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The regeneration cycle of streaks and streamwise vortices plays a central role in the sustain-
ment of near-wall turbulence. In particular, the streak breakdown phase in the regeneration
cycle is the core process in the formation of the streamwise vortices, but its current under-
standing is limited particularly in a real turbulent environment. This study is aimed at gaining
fundamental insight into the underlying physical mechanism of the streak breakdown in the
presence of background turbulent fluctuation. We perform a numerical experiment based on
direct numerical simulation, in which streaks are artificially generated by a body forcing
computed from previous linear theory. Upon increasing the forcing amplitude, the artificially
driven streaks are found to generate an intense fluctuation of the wall-normal and spanwise
velocities in a fairly large range of amplitudes. This cross-streamwise velocity fluctuation
shows its maximum at λ+

x ≈ 200−300 (λ+
x is the inner-scaled streamwise wavelength), but it

only appears for λ+
x . 3000− 4000. Further examination with dynamic mode decomposition

reveals that the related flow field is composed of sinuous meandering motion of the driven
streaks and alternating cross-streamwise velocity structures, clearly reminiscent of sinuous-
mode streak instability found in previous studies. Finally, it is shown that these structures
are reasonably well aligned along the critical layer of the secondary instability, indicating that
the surrounding turbulence does not significantly modify the inviscid inflectional mechanism
of the streak breakdown via streak instability and/or streak transient growth.
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1. Introduction

Since discovery of the near-wall coherent structures in 1960s [1], significant research
efforts have been devoted to their precise understanding. Two predominant coher-
ent structures, streaks and streamwise vortices, have been found in the near-wall
region. Streaks [1, 2] are a spanwise alternating pattern of high- and low-momentum
streamwise flow, characterised by a spanwise wavelength of λ+

z = 100 and a long
streamwise wavelength of λ+

x = 1000. On the other hand, streamwise vortices [3]
are characterized by a spanwise spacing of λ+

z = 100, while their streamwise extent
is λ+

x ≈ 200 − 300, much shorter than that of the streaks [4]. The interaction be-
tween streaks and streamwise vortices has been understood to play a central role
in near-wall turbulence production (see also [5] for an early review).
The concept of the ‘minimal flow unit’ using direct numerical simulation has

enabled significant progress in illuminating low-dimensional dynamics of the near-
wall structures. Introduced by [6], it is based on the idea of reducing the com-
putational domain while keeping it constrained to have sustaining of turbulence,
hence allowing for the flow features only relevant to the near-wall region. Hamil-
ton et al. [7] conducted such a numerical experiment for plane Couette flow at a
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low Reynolds number and showed the existence of a cyclic regeneration process
of near-wall structures. This process, often called the self-sustaining process, was
shown to be made up of three distinct phases: formation of streaks via linear lift-up
effect from streamwise vortices, streaks breakdown due to instability and, finally,
streamwise vortices regeneration via nonlinear mechanisms. Jimenéz & Pinelli [8]
further confirmed that this near-wall process is indeed independent of the flow in
the logarithmic and outer regions by showing survival of the near-wall motions in
the absence of outer turbulence. Using a similar numerical experiment constrain-
ing the computational domain only in the spanwise direction, Hwang [9] recently
showed that this self-sustaining near-wall turbulence below y+ ≃ 50 statistically
remains the same in a range of moderate Reynolds numbers.
There have also been a number of theoretical investigations on the origin of

near-wall coherent structures. In particular, the amplification of streaks in the
self-sustaining process has been very well understood with the lift-up effect, the
mechanism by which streamwise vortices transfer energy of the mean shear to
streaks [10–16]. The lift-up effect is associated with the non-normality of the lin-
earised Navier-Stokes operator, and it yields large transient growth of streaks in
linearly stable flows. It is important to mention that this amplification mechanism
of the streaks plays a central role in determining the spanwise spacing of streaks,
i.e. λ+

z ≃ 100. For example, introducing constraints relevant to near-wall turbu-
lence in the evolution time scale [13] or in the wall-normal location [14] was shown
to provide λ+

z ≃ 100 for the largest amplification of the streaks. More recently,
incorporation of an eddy viscosity into the linearised Navier-Stokes equation was
shown to predict the amplification with λ+

z ≃ 100 without such constraints, while
providing physically more sound predictions for the structures in the logarithmic
and outer regions [14–18].
Contrary to the large number of previous work on streak amplification, the physi-

cal processes of generation of streamwise vortices from the linearly amplified streaks
have been much less studied. It has been believed that nonlinearity plays an impor-
tant role in these processes. Hamilton et al. [7] initially proposed that an instability
of the amplified streaks would be the initiating mechanism of new streamwise vor-
tices and that the following nonlinear processes are responsible for their subsequent
amplification. Schoppa & Hussain [19] examined an existing channel flow database
at the time [3], and estimated that streaks subject to normal-mode secondary insta-
bility would be only 20% of the total. They proposed that the initiating mechanism
of the streamwise vortices is more likely to be transient growth of perturbations
around weaker linearly stable streaks (i.e. streak transient growth) rather than to
be the normal-mode instability of streaks. Later, Hœpffner et al. [20] computed op-
timal transient growth of the streaks in laminar boundary layer. They found that
a sinuous-type eigenmode is predominant in both normal-mode streak instability
and streak transient growth, indicating that the underlying physical mechanism of
the two processes is not very different from each other.
While it has been much less understood, another important role, played by the

streak instability and/or the streak transient growth, appears to be determination
of the streamwise length scale of the near-wall structures. Indeed, the normal-mode
stability analysis in [19] shows that the most unstable streamwise wavelength of
the conditionally averaged streaks is λ+

x ≃ 200 ∼ 400, which well corresponds
to the streamwise extent of the near-wall streamwise vortices. Furthermore, the
longest streamwise wavelength of the instability found in [19] is λ+

x ≃ O(1000),
implying that the excitation of the streamwise vortices at longer length scales that
this would not be physically possible. Indeed, the typical streamwise length of the
streaks in the near-wall region is λ+

x ≃ 1000, although all the existing predictions
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by the aforementioned linear theories have shown that the largest amplification of
the streaks appears with infinitely long streamwise wavelength (i.e. λ+

x ≃ ∞). In
support of this observation, it is also worth mentioning [21], in which the feeding
mechanisms of the streamwise vortices were shown not to be active at λ+

x > 1000.
Despite this fundamental importance of streak instability and streak transient

growth in the near-wall turbulence, many of previous studies [7, 19] analysed sta-
bility of streaky base flow without considering the role of background turbulence.
However, as shown by a number of recent linear analyses for streak amplification
via the lift-up effect, incorporation of the effect of turbulence into a stability anal-
ysis for turbulent flow may play a critical role in gaining more sound physical
insight into the coherent structure dynamics in wall-bounded turbulent shear flows
[14–17]. Indeed, the presence of background turbulence may significantly distort
the dispersion relation and the corresponding eigenstructure of the streak instabil-
ity. However, stability analyses of streaks incorporating background turbulence are
very rare: only two studies are currently available in literature [22, 23], and they
are also for the streaky structures in the logarithmic and outer regions (see also [24]
for this issue). Furthermore, in these studies, the effect of background turbulence is
simply modelled with a crude eddy viscosity, raising a question of whether or not
the eddy viscosity would faithfully represent the effect of background turbulence.
The goal of the present study is to directly address this issue arising in the analy-

sis of streak instability in a turbulent flow. In particular, we aim to fully incorporate
the role of background turbulence without using any model. To this end, we intro-
duce a novel numerical experiment based on a set of direct numerical simulations,
in which the streaks are artificially driven by a stationary body forcing in the form
of pairs of counter-rotating streamwise vortices. We note that this body forcing is
directly obtained from one of our previous works [16], and it is designed to drive
the largest amplitude of streaks subject to the linearised Navier-Stokes equation
with an eddy viscosity. The amplitude of the body forcing is then gradually in-
creased for direct observation of streak instability. With careful observation of the
cross-streamwise statistics and the velocity spectra, dynamic mode decomposition
(DMD) is employed [25, 26] to explore more detailed information of the streak
instability, such as the phase speed and the eigenstructure. A discussion on the
present results is then given, and the paper finally concludes with some remarks.

2. Numerical experiment

2.1. Body forcing

We consider fluid flow over a plane channel with height 2h. Density and kinematic
viscosity of the fluid are respectively denoted by ρ and ν. The streamwise, wall-
normal and spanwise directions are denoted as x, y, and z, respectively. The bottom
and top walls are set to be located at y = 0 and y = 2h, respectively. Using the
approach in [16], we compute the body forcing which can drive the streaks for
its subsequent use for direct numerical simulations. As in [27], the velocity field
u = (u, v, w) is considered to be decomposed such that:

u = U0 + u′ + ũ, (1)

where U0 = (U0(y), 0, 0) is the mean velocity, u′ the turbulent velocity fluctuation,
and ũ the organised part of the motions, respectively. If the role of the surrounding
turbulent velocity fluctuation u′ in the organised wave ũ is approximated with an
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eddy-viscosity-based model, the following equation is obtained for small ũ:

∇ · ũ = 0, (2a)

∂ũ

∂t
+ (∇ ·U0)ũ+ (∇ · ũ)U0 = −1

ρ
∇p̃+∇·[νT (∇ũ+∇ũT )] + f̃ , (2b)

where p̃ is the pressure of the small organised wave, and f̃ = (f̃u, f̃v, f̃w) is the
forcing term to be computed.
As in previous studies [14–16], the semi-empirical model proposed by Cess is

considered for the total viscosity νT :

νT (η) =
ν

2

{
1 +

κ2Re2τ
9

(1− η2)2(1 + 2η2)2 × 1− e[(|η|−1)Reτ/A]2
} 1

2

+
ν

2
. (3)

Here, η = (y−1)/h, κ = 0.426 and A = 25.4 from [14]. Also, νT = ν+νt where νt is
the eddy viscosity. The mean-velocity profile U(y) is then obtained by considering
Prandtl’s mixing length model νtdU/dy = −u′v′. It should be noted that the use of
the eddy viscosity (3) for (2) is an approximation for the role of surrounding turbu-
lence with an assumption that the perturbation would feel surrounding turbulence
in the way that the mean velocity does, given the nature of the eddy viscosity di-
rectly related to the mean velocity. Therefore, in principle, the eddy viscosity model
would perform well at best for the motions, the time scale of which is much larger
than or at least is at the order of the time scale of the mean shear (i.e. O(1/S)
where S ∼ O(dU0/dy)). Despite this inherent limitation, it has been shown that the
linear model (2) with the eddy viscosity (3) provides physically sound prediction for
coherent structures (especially streaks) at high Reynolds numbers [14–16, 18]. This
is essentially because the eddy viscosity properly incorporates inhomogeneous tur-
bulent dissipation in the wall-normal direction, as extensively discussed in a recent
work [18].
Since the flow is homogeneous in the two wall-parallel directions, we consider a

single plane Fourier mode for ũ and f̃ :

ũ = û(y, t; kx, kz)e
i(kxx+kzz), (4a)

f̃ = f̂(y, t; kx, kz)e
i(kxx+kzz), (4b)

where kx and kz are the streamwise and spanwise wavenumbers, respectively. If a
harmonic forcing with angular frequency ωf is exerted on the system for given kx
and kz (i.e. f̂(y, t) = f̂ω(y)e

iωf t), the response takes the form of û(y, t) = ûω(y)e
iωf t

for sufficiently large t. This then allows one to pose an optimisation problem to
find the forcing f̂ω which induces the largest energy in the system: i.e.

max
f̂0 ̸=0

||ûω||2

||̂fω||2
, (5)

where ||ûω||2 = (1/h)
∫ h
−h û

H
ω ûω dy (the superscript H denotes the complex con-

jugate transpose). The optimisation problem in (5) is solved with the code used
in [16]. It is based on a Chebyshev-collocation method for discretizing the Orr-
Sommerfeld Squire system in the wall-normal direction [28]. The resulting numer-
ical optimisation problem is solved using the standard method in [29].
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Figure 1. Optimal forcing in the near-wall region. λ+
z = 100, λ+

x = ∞, ωf = 0 and Reτ = 180

The body forcing is computed for λ+
z = 100 and λ+

x = ∞ at Reτ = 180 with
Ny = 129 (Ny is the number of grid points in the wall-normal direction). Figure

1 reports the computed body forcing (i.e. f = Re[f̃(y)eikzz]). The structure of
the forcing is clearly given in the form of a pair of counter-rotating streamwise
vortices concentrated in the near-wall region (y+ < 60), consistent with [16]. Here,
we note that this body forcing does not necessarily generate the largest possible
amplification of streaks in a real turbulent flow, as it is obtained with a crude eddy
viscosity. However, we should also point out that it is difficult to avoid a certain
level of artificiality in the design of such a body forcing, as there is no systematic
way to design a body forcing that generates exactly the same streaks as those in real
flows. In this respect, the use of the present linear model is essentially to minimise
such artificiality based on our previous studies [e.g. 16], which have robustly shown
that the body forcing from the linear model (2) can generate streaks fairly similar
to those in the near-wall region. Indeed, what is the most crucial is the counter-
rotating streamwise vortical form of the body forcing in the near-wall region. Such
form of artificial body forcing has also been previously used in [30] where a set
of invariant solutions of Couette flow are computed using continuation with the
streak instability mode.

2.2. Direct numerical simulation

The computed body forcing is subsequently implemented to a direct numerical
simulation. The direct numerical simulation code employed here is diablo [31],
and it has been validated in previous studies [e.g. 9]. The x- and z-directions are
discretised using the Fourier-Galerkin method with the 2/3 rule for dealiasing,
while the wall-normal direction is discretised using second-order central differences.
The time integration is performed semi-implicitly using the fractional-step method
[32]. All terms with y-derivatives are implicitly advanced with second-order Crank-
Nicolson method, while the rest of the terms are explicitly integrated using a third
order low-storage Runge-Kutta method. All the computations are performed by
imposing a constant mass flux across the channel.
The computational domain for the present numerical experiment is chosen to be

Lx × Ly × Lz = 6πh × 2h × πh. The relatively long streamwise domain is chosen
to allow for a range of streamwise wavelengths of streak instability. The Reynolds
number based on the bulk velocity Ub is chosen as Reb(≡ 2Ubh/ν) = 5600. The
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reference simulation without the body forcing yields the friction Reynolds number
Reτ ≃ 180. The number of grid points are set to be Nx×Ny×Nz = 288×129×96
(after dealiasing). This gives ∆+

x = 11.8 and ∆+
z = 5.9, which are slightly finer

than those in [3]. The wall-normal direction is appropriately stretched to provide
a fine resolution in the near-wall region.
The body forcing obtained from the linear theory (figure 1) is implemented to

the direct numerical simulation. The spanwise computational domain considered
(Lz

+ ≃ 565) allows us to implement the body forcing composed of six pairs of
counter-rotating streamwise vortices with the spanwise spacing of λ+

z ≈ 94. All the
cross-streamwise statistics in section 3 are obtained by averaging them for T =
30h/uτ where uτ is the friction velocity of the reference simulation. Throughout
the present study, all the data are scaled with the friction velocity of the reference
simulation uτ to assess the effect of the forcing.

2.3. Dynamic mode decomposition

The eigenstructure of the streak instability is detected by performing dynamic
mode decomposition (DMD) on the data of direct numerical simulations [25, 26].
The DMD approximates the temporal (or spatial) evolution of given flow fields
onto a finite dimensional linear time-invariant (LTI) dynamical system. The LTI
system is typically constructed with a series of flow-field snapshots, and it may
become an approximation of the Koopman operator especially if the snapshots
are obtained with a statistically stationary attractor. The algorithm of DMD in
this study follows the one in [25, 26], where the LTI system is projected onto a
subspace created by the proper orthogonal decomposition (POD) modes to enhance
robustness of DMD. For further details on the DMD algorithm, the reader may
refer to [26].
We consider a series of flow-field snapshots equispaced in time with the interval

∆t: ψn ≡ ψ(n∆t), where ψn is a flow field (or variable) of interest. Each data
snapshot is assumed to contain M complex elements without loss of generality. If
we assume that the temporal evolution of the given flow fields is generated by a
discrete-time linear time-invariant system, it can be written as

ψn+1 = Aψn, for n = 0, 1, ..., N − 1. (6)

Supposing that N +1 samples in time are collected, we can form the following two
matrices:

Ψ0 = [ψ0 ψ1 · · · ψN−1] ∈ CM×N , (7a)

Ψ1 = [ψ1 ψ2 · · · ψN ] ∈ CM×N . (7b)

The relation between Ψ0 and Ψ1 is then given by

Ψ1 = AΨ0. (8)

We then project A onto the space spanned by the POD modes of Ψ0, such that:

A ≃ UFUH , (9)

where U ∈ CM×r is a unitary matrix, the column vector of which corresponds to
each POD mode, and the superscript H denotes the complex conjugate transpose.



February 9, 2017 Journal of Turbulence tJOTguide

Journal of Turbulence 7

The matrix U is obtained by an economy-size singular value decomposition (SVD)
of Ψ0:

Ψ0 = UΣVH , (10)

whereΣ = diag{σ1, σ2, ..., σr} with non-zero singular value σn for n = 1, 2, .., r, and
V ∈ Cr×N is a unitary matrix, the row vector of which characterises the temporal
dynamics of each POD mode. Finally, minimisation of the difference between the
left-hand and the right-hand sides in (8) gives

F = UHΨ1VΣ−1, (11)

where F ∈ Cr×r.
Now, we assume that F has linearly independent eigenvectors yj and the corre-

sponding eigenvalues µj for j = 1, 2, ..., r. Then, Uyj and µj respectively approxi-
mate the eigenvectors and eigenvalues of A (DMD modes). Using the eigenfunction
expansion, the evolution of a given flow field is approximated by

ψn ≈
r∑

j=1

αjµ
n
jUyj , (12)

where αj represents as the ‘amplitude’ of the corresponding DMD modes. In the
present study, αj has been computed following the optimisation procedure given
in [26].

3. Results and discussion

3.1. Streak amplification

As described in section 2.2, a set of direct numerical simulations are performed with
the real part of the stationary optimal body forcing computed in section 2.1 (figure
1). To be consistent with the definition of the norm in (5), the forcing amplitude
is defined such that:

∥f∥ =
2

V

∫
V
fHfdV, (13)

where V (= Lx×Ly ×Lz) is the volume of the computational domain. A relatively
wide range of the forcing amplitude is considered from ∥f∥ = 0 to ∥f∥ = 4.7u2τ/h.
Application of the body forcing with sufficiently large forcing amplitudes has been
found to yield non-negligible elevation of turbulent skin friction. We note that this
is somehow expected, as the ‘lift-up’ effect has recently been found to play a crucial
role in turbulent skin-friction generation by mediating the streamwise momentum
exchange in the wall-normal direction [33, 34]. The friction Reynolds number of the
simulations is therefore found to increase with the forcing amplitude: for example,
Reτ = 190 for ∥f∥ = 0.47uτ

2/h, Reτ = 202 for ∥f∥ = 0.94uτ
2/h, and Reτ = 235

for ∥f∥ = 2.8uτ
2/h, respectively.

Figure 2 reports instantaneous flow fields of the streamwise velocity fluctuation,
as the forcing amplitude is gradually increased. The flow fields clearly reveal that
the considered body forcing generates the streaky structure extending over the
entire streamwise domain. More careful inspection also enables us to observe that
the artificially driven streaks actually meander in the streamwise direction (see e.g.
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(a) (b)

(c) (d)

Figure 2. Instantaneous field of the streamwise velocity fluctuation (u′+ = −4): (a) ∥f∥ = 0; (b) ∥f∥ =
0.0470 u2

τ/h; (c) ∥f∥ = 0.470 u2
τ/h; (d) ∥f∥ = 4.70 u2

τ/h.

figure 2d). This issue will be discussed in detail with the velocity spectra and the
dynamic mode decomposition (see sections 3.2 and 3.3).
Cross-streamwise view of the mean streamwise velocity U+(y, z) is calculated

with the artificially driven streaks, as shown in figure 3. The mean streamwise
velocity reveals the action driven by the body forcing in the form of the counter-
rotating vortices (figure 1): the low-speed fluid along z+ = 0 is pumped away from
the wall, while the high-speed fluid along z+ ≃ ±50 is brought to the near-wall
region (i.e. lift-up effect). As the forcing amplitude is increased, the formation of the
streaks becomes evident in the the mean streamwise velocity U+(y, z). Especially,
the spanwise width of the low-speed region around z = 0 appears to be narrower
with the increase of the forcing amplitude, whereas that of the high-speed region
around z+ ≃ ±50 becomes wider. We note that this feature has also been observed
from the streaks in transitional boundary layer [35], suggesting that it is probably
a general nonlinear behaviour for the high-amplitude streaky flow.
Two statistical measures are introduced to quantify the amplification of the

streaks by the body forcing. First, following the triple decomposition introduced
in (1) (see also [27]), the norm of the organised part of the streaky turbulent flow
is computed, such that:

∥ũ∥ = ∥U(y, z)−U0(y)∥, (14)
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Figure 3. Cross-streamwise view of streaky mean flow U+(y, z): (a) ∥f∥ = 0.47u2
τ/h (A+

s = 1.39); (b)

∥f∥ = 2.82u2
τ/h (A+

s = 3.24). Here, the contour labels are uniformly spaced with ∆U+(y, z) = 0.9.

where U(y, z) = (U(y, z), V (y, z),W (y, z)) is the streaky mean flow obtained with
the non-zero body forcing, and U0(y) = (U0(y), 0, 0) is the mean flow without
forcing. We note that if the closure model in (2) was correct, ũ in (14) for small
forcing amplitude would be identical to that in (2). However, this is not likely to
happen, given the crudeness of the closure model based on an eddy viscosity in (2).
Nevertheless, the computation of ∥ũ∥ with (14) allows us to assess the fidelity of
the eddy viscosity model in (2) at least in a partial manner.
The second measure is introduced following the definition of the streak amplitude

used in a laminar boundary layer and previous studies [22, 23, 35]. Using the mean
velocity, the streak amplitude is defined as:

A+
s =

1

2
[max
y,z

(U+(y, z)− U+
0 (y))−min

y,z
(U+(y, z)− U+

0 (y))]. (15)

However, it should be noted that the definition of A+
s in (15) is not exactly the same

as the one in the previous studies, as U+(y, z) in (15) is affected by the presence of
the streak instability in the flow field especially with the high forcing amplitude.
Therefore, care should be taken in interpreting the present results using A+

s .
Finally, it needs to be mentioned that we have attempted to use the definition

based on the streak lift angle for the streak amplitude following [19]. However,
application of this definition was found not to suit very well to the streaky mean
flows in the present study. While we do not clearly understand the origin of this
technical issue, we note that the streaky mean flow in the present study is statis-
tically stationary, as it is driven by a stationary body forcing. However, the one in
[19] was obtained with a phase average of the spatio-temporally evolving streaks.
Furthermore, although the body forcing obtained in section 2.1 appears to well
generate streaky flows in the near-wall region, these streaks would not necessarily
be exactly the same as those naturally emerging in the near-wall region. These is-
sues are probably associated with the non-suitability of the streak-lift-angle-based
definition in [19] to the present streaky flows. In this respect, it is finally worth
mentioning the recent work of [36], in which a new definition on the streak am-
plitude is introduced. However, in the present study, we have not examined this
definition of the streak amplitude.
The two measures for the size of the streaks in (14) and (15) are reported in figure
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Figure 4. Flow field response with respect to the forcing amplitude: (a) ∥ũ+∥; (b) A+
s . In (a), the linear

curve is ∥ũ+∥ = 1.73 ∥fh/u2
τ∥ and is the best fit obtained with the first three points (including zeros).

3.1. As the forcing amplitude ∥f∥ is gradually increased, both ∥ũ∥ and A+
s are also

found to increase. For ∥f∥ . 0.3u2τ/h, they roughly appear to increase linearly with
∥f∥, although very precise calculation of ∥u∥ and A+

s for such low amplitudes was
found to be fairly difficult due to the statistical error originating from the finite
interval for time average. At such small forcing amplitudes, the streak amplification
approximately follows a linear fit ∥ũ+∥/∥fh/u2τ∥ ≃ 1.73. We note that this value is
larger than ∥ũ+∥/∥fh/u2τ∥ ≃ 0.85 obtained by solving the optimisation problem (5)
with (2), indicating that the turbulent dissipation provided by the eddy viscosity in
(2) appears to be stronger than that by real turbulence. Nevertheless, the value of
∥ũ+∥/∥fh/u2τ∥ from the present numerical experiment is still at the same order as
that from the linear model (2), indicating that the linear model (2) with the eddy
viscosity is not so inaccurate in predicting the streak amplification at least for the
forcing profile considered in the present study. This is in sharp contrast to the linear
model without eddy viscosity, as it was recently found that exclusion of the eddy
viscosity in (2) typically predicts two orders of magnitude larger ∥ũ+∥/∥fh/u2τ∥ at
this Reynolds number (Reτ ≃ 180) [37].

3.2. Statistical evidence of streak instability

To seek statistical evidence of streak instability, the velocity spectra from the un-
forced and forced simulations are examined. Figure 5 shows a structural compari-
son between one-dimensional streamwise wavenumber spectra in the unforced and
forced cases. The spectra of the unforced case show the typical features of the
near-wall turbulence: the peak at y+ ≃ 10 − 15 and λ+

x ≃ 1000 in the stream-
wise wavenumber spectra of streamwise velocity well represents the wall-normal
structure and the streamwise length of the near-wall streaks (figure 5a), while the
peaks at y+ ≈ 45 − 50 and λ+

x = 200 ∼ 300 in the spectra of wall-normal and
spanwise velocities (figures 5c,e) well depict the streamwise vortices. Interestingly,
introduction of the body forcing at kx = 0 (λ+

x ≃ ∞) does not appear to change
these peak locations (note that direct effect of the body forcing is not visible with
the logarithmic axis of λ+

x in figure 5, as the body forcing is given at λ+
x ≃ ∞): the

streamwise velocity spectra still retain the peak at y+ ≃ 10 − 15 and λ+
x ≃ 1000

(figure 5b), and the spectra of wall-normal and spanwise velocities show the peak
at y+ ≈ 45− 50 and λ+

x = 200 ∼ 300 (figures 5d,f). However, the intensities of the
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Figure 5. Premultiplied one-dimensional streamwise wavenumber spectra of (a,b) streamwise, (c,d) wall-
normal, and (e,f) spanwise velocities: (a, c, e) ∥f∥ = 0; (b, d, f) ∥f∥ = 2.82u2

τ/h. Here, the contour colour
indicates spectral intensity, and the labels indicate 0.25, 0.5, and 0.75 times of the maximum of each
spectrum.
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Figure 6. Premultiplied streamwise wavenumber spectra of (a) streamwise, (b) wall-normal, and (c) span-
wise velocities. Here, the spectra are taken at their peak wall-normal location shown in figure 5: i.e. y+ ≈ 15
for the streamwise velocity, whereas y+ ≈ 50 for the wall-normal and spanwise velocities. The curves are:
—–, unforced; - - - -, ∥f∥ = 0.282u2

τ/h; · · · · · · , ∥f∥ = 0.470u2
τ/h; − · − · −, ∥f∥ = 0.940u2

τ/h; - - - -,
∥f∥ = 1.880u2

τ/h; · · · · · · , ∥f∥ = 2.820u2
τ/h.

spectra are found to be significantly changed by the body forcing especially for the
wall-normal and spanwise velocities (figures 5d,f), even though the body forcing
is given only for zero streamwise wavenumber (see the contour colours of figure 5).
Figure 6 shows how the spectral intensities of each velocity component change

on increasing the forcing (or streak) amplitude. The amplification for finite wave-
lengths λ+

x < ∞ appears only in the wall-normal and spanwise velocity spectra
(figures 6b,c), whereas the streamwise velocity spectra remain roughly the same
(figure 6a). The largest amplification in the wall-normal and spanwise velocity
spectra takes place around λ+

x ≈ 200 − 300, and the elevation of the spectral in-
tensity appears to be limited around λ+

x ≈ 2000− 3000 (figures 6b,c). It should be
stressed that the body forcing here is provided only at λ+

x = ∞ and that its main
role is to generate the streamwise uniform streaks carrying large streamwise veloc-
ity. However, the intensive energy amplification in the spectra of the wall-normal
and spanwise velocities at much shorter streamwise wavelengths (λ+

x ≈ 200− 300)
clearly suggests that there must be another mechanism in play in addition to the
streak amplification. In this respect, it is important to highlight that the short
streamwise wavelength of the energy elevation in the spectra (λ+

x ≈ 200−300) cor-
responds well to the most unstable streamwise wavelength in the previous streak
instability analysis with the molecular viscosity [19]. Furthermore, in their anal-
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ysis, the streamwise wavelength of the instability was found to be bounded by
λ+
x ≈ 3000 − 4000. The energy elevation in the spectra of the cross-streamwise

velocity components in our numerical experiment appears to well capture these
features, suggesting that the streaks driven by the body forcing in the present
numerical experiment are likely to experience the streak instability.

3.3. Dynamic mode decomposition

Now, we apply DMD to the numerical simulations to identify the eigenstructure
associated with the streak instability. The following data for y+ ≤ 70 are taken as
the complex snapshots ψn in section 2.3:

ψn(y, z; kx) =

 û(y; kx, kz)e
ikzz + û(y; kx,−kz)e

−ikzz

v̂(y; kx, kz)e
ikzz + v̂(y; kx,−kz)e

−ikzz

ŵ(y; kx, kz)e
ikzz + ŵ(y; kx,−kz)e

−ikzz

 , (16)

where û(y; kx, kz), v̂(y; kx, kz), and ŵ(y; kx, kz) are respectively the Fourier coef-
ficients of the streamwise, wall-normal and spanwise velocities from DNS. Since
the spanwise spacing of the eigenstructure of the streak instability should broadly
correspond to the separation of the driven streaks, kz is given to be the same as
that of the body forcing (i.e. λ+

z = 94). The streamwise wavenumber kx is then
chosen in the range of λ+

x = 200− 300. Once the DMD modes are computed with
the eigenvalues µj for given kx and kz, the associated angular frequency ωj is com-
puted with ωj = i lnµj/(∆t). The phase speed (i.e. downstream propagating speed)
of the DMD mode is then determined as

cj =
i lnµj

kx∆t
, (17)

where cj is the phase speed of the j-th DMD mode. The relative amplitude (or
energy) αj of all the DMD modes is finally determined. The time interval, the
number of POD modes, and the number of the snapshots for the DMD in the
present study have been carefully chosen to ensure good resolution of the near-wall
dynamics: ∆t+ = 0.77, r = 30 and N = 2000. A detailed discussion on the choice
of these parameters is given in Appendix A.
Figure 7 shows the DMD result for λ+

x = 200. All the computed eigenvalues
of the DMD modes µj are found to be located over the unit circle in the Re(µ)-
Im(µ) plane, indicating that they are almost neutrally stable (figure 7a). We note
that this is expected, as the applied snapshots are from statistically stationary flow
fields. Computation of the phase speed cj and the amplitude αj of the DMD modes
reveals that their phase speed is consistently observed around c+ ≃ 8− 16 (figure
7b) and, in particular, the most energetic DMD mode shows c+ ≃ 11.8. The phase
speed of the most energetic DMD mode is robustly obtained within c+ ≃ 11− 13
throughout the present study, as long as the DMD parameters are chosen to ensure
good resolution for the near-wall dynamics (i.e. ∆t+ < 1, r ≥ 30, N ≥ 1000). We
also note that this phase speed is in good agreement with the propagation velocity
c+ ≃ 10 of the near-wall structure found in [38].
The structure of the DMD modes is also examined. A typical example of the most

energetic DMD mode (the most energetic mode for N = 2000, r = 30, λ+
x = 200)

is visualised in figure 8. The flow structure is characterised by sinuous meander-
ing motion of a streak mainly located for y+ ≤ 20 (blue isosurface in figure 8).
The structure of the negative wall-normal velocity shows a streamwise-alternating
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Figure 7. Dynamic mode decomposition (r = 30, N = 2000, ∥f∥ = 2.82u2
τ/h and λ+

x = 200): (a)
eigenvalues of F, µj ; (b) the normalised amplitude of the DMD mode, αj . Here, the red dot and bar
indicate the most energetic DMD mode.
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Figure 8. Visualisation of the most energetic DMD mode (N = 2000, r = 30, λ+
x = 200). To highlight

meandering of the low-speed streak, the visualised flow field is chosen to be uvis = U(y, z)− ⟨U(y, z)⟩z +
ksudmd where ⟨·⟩z denotes average in z-direction, ks is an appropriate tuning constant for visualisation,
and udmd is the DMD mode. Here, blue- and yellow-coloured surfaces indicate iso-surfaces of negative
streamwise and wall-normal velocity, respectively.

pattern above the streak flanks, and it is elongated and positively inclined in the
streamwise direction. This structure of the wall-normal velocity is mainly located
at 20 ≤ y+ ≤ 60, consistent with the spectra of the wall-normal velocity in figure
5 where the largest amplification of the spectral intensity is observed at y+ ≃ 50.
The structure of the DMD mode in figure 8 is clearly reminiscent of the ‘sinuous’
mode of the streak instability. It should be noted that this structure is a robust
feature to the choice of the DMD parameters. Indeed, most of the most energetic
DMD modes computed by varying the DMD parameters are in this form (i.e. the
streamwise wavelength λ+

x , the number of snapshots N , and the number of POD
modes r).
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Figure 9. Velocity fluctuations around the streaky mean flow(∥f∥ = 2.82u2
τ/h): (a) urms(y, z); (b)

vrms(y, z); (c) wrms(y, z). Here, the black curve indicates U+(y, z) = c+ where c+ = 11.76 is the phase
speed of the most energetic DMD mode (with r = 30, N = 2000).

Finally, the velocity fluctuations around the streaky mean flow U(y, z) are inves-
tigated, as shown in figure 9. The regions of maximum streamwise velocity fluctua-
tions are approximately located on the flanks of the low-speed streaks (y ≃ 10 and
z± 15− 20 in figure 9a). On the other hand, the region of the intense wall-normal
velocity fluctuation is found much further from the wall (y+ ≃ 40− 50), consistent
with the spectra in figure 5(d). Finally, the spanwise velocity fluctuation appears
at the crest of the low speed streaks, and, unlike the streamwise and wall-normal
velocity fluctuations, it shows the single maximum at this location. The structural
features of the velocity fluctuations in the y-z plane are very similar to those of
the sinuous mode of the streak instability [e.g. 22, 23, 35], directly supporting the
DMD result in figure 8.
In figure 9, the velocity fluctuations are plotted with the curve U+(y, z) = c+

where c+ is the phase speed of the most energetic DMD mode. The curve
U+(y, z) = c+ is supposed to indicate the critical layer in a linear inviscid sta-
bility analysis around the streaky mean flow if the resulting eigenmode exhibits
the phase speed c+. Despite the presence of some uncertainty in the phase speed
computed with DMD (the computed c+ from the DMD is typically in the range of
8 < c+ < 16; figure 7b), the streamwise velocity fluctuations appear to be reason-
ably well aligned with U+(y, z) = c+. We note that the equation for the inviscid
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stability analysis is supposed to be singular along U+(y, z) = c+ [39] and that the
streamwise velocity component of the eigenmode of the streak instability in a lam-
inar boundary layer was previously shown to be aligned along U+(y, z) = c+ [35].
This important similarity to the streak instability in a laminar flow suggests that
the turbulent dissipation mechanism in the near-wall region does not significantly
affect the inviscid inflectional mechanism of the streak instability. This issue will
be further discussed in section 4.

4. Discussion

4.1. The streamwise size of near-wall coherent structures

Thus far, a body forcing designed to drive the streamwise uniform near-wall streaks
has been implemented in a numerical experiment of a turbulent channel flow. The
instantaneous velocity field and the cross-streamwise first-order statistics (section
3.1) clearly confirm that the amplified streaks are generated by the body forcing.
As the forcing amplitude is gradually increased, the amplified streaks begin to gen-
erate an energetic flow structure mainly composed of the cross-streamwise velocity
components. The spectra of both the wall-normal and spanwise velocities showed
that the dominant streamwise wavelength of this structure is λ+

x ≈ 200− 300 and
its wall-normal location is given at y+ ≈ 50. The streamwise length scale and the
main wall-normal location of the structure clearly well correspond to the near-wall
quasi-streamwise vortices [4]. It should be stressed that the implemented body
forcing is independent of the streamwise direction. Therefore, the short streamwise
wavelength observed at λ+

x ≈ 200−300 in the spectra of the wall-normal and span-
wise velocities would not be able to directly originate from the forcing itself. This
suggests that the vortical structures with a finite streamwise extent are generated
due to streak breakdown and the following nonlinear regeneration phase. Indeed,
the streamwise wavelength of λ+

x ≈ 200−300 agrees very well with the most unsta-
ble streamwise wavelength of the near-wall streaks in previous theoretical analysis
without incorporation of background turbulence [19]. The present numerical anal-
ysis demonstrates that their analysis would be qualitatively correct even in highly
turbulent flow environment. Finally, the wall-normal and spanwise velocity spectra
indicate that the streamwise size of this streamwise vortical structure is bounded
roughly at λ+

x ≈ 2000 − 3000, suggesting that that the feeding mechanism of the
streamwise vortices may not be possible for λ+

x > O(1000). This probably ex-
plains why the streamwise length of the near-wall streaks is only λ+

x ≃ 1000, even
though its amplification mechanism would prefer infinitely long streamwise length
(λ+

x = ∞) according to linear theories [e.g. 14–17].

4.2. Physical mechanism and critical layer

Application of the DMD and further inspection of the second-order cross-
streamwise statistics suggests that the amplified vortical structure at λ+

x ≈ 200−
300 appears to be closely associated with the ‘sinuous mode’ streak instability given
in the form of a streamwise meandering streak and alternating cross-streamwise
velocity components. The sinuous mode, which emerges in instability of streaky or
streamwise vortical flows, has been well understood to originate from high spanwise
mean shear in the streaky base flow: i.e. ∂U(y, z)/∂z [e.g. 22, 23, 35, 40]. The sin-
uous instability mode is essentially an inviscid mechanism caused by the spanwise
inflection point in U(y, z).
In the present study, the structure of the sinuous mode has been found to be
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Figure 10. Amplification of the streamwise wavenumber spectrum of the wall-normal velocity (λ+
x = 200

and y+ ≃ 50 from figure 5b) with the streak amplitude.

reasonably well aligned along the layer satisfying U+(y, z) = c+ (i.e. critical layer).
As mentioned, in linear stability analysis around a streaky base flow, the equation
of motion becomes singular in the inviscid limit with the layer satisfying U+(y, z) =
c+ (i.e. the critical layer) [39], and the streamwise velocity of the instability mode
has been found to be well aligned along the critical layer in the previous analysis
for a laminar boundary layer [35]. Although the instability mode in the present
numerical experiment does not appear to compactly reside along the critical layer
as that in the inviscid stability analysis, the alignment of the streamwise velocity of
the instability structure suggests that background turbulence does not significantly
modify the role of the critical layer. In this respect, it is finally worth mentioning
that, in the near-wall region, the inertial and dissipation length scales are not
separated: indeed, both are δν(≡ ν/uτ ). This implies that the role of turbulent
dissipation in the near-wall region appears to be minor and that the dissipation
mechanism in the near-wall region should be dominated by the molecular viscosity.
This explains why the structure of the instability in relation to the critical layer
remains very similar to that in a laminar flow.

4.3. Emergence of the streak instability mode in noisy turbulent environment

The nature of the streak instability has been understood to be subcritical, involving
a strong transient growth around the streaky base flow with the sinuous mode
[19, 20]. This implies that the relevant linearised system for the streak instability
would be highly non-normal, resulting in strong response of the instability mode to
external noise even for small streak amplitude [41]. Therefore, it is expected to be
difficult to find any critical point of the emergence of instability, and this is indeed
demonstrated by figure 10: the streamwise wavenumber spectrum intensity of the
wall-normal velocity at λ+

x = 200 and y+ ≃ 50 (from figure 5b) exhibits a rather
simple monotonic growth on increasing the streak amplitude. This suggests that the
growing sinuous mode instability in a streak would emerge almost immediately with
the streak amplification in turbulent flow. Therefore, in practice, distinguishing
streak transient growth from streak instability would be practically impossible in
a turbulent flow, as was pointed out by [20].
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Table A1. Energy (%) contained in r = 30 and r = 50 modes with several

total numbers of modes. N = 1000, ∆t = 0.1, λ+
x = 200, ∥f∥ = 2.82u2

τ/h.

N 30 50 70 100 120 150 180

30 modes 100 96.15 95.36 95.18 95.17 95.17 95.17
50 modes 100 99.17 98.99 98.98 98.98 98.98

5. Concluding remarks

In the present study, the emergence of near-wall streak instability has been con-
firmed in a fully-developed turbulent flow. The numerical experiment in this study
has unambiguously demonstrated its crucial role in the generation of near-wall
streamwise vortices (figure 5) as well as the selection of the streamwise length
scale in the near-wall region. The present study can be extended particularly to
the coherent structures in the logarithmic and outer regions emerging in the form of
Townsend’s attached eddies, as it was recently demonstrated that these structures
also manifest the self-sustaining process in exactly the same way as in the near-wall
region [24, 33]. We currently hope that this investigation plays an illuminating role
in the current debate on the generation mechanism of the vortex packet in the
logarithmic and outer regions: i.e. merger and growth of near-wall hairpin vortices
[42] vs the streamwise vortex packet generation via streak instability [24].
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Especially, the last author of this paper (Y.H) has been privileged with produc-
tive scientific communication with Javier over a number of years, and gratefully
acknowledges this. This work is supported by Engineering and Physical Sciences
Research Council (EPSRC) in the UK (EP/N019342/1).

Appendix A. Choice of parameters for Dynamic Mode Decomposition

Three main parameters of the algorithm can be combined in a large number of
possibilities: number of modes r for the decomposition, and number of snapshots
N and time step ∆t for the data provided to the algorithm.

A.1. The number of POD modes r

The number of POD modes is decided based on how much energy is contained by
first r POD modes. This test is performed with N 6 1000, ∆t = 0.1, λ+

x = 200
and ∥f∥ = 2.82u2τ/h, and its result is summarised for r = 30 and r = 50 in table
A1. It is found that the first 30 most energetic POD modes cover approximately
95% of the total energy, and the first 50 most energetic modes cover about 99% of
the energy (table A1). This result depends very little on N , for N > 100. In the
present study, both r = 30 and r = 50 have been used.

A.2. The number of snapshots N

The minimum number of snapshots required is determined as follows. First, the
N -th snapshot is assumed to be written as a linear combination of all the previous
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N − 1 snapshots with a residual vector res [25]: i.e.

ψN = Ψ0a+ res, (A1)

where a = [a1 a2 ...aN−1]
T is a column vector for the coefficients of the linear

combination. We note that if the norm of res goes to zero for a sufficiently large N ,
the number of snapshots is large enough to create a subspace covering any flow field
generated by a numerical simulation or an experiment. The minimum residual res
is computed by introducing the economy-size QR decomposition of the snapshots
Ψ0 = QR, and the coefficients of the linear combination are given by

a = R−1QHψN . (A2)

Then, (A1) and (A2) allow us to find the residual and its norm.

Figure A1 shows the behaviour of the residual norm ∥res∥2(≡
√

rHesres) upon
increasing N . It appears that N = 150 is enough to represent the evolution of the
flow field, as the residual norm becomes O(10−9). Above N = 300, the value of the
residual is at O(10−15). Therefore, N = 150 is selected as the minimum acceptable
number of snapshots. Further analysis also reveals that considering N ≈ 1000
ensures the eigenvalues of F to be located along the unit circle with good precision
(see figure 7a). For this reason, N ≥ 1000 is considered throughout the present
study.

A.3. Snapshot time interval ∆t

Through careful inspection, the snapshot time interval for DMD has been chosen
as ∆t+ = 0.77. We note that the near-wall eddy turn-over scale T+ is at O(10 −
100), and this value of ∆t+ was found to ensure that the eigenvalues of F are be
located along the unit circle with good precision (see figure 7a). Indeed, an order-
of-magnitude increase of ∆t from this value has been found to yield a non-negligible
random scattering of the eigenvalues of F along the circumference of the unit circle
|µ| = 1, due to low sampling frequency.
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