decomposition reveals that the related flow field is composed of sinuous meandering motion of the driven streaks and alternating cross-streamwise velocity structures, clearly reminiscent of sinuous-mode streak instability found in previous studies. Finally, it is shown that these structures are reasonably well aligned along the critical layer of the secondary instability, indicating that the surrounding turbulence does not significantly modify the inviscid inflectional mechanism of the streak breakdown via streak instability and/or streak transient growth

    Prophage association of mef(A) elements encoding efflux-mediated erythromycin resistance in Streptococcus pyogenes.

    Get PDF
    OBJECTIVES: To compare different mef(A) elements of Streptococcus pyogenes for a possible chimeric genetic nature, i.e. a transposon inserted into a prophage. METHODS: Eleven S. pyogenes isolates with efflux-mediated erythromycin resistance were used. The isolates were typed using several genotypic approaches. Gene detection was performed by PCR using specific primer pairs. The mef(A) elements of the test strains were induced with mitomycin C and phage DNA was extracted. Induction was monitored by PCR using primers targeting mef(A). RESULTS: Six tetracycline-susceptible isolates had PCR evidence of all of the eight open reading frames (ORFs) of the Tn1207.1 element; their mef(A) element was consistent with the Tn1207.3 element in four isolates and with the 58.8 kb chimeric element in two. Five tetracycline-resistant isolates had no PCR evidence of orf1 and orf2 and showed variable patterns as to orf3, orf7, and orf8. Three ORFs placed along the conserved region downstream of Tn1207.1 in the 58.8 kb mef(A) chimeric element were detected in the six tetracycline-susceptible, but not in the five tetracycline-resistant isolates. Induction assays with mitomycin C demonstrated that the mef(A) elements of all strains tested were present in culture supernatants in a DNAse-resistant form, such as a phage capsid. CONCLUSIONS: All recognized mef(A) elements of S. pyogenes appear to be prophage-associated. Whereas the two elements detected in tetracycline-susceptible isolates (Tn1207.3 and the 58.8 kb one) were apparently inserted into the same prophage, the tet(O)-mef(A) element was inserted into a different prophage. Phage transfer is likely to play a critical role in the dissemination of erythromycin resistance in S. pyogenes populations

    Genomic profile of a squamous cell carcinoma Ex pleomorphic adenoma compared to a head and neck squamous cell carcinoma

    Get PDF
    [No abstract available]sem informação843393397FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2011/23204-5; 2011/23366-

    Spontaneous oxidation of disordered fcc FePt nanoparticles

    Get PDF
    In this work we present new results on spontaneous oxidation of disordered fcc FePt nanoparticles. The "as-made" oleic acid and oleylamine coated FePt nanoparticles of average size 4 nm synthesized by a high-boiling coordinating solvent method were exposed to air over a period of days and characterized structurally and magnetically by means of different techniques such as XANES, XPS, EXAFS, and SQUID magnetometry. The "as-made" FePt nanoparticles stabilize in the disordered fcc structure and have a very low magnetic saturation (M(s)=11 emu/g) and a huge coercive field (H_(c)=1800 Oe) compared to the low temperature bulk values of the disordered fcc FePt. We observed that the coercive field and the magnetic saturation change with the time the sample is exposed to air and these changes are associated with the oxidation or passivation of the nanoparticle surface that gives place to a core-shell structure. Indeed, the study on the electronic properties of the nanoparticles confirms the magnetic results and indicates that when the nanoparticles are exposed to air, changes in the oxidation state of both Fe and Pt occur, the oxidation state of Fe coming close to hematite. The formation of hematite tends to soften the "as-made" FePt nanoparticles as observed by the reduction of the coercive field to almost one third of the original value. Although the hematite softens the FePt nanoparticles, there is an exchange coupling at the interface of the core-shell characterized by the increase of the coercive field from 300 to 900 Oe when the sample is cooled in an applied field of 50 kOe

    Ni Mg mixed metal oxides for p-type dye-sensitized solar cells

    Get PDF
    Mg Ni mixed metal oxide photocathodes have been prepared by a mixed NiCl2/MgCl2 sol-gel process. The MgO/NiO electrodes have been extensively characterized using physical and electrochemical methods. Dye-sensitized solar cells have been prepared from these films and the higher concentrations of MgO improved the photovoltage of these devices, however, there was a notable drop in photocurrent with increasing Mg2+. Charge extraction and XPS experiments revealed that the cause of this was a positive shift in the energy of the valence band which decreased the driving force for electron transfer from the NiO film to the dye and therefore the photocurrent. In addition, increasing concentrations of MgO increases the volume of pores between 0.500 to 0.050 μm, while reducing pore volumes in the mesopore range (less than 0.050 μm) and lowering BET surface area from approximately 41 down to 30 m2 g-1. A MgO concentration of 5% was found to strike a balance between the increased photovoltage and decreased photocurrent, possessing a BET surface area of 35 m2 g-1 and a large pore volume in both the meso and macropore range, which lead to a higher overall power conversion efficiency than NiO alone

    Quantum phase gate with a selective interaction

    Get PDF
    We present a proposal for implementing quantum phase gates using selective interactions. We analize selectivity and the possibility to implement these gates in two particular systems, namely, trapped ions and Cavity QED.Comment: Four pages of TEX file and two EPS figures. Submitted for publicatio

    Squeezing based on nondegenerate frequency doubling internal to a realistic laser

    Get PDF
    We investigate theoretically the quantum fluctuations of the fundamental field in the output of a nondegenerate second harmonic generation process occuring inside a laser cavity. Due to the nondegenerate character of the nonlinear medium, a field orthogonal to the laser field is for some operating conditions indepedent of the fluctuations produced by the laser medium. We show that this fact may lead to perfect squeezing for a certain polarization mode of the fundamental field. The experimental feasibility of the system is also discussed.Comment: 6 pages, 5 figure

    Dielectric Characterization of Breast Biopsied Tissues as Pre-Pathological Aid in Early Cancer Detection: A Blinded Feasibility Study

    Get PDF
    Dielectric characterization has significant potential in several medical applications, providing valuable insights into the electromagnetic properties of biological tissues for disease diagnosis, treatment planning, and monitoring of therapeutic interventions. This work presents the use of a custom-designed electromagnetic characterization system, based on an open-ended coaxial probe, for discriminating between benign and malignant breast tissues in a clinical setting. The probe’s development involved a well-balanced compromise between physical feasibility and its combined use with a reconstruction algorithm known as the virtual transmission line model (VTLM). Immediately following the biopsy procedure, the dielectric properties of the breast tissues were reconstructed, enabling tissue discrimination based on a rule-of-thumb using the obtained dielectric parameters. A comparative analysis was then performed by analyzing the outcomes of the dielectric investigation with respect to conventional histological results. The experimental procedure took place at Complejo Hospitalario Universitario de Toledo—Hospital Virgen de la Salud, Spain, where excised breast tissues were collected and subsequently analyzed using the dielectric characterization system. A comprehensive statistical evaluation of the probe’s performance was carried out, obtaining a sensitivity, specificity, and accuracy of 81.6%, 61.5%, and 73.4%, respectively, compared to conventional histological assessment, considered as the gold standard in this investigation
    • …
    corecore