115 research outputs found

    Results of Dynamic Testing on Friction H-piles

    Get PDF
    A case history on the design and installation of pile foundations for support two taxiway bridges at the MidAmerica Airport is presented. The pile foundations included the use of heavy HP steel piles designed as friction piles embedded in a stiff clayey silt till. Typical pile foundations in the area consist of H-piles or closed-ended pipe piles driven to bedrock. The use of slightly shorter friction piles allowed substantial savings due to the large number of piles required to support the heavily-loaded bridges. An extensive dynamic testing program was performed to measure allowable pile capacities and soil setup. The taxiway was constructed across a wetlands area with soft, compressible soils where embankment loads caused up to 1-1/2 feet of settlement and negative skin friction on the piles. Longer piles with the same cross sectional area were used to offset the negative skin friction

    Side-Chain Boron Difluoride Formazanate Polymers via Ring-Opening Metathesis Polymerization

    Get PDF
    The synthesis, characterization, and ring-opening methathesis polymerization (ROMP) of a novel norbornene-based boron difluoride (BF2) formazante monomer are described in detail. The polymerization studies confirmed ROMP to occur in the presence of BF2 formazanates, and also demonstrated the controlled nature of the polymerization. The polymers retained many of the unique characteristics of the monomers in dichloromethane, including absorption and emission at maximum wavelengths of 518 and 645 nm, large Stoke\u27s shifts (uST = 127 nm, 3,800 cm-1), and the ability to act as electron reservoirs to form borataverdazyl-based poly(radical anions) (E°red1 = -0.95 V). Furthermore, the results described in this paper demonstrate the potential of these and related polymers based on BF2 formazanates as redox-active, light-harvesting materials

    A new approach to high resolution, high contrast electron microscopy of macromolecular block copolymer assemblies

    Get PDF
    Determining the structure of macromolecular samples is vital for understanding and adapting their function. Transmission electron microscopy (TEM) is widely used to achieve this, but, owing to the weak electron scattering cross-section of carbon, TEM images of macromolecular samples are generally low contrast and low resolution. Here we implement a fast and practically simple routine to achieve high-contrast imaging of macromolecular samples using exit wave reconstruction (EWR), revealing a new level of structural detail. This is only possible using ultra-low contrast supports such as the graphene oxide (GO) used here and as such represents a novel application of these substrates. We apply EWR on GO membranes to study self-assembled block copolymer structures, distinguishing not only the general morphology or nanostructure, but also evidence for the substructure (i.e. the polymer chains) which gives insight into their formation mechanisms and functional properties

    Sport, genetics and the `natural athlete': The resurgence of racial science

    Get PDF
    This article explores the ethical implications of recent discussions that naturalize the relationship between race, the body and sport within the frame of genetic science. Many suggestions of a racially distributed genetic basis for athletic ability and performance are strategically posited as a resounding critique of the `politically correct' meta-narratives of established sociological and anthropological forms of explanation that emphasize the social and cultural construction of race. I argue that this use of genetic science in order to describe and explain common-sense impressions of racial physiology and sporting ability is founded on erroneous premises of objectivity and disinterest, and inflates the analytical efficacy of scientific truth claims. I suggest that assertions of a value-free science of racial athletic ability reify race as inherited permanent biological characteristics that produce social hierarchies and are more characteristic of a longer history of `racial science'

    Dispersal and reproductive careers of male mountain gorillas in Bwindi Impenetrable National Park, Uganda

    Get PDF
    Dispersal is a key event in the life of an animal and it influences individual reproductive success. Male mountain gorillas exhibit both philopatry and dispersal, resulting in a mixed one-male and multimale social organization. However, little is known about the relationship between male dispersal or philopatry and reproductive careers in Bwindi mountain gorillas. Here we analyze data spanning from 1993 to 2017 on social groups in Bwindi Impenetrable National Park, Uganda to examine the proportion of males that disperse, age of dispersal, pathways to attaining alpha status, fate of dispersing males and philopatric males, and male tenure length as well as make comparisons of these variables to the Virunga mountain gorilla population. We report previously undocumented cases of dispersal by immature males and old males and we also observed the only known case of a fully mature male immigrating into a breeding group. We used genetic tracking of known individuals to estimate that a minimum of 25% of males that disperse to become solitary males eventually form new groups. No differences were found between the Bwindi and Virunga population in the age of male dispersal, the proportion of males that disperse, the age of alpha male acquisition, and dominance tenure length. The lack of differences may be due to small sample sizes or because the observed ecological variability does not lead to life history differences between the populations. Males in both populations follow variable strategies to attain alpha status leading to the variable one-male and multimale social organization, including dispersal to become solitary and eventually form a group, via group fissioning, usurping another alpha male, or inheriting the alpha position when a previous group leader dies

    CDPKs CPK6 and CPK3 Function in ABA Regulation of Guard Cell S-Type Anion- and Ca(2+)- Permeable Channels and Stomatal Closure

    Get PDF
    Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca(2+) in guard cell ion channel regulation. However, genetic mutants in Ca(2+) sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+)-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+) activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+)-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+)-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+) oscillation experiments revealed that Ca(2+)-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+)-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+)-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling

    Touch induces ATP release in Arabidopsis roots that is modulated by the heterotrimeric G-protein complex

    Get PDF
    Amongst the many stimuli orienting the growth of plant roots, of critical importance are the touch signals generated as roots explore the mechanically complex soil environment. However, the molecular mechanisms behind these sensory events remain poorly defined. We report an impaired obstacle-avoiding response of roots in Arabidopsis lacking a heterotrimeric G protein. Obstacle avoidance may utilize a touch-induced release of ATP to the extracellular space. While sequential touch stimulation revealed a strong refractory period for ATP release in response to mechanostimulation in wild-type plants, the refractory period in mutants was attenuated, resulting in extracellular ATP accumulation. We propose that ATP acts as an extracellular signal released by mechanostimulation and that the G-protein complex is needed for fine-tuning this response

    Integrated vector management for malaria control

    Get PDF
    Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical strategies within national malaria control programmes. This review provides an overview of how IVM programmes are being implemented, and provides recommendations for further development of IVM to meet the goals of national malaria control programmes in Africa
    corecore