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Squeezing based on nondegenerate frequency doubling internal to a realistic laser
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We investigate theoretically the quantum fluctuations of the fundamental field in the output of a nondegen-
erate second-harmonic generation process occurring inside a laser cavity. Due to the nondegenerate character
of the nonlinear medium, a field orthogonal to the laser field is for some operating conditions independent of
the fluctuations produced by the laser medium. We show that this fact may lead to perfect squeezing for a
certain polarization mode of the fundamental field. The experimental feasibility of the system is also discussed.

DOI: 10.1103/PhysRevA.69.013808 PACS number~s!: 42.50.Dv, 42.50.Lc, 42.65.Ky, 42.55.Ah

I. INTRODUCTION

The generation of manifestly nonclassical states of the
light field and, in particular, the Gaussian squeezed state of
light is motivated by the great arena of applications, ranging
from high-precision measurements with optical sensors@1# to
the field of quantum information science@2,3#. The most
successful scheme for the production of such states is via
intracavityx (2)-nonlinear processes where second-harmonic
generation of a laser field is followed by a subthreshold op-
tical parametric oscillator@4,5#. Unfortunately, this scheme
requires a rather extensive and hence space demanding opti-
cal setup. It will therefore appear fruitful to devise some
alternative systems which are more compact and conse-
quently more easily integrated into different applications. To-
wards this aim we investigate, theoretically, the amount of
squeezing that can be expected in a certain polarization state
of a laser beam using a polarization nondegenerate~type-II!
second-harmonic generation~SHG! process which is located
inside a laser cavity.

The intensity noise of a standard laser operating well
above laser threshold is usually at the quantum noise limit
~QNL! provided that the pump source is at the QNL@6#. It is,
however, possible to enforce squeezed state production via
different means. Regularizing the pumping mechanism, e.g.,
using a sub-Poissonian pump, may lead to amplitude squeez-
ing at low frequencies of the laser field@7#. This has been
shown experimentally for semiconductor lasers, pumped
with a sub-Poissonian electrical current@8#. Alternatively,
squeezed states can be produced by some mechanisms intrin-
sic to the laser medium. For example, if the decay rate from
the lower lasing level and the pumping rate are matched@9#
or if the coherence effect between the pump levels plays a
significant role@10#, amplitude squeezing is expected to oc-
cur. Finally, squeezing effects are anticipated to appear if a
nonlinearx (2) crystal is placed inside the laser cavity@11–
17#. In particular, the system comprising a polarization de-
generate~type-I phase-matched! SHG crystal internal to a
laser has been investigated theoretically. Fernandezet al.

@12# and Levienet al. @15# showed that perfect quadrature
squeezing may be obtained in the laser field and the up-
converted second-harmonic field, respectively, for certain
settings of the decay rates involved. A rigorous treatment of
the same system was carried out by Whiteet al. @16,18#.
Contrary to other theoretical investigations, these authors in-
cluded the effect of very fast dephasing of laser coherence, a
practical fact in all common laser systems. They found that
the inclusion of this effect leads to additional noise, obscur-
ing the squeezing to the extent that the experiment is not
feasible for squeezing production using a type-I SHG crystal.
This conclusion has been further corroborated by the fact
that squeezing effects from a laser with internal frequency
doubling have so far never been observed experimentally.

However, in this paper we show that one should not give
up on an up-conversion process internal to a laser as a source
of efficiently squeezed light. Rather than incorporating a
type-I crystal inside the laser cavity, as done in Ref.@16#, we
here consider the case of a type-II phase-matched crystal
placed inside the cavity. In a type-II SHG process, two fun-
damental beams along the crystal axes have to be excited.
We show that this extra degree of polarization freedom may
give rise to very efficient squeezing of a certain polarization
state of the fundamental field.

The way of attacking the problem is to derive a set of
linearized Langevin equation for the fluctuations of the
atomic variables and the fundamental fields~Sec. II! and
together with the steady-state values derive the spectrum for
the relevant quadratures~Sec. III!. In Sec. III we discuss the
experimental feasibility and calculate the degree of squeez-
ing that might be expected in a realistic system. Finally, in
Sec. IV we conclude this work.

II. LINEARIZED QUANTUM LANGEVIN EQUATIONS

Many different approaches have been developed to char-
acterize the quantum fluctuations of a laser. Here we use a
linearized input-output approach in which linearized quan-
tum Langevin equations, derived from the Hamiltonian, are
solved directly in Fourier space to yield solutions for the
quadrature noise spectra. Details regarding such derivation
for a laser system~without a nonlinear crystal! can be found
in Ref. @19#. In this section we use this approach to describe
a system consisting of a laser crystal and a type-II nonlinear
crystal for SHG located inside a common cavity.

*Present address: Institute of Optics, Information and Photonics,
Max-Planck Research Group, University of Erlangen-Nu¨rnberg,
Staudtstr. 7/B2, D-91058 Erlangen, Germany. Electronic address:
andersen@kerr.physik.uni-erlangen.de

PHYSICAL REVIEW A 69, 013808 ~2004!

1050-2947/2004/69~1!/013808~6!/$22.50 ©2004 The American Physical Society69 013808-1



A schematic diagram of the model is shown in Fig. 1~a!.
The frequency doubling laser consists of a four-level laser
crystal ~with one of the levels adiabatically eliminated!, a
type-II nonlinear medium and two orthogonally polarized
ring modes; the parallel polarized mode,ai and the orthogo-
nally polarized modea' ~see Fig. 2!. The former mode con-
stitutes the laser mode as well as one of the fundamental
modes of the type-II SHG process. This mode is therefore
coupled to the lasing atoms via the coupling strengthg and to
the nonlinear crystal via the coupling parameterk. The or-
thogonally polarized mode also has to be taken into account
due to the nondegenerate polarization character of the SHG
process. We assume that this mode does not couple directly
to the laser medium. This is a good assumption as long as the
mode occupies the vacuum state, but it becomes invalid
when the mode is intense. However, the implementation of
an extra ring cavity, which is coupled to the laser cavity
around the SHG crystal, assures that this assumption is valid.
We should point out that we consider the system in a basis
which is rotated 45° with respect to the basis spanned by the
principal axes of the nonlinear crystal@20# as shown in Fig.
2. The reason for this basis shift is to make the intense laser
field parallel to one of the fundamental fields and also be-
cause, as we will see soon, these polarization directions are
particularly interesting.

The Hamiltonian describing the internal mode interaction
in the laser and the SHG process is

H5 i\g~ai
†s232ais23

† !1 i
\k

2
~bai

† 22ba'
†22H.c.!,

~1!

where s23 and s23
† are the collective atomic lowering and

raising operators between levels 2 and 3. The second-
harmonic mode is represented by the annihilation operatorb
and the creation operatorb†. Using the interaction Hamil-
tonian ~1! together with the reservoir Hamiltonian a set of
quantum Langevin equations of motion for the internal field

operators, the occupation operators, and the coherence opera-
tors can be derived directly@19#.

We introduce a series of assumptions consistent with most
laser systems with intracavity SHG. First, we assume that the
decay rate of the second-harmonic field is high; the field
escapes the cavity immediately after its generation, enabling
an adiabatical elimination from the Langevin equations. Fur-
thermore, we assume that the laser coherence, the pump co-
herence, the pump cavity, and the upper level decay very
rapidly. This enables an adiabatical elimination of the pump
mode and the occupation operator of the upper level~see
Ref. @19# for details!. This results in a three-level laser de-
scription as shown in Fig. 1~b!.

The steady-state solutions for the atomic populations and
the fields are required to evaluate the field spectra. The semi-
classical equations of motion are given by

d^ai&
dt

5
G

2
~^s3&2^s2&!^ai&2g i^ai&

2m^ai&* ~^ai&
22^a'&2!,

d^a'&
dt

52g'^a'&1m^a'&* ~^ai&
22^a'&2!,

d^s1&
dt

5k2^s2&2G^s1&, ~2!

d^s2&
dt

5G~^s3&2^s2&!^ai&
21k3^s3&2k2^s2&,

d^s3&
dt

52G~^s3&2^s2&!^ai&
22k3^s3&1G^s1&.

^s i& is the population of leveli scaled by the number of
atomsN and ^an& (n5',i) are the amplitudes scaled by
AN. The total decay rates for the ring modes areg i andg' ,
the pump rate is denoted byG and the decay rate between
levels 3 and 2~2 and 1! is given byk3(k2). G is the stimu-
lated emission rate per photon for the laser mode and the
nonlinear coupling parameter ism, which is proportional
to k2.

Homogeneous steady-state solutions are derived by equat-
ing Eq. ~2! to zero whereby three different solutions are
found. The solutions for the internal fields depend on the
power level of the beam, pumping the laser process, and can
be divided into three regimes as shown in Fig. 3~a!. Below
threshold for laser action, we naturally have^a'&5^ai&50
@region ~i!#. Above laser threshold one of the field solutions
destabilizes associated with the occurrence of the parallel
polarized fundamental field, e.g., the laser field@region~ii !#.
Another instability, which corresponds to the emergence of
the orthogonally polarized fundamental mode, can be
reached by increasing the pump power further@region ~iii !#.

For completeness, the second-harmonic power is shown
in Fig. 3~b!, and we observe that, due to the back-conversion
~associated with the generation of a bright orthogonally po-
larized mode!, the second-harmonic output clamps at a cer-
tain value.

FIG. 1. ~a! Schematic setup of the self-frequency-doubling laser.
~b! Energy-level scheme of the lasing atoms.

FIG. 2. The principal axes of the nonlinear crystal with respect
to the base in which the theory is derived.
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To solve for the quantum dynamics we now conduct a
linearization approximation by inserting the superpositions

w5^w&1dw, w5~a' ,ai ,s1 ,s2 ,s3! ~3!

into the quantum Langevin equations. We then arrive at the
following set of linearized Langevin equations for the
quadrature fluctuations of the fundamental fields:

ddZi

dt
5QG~ds32ds2!^ai&12Am^ai&dZb

in22m^an&
2dZi

62m^ai&^a'&dZ'1A2g i
l dZi

in11A2g i
cdZi

in2

1AGdZp ,

ddZ'

dt
52g'dZ'22Am^a'&dZb

in1@6m~^ai&
22^a'&2!

22m^a'&2#dZ'12m^a'&^ai&dZi1A2g'
l dZ'

in1

1Ag'
c dZ'

in2 , ~4!

where the quadrature fluctuation amplitudes,dZ
5(dX,dY), of the fields are defined byda5 1

2 (dX2 idY),
wheredX anddY represent the amplitude and phase quadra-

tures, respectively.n5i and n5' apply to the amplitude
and the phase quadrature, respectively.Q51 for the ampli-
tude quadrature whileQ50 for the phase quadrature. In
both equations the ‘‘plus’’ sign and ‘‘minus’’ sign are associ-
ated with the amplitude and phase, respectively. The opera-
tors dZin represent the input fluctuations associated with the
various passive loss mechanism whiledZp is the fluctuations
in the laser pump mode.ds2 andds3 are fluctuations asso-
ciated with the atomic populations in the two lasing levels;
levels 2 and 3. Finally, the decay rates for the two fundamen-
tal fields,gn

a andgn
l (n5',i), are associated with the losses

for the cavity mirrors and the other passive losses, respec-
tively.

From the Langevin expressions we see that the quadra-
tures for the parallel polarized mode are, not surprisingly,
directly coupled to the laser process. This means that the
laser noise adds considerable noise to the parallel polarized
mode, which is subsequently transferred into the orthogo-
nally polarized mode. Therefore, we might expect that the
laser source has an adverse impact on the production of
squeezed light, an expectation also alluded to by Whiteet al.
@16# for type-I SHG inside a laser cavity. However, we see
that in the regime where the orthogonally polarized mode is
unexcited, corresponding to region~ii ! in Fig. 3~a!, i.e.,
^a'&50, the mode decouples from the parallel polarized
mode. In turn this means that the laser noise stays in the
latter mode and the orthogonal polarization mode evolves
independent of the laser mode. Setting^a'&50 in the
Langevin equation we find

ddXi

dt
5G~ds32ds2!^ai&12Am^ai&dXb

in22m^ai&
2dXi

1A2g i
l dXi

in11A2g i
cdXi

in21AGdXp ,

ddYi

dt
522Am^ai&dYb

in1A2g i
l dYi

in11A2g i
cdYi

in2

1AGdYp , ~5!

ddX'

dt
52~g'2m^ai&

2!dX'1A2g'
l dX'

in11A2g'
c dX'

in2 ,

ddY'

dt
52~g'1m^ai&

2!dY'1A2g'
l dY'

in11A2g'
c dY'

in2 .

Strictly speaking the linearization approximation breaks
down when the steady-state solution becomes comparable to
the size of its fluctuations. Therefore, in the above-mentioned
case wherê a'&50, the linearization approximation is in-
valid. However, in a realistic system a small part of the par-
allel polarized field will always be coupled to the orthogo-
nally polarized wave due to inevitable imperfect alignment
of the direction of the laser polarization. In fact, only a few
microwatts have to be transferred from the laser polarization
to the orthogonal polarization mode to justify the lineariza-
tion approximation. Due to the vanishingly small amount of
light, which is transferred between the two polarization

FIG. 3. Steady-state solutions as a function of the pump strength
G. Solid curve in~a! represents the parallel polarized field ampli-
tude ~the laser field! while the dashed curve is the orthogonally
polarized mode.~b! The second-harmonic power vs the coupling
strength.
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modes, the seeded light will be at the QNL. Therefore, the
asymmetry will not be detrimental to the production of
squeezed light.

III. NOISE SPECTRA

Having the linearized Langevin equation for the quadra-
tures at our disposal it is now rather straightforward to evalu-
ate the various noise spectra using well-known techniques.

First we note that since the two orthogonally polarized
states are decoupled, the quadratures for the parallel polar-
ized mode@described by the two first evolution equations in
Eq. ~5!# and the second-harmonics mode mimics that of a
singly resonant type-I SHG process located inside a laser
cavity. The noise spectra for this system were derived by
White et al. @16#. They concluded that in an ideal situation
where dephasing of the laser coherence could be eliminated,
a maximum squeezing of only 50% is reachable at zero fre-
quency. However, they also concluded that in any practical
laser system, where realistic values of the laser dephasing
noise is taken into account, no squeezing will occur in either
the fundamental field or the second-harmonic field.

We now turn to the different feature of our system,
namely, the fact that also the orthogonally polarized mode is
affected by the nonlinear process. Therefore, we proceed by
evaluating the output fluctuations of the orthogonally polar-
ized mode,

dY'
out5A2g'

c dY'2dY'
in2 , ~6!

in frequency space, and subsequently derive the quadrature
spectrum:

V'
7~v!517

2g'
c @G~^s3&2^s2&!22g i#

Fg'7g i6
1

2
G~^s3&2^s2&!G2

1v2

, ~7!

where the upper signs and the lower signs refer to the phase
and amplitude quadratures, respectively.v is the analyzing
frequency and

^s3&5
1

2a
~2b1Ab224ac!,

^s2&5G
12^s3&
k21G

,

a5
G2

2m S 11
G

G1k2
D 2

,

b5k31k2

G

G1k2
2GS 11

G

G1k2
D S G

m

G

G1k2
1

g i

m D ,

c5G
G

G1k2
S G

2m

G

G1k2
1

g i

m D2k2

G

G1k2
. ~8!

This corresponds to the steady-state solution indicated by
region ~ii ! in Fig. 3~a!.

We immediately see that the expressions for the spectra
~7! resemble the ones for a subthreshold optical parametric
oscillator@21#. It is a well-known fact that such a process is
capable of producing perfect vacuum squeezing near its os-
cillation threshold@22# at zero frequency. In our case the
phase quadrature is squeezed while the amplitude quadrature
is correspondingly antisqueezed. A very important point that
can be drawn from these spectra is that like in a subthreshold
optical parametric oscillator, the noise of the pump beam
~which is very noisy in our case! does not sabotage the de-
gree of squeezing of the orthogonal polarization state.

IV. EXPERIMENTAL CONSIDERATIONS

We now proceed with a discussion of the experimental
feasibility of generating squeezed light in the system men-
tioned above under realistic conditions.

A practical setup has to fulfill a number of important cri-
teria: It is important to maintain low losses at the orthogo-
nally polarized states in order to obtain high squeezing. Both
the parallel and orthogonal polarization states have to be kept
simultaneously at resonance. It is crucial to make the type-II
phase-matched nonlinear crystal work as a full-wave plate to
avoid unwanted cross coupling between the two polarization
states. Finally beam walkoff has to be eliminated since it
introduces cross coupling between the polarization states.

A setup that fulfills the above-mentioned design criteria is
shown in Fig. 4. A unidirectional bow-tie ring laser, confined
by the mirrors M1–M4, is coupled to a secondary resonator
confined by mirrors M5 and M6 and two polarization beam
splitters, implemented by, e.g., Wollaston prisms~WP!. Wol-
laston prisms have low insertion losses resulting in low
losses in both cavities. The parallel polarized wave circulates
in the laser cavity, while the orthogonally polarized wave is
confined to the coupled cavity avoiding a passage through
the laser crystal.

The cavity containing the laser crystal is a unidirectional
ring laser due to the rectification imposed by the combination
of the Faraday rotator~FR! and the half-wave platel/2. This

FIG. 4. Schematic of an experimental setup to realize the pro-
posed scheme. The parallel polarized fundamental field~the laser
field! resonates between the mirrors M1–M4, while the orthogo-
nally polarized field resonates in a coupled cavity confined by two
Wollaston prisms~WP! and the mirrors M5 and M6. A leakage
through mirror M3 can be used for locking the coupled cavity to the
desired resonance. LC, laser crystal; FR, Faraday rotator andl/2,
half-wave plate.
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assures a stable, single-frequency laser operation completely
avoiding the fluctuations often referred to as ‘‘the green
problem’’ @23#. The second coupled cavity must be phase
locked to the laser cavity. We suggest a convenient solution
where part of the laser field leaking out through mirror M3 is
fed into the coupled cavity in the direction opposite to the
circulating orthogonally polarized wave. This beam does not
disturb the countercirculating orthogonally polarized wave.

A phase-matching scheme without beam walkoff must be
chosen in order to avoid direct coupling of the fundamental
fields. This is achieved either by choosing a lasing wave-
length where noncritical phase matching can be obtained us-
ing a type-II crystal, e.g., KTP~potassium titanium oxide
phosphate! at 1080 nm@24# or by codoping the nonlinear
crystal to match the desired lasing wavelength@25#. Further-
more, careful temperature control should be applied to stabi-
lize the nonlinear crystal as a full-wave plate.

Optimum squeezing in the orthogonally polarized vacuum
state occurs at the point of its oscillation, which corresponds
to ^ai&

25g' /m. Thus we can estimate the diode pump
strength needed to reach the point of instability and
hence optimum squeezing. Using realistic values ofm
58.031024 s21 and g'51.63107 s21 we find ^ai&

2

519.73109, which again corresponds to a pump rate of
11.1 s21. This pump rate is readily reached, using, e.g., a
diode pumped Nd:YVO4 laser.

Figure 5 shows the expected degree of squeezing at 2
MHz as a function of the pump rate normalized to the pump
rate at the instability point. In calculating this degree of
squeezing we have used realistic parameters for the laser
medium~e.g., Nd:YVO4), the cavity, and the nonlinear me-
dium ~e.g., KTP!. Squeezing at oscillation threshold is given
by

V512
4g'

c g'

4g'
2 1v2

. ~9!

From this expression and using the parameters mentioned
above we estimate that as much as 7.5 dB squeezing at 2
MHz should be observable in a realistic experiment.

In Fig. 6 we plot the noise power~normalized to the shot-
noise level! at the oscillation threshold as a function of the
measuring frequency for three distinct values of the coupling
rate of the orthogonally polarized field. Maximum squeezing
is achieved at the impractical zero frequency. However, as
clearly seen from the figure, substantial degree of squeezing
can also be attained for nonzero frequency. To expand the
frequency interval in which squeezing can be obtained the
cavity linewidth has to be increased. This, however, will be
at the expense of a huge increase in the pump power
for reaching the instability point, which is computed to
G511.1 s21, G565.6 s21, and G5165 s21 for the
cases corresponding to the decay ratesg'

c 51.53107 s21

~dotted curve!, g'
c 54.53107 s21 ~dashed curve!, and g'

c

57.53107 s21 ~solid curve!, respectively. Therefore, in
order to generate a broadbanded efficiently squeezed beam, a
powerful and efficient pump source for the laser process is
needed.

V. CONCLUSION

We have investigated, theoretically, squeezing in a fre-
quency doubler based on a type-II phase-matched nonlinear
crystal located inside a laser cavity. The system is resonant
for two orthogonal polarization directions of the fundamental
field ~doubly resonant for the fundamental! while the gener-
ated second-harmonic field is allowed to escape freely. Con-
trary to previously published results concerning type-I fre-
quency doubling, where pump laser noise couples strongly
into the quadratures of the generated laser field and subse-
quently into the generated second-harmonic light, we find
that in the regime between the threshold for generation of the
parallel polarized fundamental laser field and the threshold
for down-conversion into the orthogonally polarized funda-
mental field it is possible to obtain squeezing in the funda-
mental field. In fact, we show that the Langevin equation for
the phase quadrature of the orthogonally polarized funda-
mental is identical to the one for subthreshold optical para-
metric oscillation. Consequently, we claim that our setup can
in principle produce perfectly squeezed light in the orthogo-

FIG. 5. The phase quadrature noise power of the orthogonally
polarized fundamental field as a function of the diode normalized
pump rate. g'

c 51.53107 s21, g'
l 50.753106 s21, g i

c

50.53106 s21, g i
l 52.53106 s21, andv54p3106 s21.

FIG. 6. The phase quadrature noise power of the orthogonally
polarized fundamental field as a function of the frequency at three
different decay rates for the orthogonally polarized mode. Dotted
curve: g'

c 51.53107 s21; dashed curve:g'
c 54.53107 s21; and

solid curve:g'
c 57.53107 s21.
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nally polarized fundamental field near the threshold for
down-conversion. We propose an experiment for verification
of this idea based on a unidirectional bow-tie laser with a
type-II phase-matched second-order nonlinear crystal. The
resonance for the orthogonally polarized light is provided by
a separate cavity, which is aligned with the laser cavity by

means of polarization dependent components.
We believe the proposed method with carefully aligned

components will allow detection of squeezed light from a
frequency doubler internal to a laser, a process which has so
far not been practical due to different noise sources triggered
by the laser process.
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