1,514 research outputs found

    TRAPPIST photometry and imaging monitoring of comet C/2013 R1(Lovejoy): Implications for the origin of daughter species

    Full text link
    We report the results of the narrow band photometry and imaging monitoring of comet C/2013 R1 (Lovejoy) with the robotic telescope TRAPPIST (La Silla observatory). We gathered around 400 images over 8 months pre- and post-perihelion between September 12, 2013 and July 6, 2014. We followed the evolution of the OH, NH, CN, C3 , and C2 production rates computed with the Haser model as well as the evolution of the dust production. All five gas species display an asymmetry about perihelion, the rate of brightening being steeper than the rate of fading. The study of the coma morphology reveals gas and dust jets which indicate one or several active zone(s) on the nucleus. The dust, C2 , and C3 morphologies present some similarities while the CN morphology is different. OH and NH are enhanced in the tail direction. The study of the evolution of the comet activity shows that the OH, NH, and C2 production rates evolution with the heliocentric distance is correlated to the dust evolution. The CN and, to a lesser extent, the C3 do not display such a correlation with the dust. These evidences and the comparison with parent species production rates indicate that C2 and C3 on one side and OH and NH on the other side could be -at least partially- released from organic-rich grains and icy grains. On the contrary, all evidences point to HCN being the main parent of CN in this comet.Comment: Accepted for publication in Astronomy & Astrophysics, 10 page

    Pushing the precision limit of ground-based eclipse photometry

    Full text link
    Until recently, it was considered by many that ground-based photometry could not reach the high cadence sub-mmag regime because of the presence of the atmosphere. Indeed, high frequency atmospheric noises (mainly scintillation) limit the precision that high SNR photometry can reach within small time bins. If one is ready to damage the sampling of his photometric time-series, binning the data (or using longer exposures) allows to get better errors, but the obtained precision will be finally limited by low frequency noises. To observe several times the same planetary eclipse and to fold the photometry with the orbital period is thus generally considered as the only option to get very well sampled and precise eclipse light curve from the ground. Nevertheless, we show here that reaching the sub-mmag sub-min regime for one eclipse is possible with a ground-based instrument. This has important implications for transiting planets characterization, secondary eclipses measurement and small planets detection from the ground.Comment: Transiting Planets Proceeding IAU Symposium No.253, 2008. 7 pages, 4 figure

    Ground-based monitoring of comet 67P/Churyumov-Gerasimenko gas activity throughout the <i>Rosetta</i> mission

    Get PDF
    Simultaneously to the ESA Rosetta mission, a world-wide ground-based campaign provided measurements of the large scale activity of comet 67P/Churyumov-Gerasimenko through measurement of optically active gas species and imaging of the overall dust coma. We present more than two years of observations performed with the FORS2 low resolution spectrograph at the VLT, TRAPPIST, and ACAM at the WHT. We focus on the evolution of the CN production, as a tracer of the comet activity. We find that it is asymmetric with respect to perihelion and different from that of the dust. The CN emission is detected for the first time at 1.34 au pre-perihelion and production rates then increase steeply to peak about two weeks after perihelion at (1.00±0.10) ×1025 molecules s−1, while the post-perihelion decrease is more shallow. The evolution of the comet activity is strongly influenced by seasonal effects, with enhanced CN production when the Southern hemisphere is illuminated

    The Spitzer search for the transits of HARPS low-mass planets - I. No transit for the super-Earth HD 40307b

    Get PDF
    We have used Spitzer and its IRAC camera to search for the transit of the super-Earth HD 40307b. The transiting nature of the planet could not be firmly discarded from our first photometric monitoring of a transit window because of the uncertainty coming from the modeling of the photometric baseline. To obtain a firm result, two more transit windows were observed and a global Bayesian analysis of the three IRAC time series and the HARPS radial velocities was performed. Unfortunately, any transit of the planet during the observed phase window is firmly discarded, while the probability that the planet transits but that the eclipse was missed by our observations is nearly negligible (0.26%).Comment: Submitted to A&

    Characterization of the hot Neptune GJ 436b with Spitzer and ground-based observations

    Full text link
    We present Spitzer Space Telescope infrared photometry of a secondary eclipse of the hot Neptune GJ436b. The observations were obtained using the 8-micron band of the InfraRed Array Camera (IRAC). The data spanning the predicted time of secondary eclipse show a clear flux decrement with the expected shape and duration. The observed eclipse depth of 0.58 mmag allows us to estimate a blackbody brightness temperature of T_p = 717 +- 35 K at 8 microns. We compare this infrared flux measurement to a model of the planetary thermal emission, and show that this model reproduces properly the observed flux decrement. The timing of the secondary eclipse confirms the non-zero orbital eccentricity of the planet, while also increasing its precision (e = 0.14 +- 0.01). Additional new spectroscopic and photometric observations allow us to estimate the rotational period of the star and to assess the potential presence of another planet.Comment: Accepted for publication in A&A on 11/09/2007; 7 pages, 6 figure

    WASP-50b: a hot Jupiter transiting a moderately active solar-type star

    Get PDF
    We report the discovery by the WASP transit survey of a giant planet in a close orbit (0.0295+-0.0009 AU) around a moderately bright (V=11.6, K=10) G9 dwarf (0.89+-0.08 M_sun, 0.84+-0.03 R_sun) in the Southern constellation Eridanus. Thanks to high-precision follow-up photometry and spectroscopy obtained by the telescopes TRAPPIST and Euler, the mass and size of this planet, WASP-50b, are well constrained to 1.47+-0.09 M_jup and 1.15+-0.05 R_jup, respectively. The transit ephemeris is 2455558.6120 (+-0.0002) + N x 1.955096 (+-0.000005) HJD_UTC. The size of the planet is consistent with basic models of irradiated giant planets. The chromospheric activity (log R'_HK = -4.67) and rotational period (P_rot = 16.3+-0.5 days) of the host star suggest an age of 0.8+-0.4 Gy that is discrepant with a stellar-evolution estimate based on the measured stellar parameters (rho_star = 1.48+-0.10 rho_sun, Teff = 5400+-100 K, [Fe/H]= -0.12+-0.08) which favours an age of 7+-3.5 Gy. This discrepancy could be explained by the tidal and magnetic influence of the planet on the star, in good agreement with the observations that stars hosting hot Jupiters tend to show faster rotation and magnetic activity (Pont 2009; Hartman 2010). We measure a stellar inclination of 84 (-31,+6) deg, disfavouring a high stellar obliquity. Thanks to its large irradiation and the relatively small size of its host star, WASP-50b is a good target for occultation spectrophotometry, making it able to constrain the relationship between hot Jupiters' atmospheric thermal profiles and the chromospheric activity of their host stars proposed by Knutson et al. (2010).Comment: 9 pages, 8 figures. Accepted for publication in Astronomy & Astrophysic

    WASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect

    Full text link
    We report the discovery of a new transiting planet in the Southern Hemisphere. It has been found by the WASP-south transit survey and confirmed photometrically and spectroscopically by the 1.2m Swiss Euler telescope, LCOGT 2m Faulkes South Telescope, the 60 cm TRAPPIST telescope and the ESO 3.6m telescope. The orbital period of the planet is 2.94 days. We find it is a gas giant with a mass of 0.88 \pm 0.10 Mj and a radius estimated at 0.96 \pm 0.05 Rj . We have also obtained spectra during transit with the HARPS spectrograph and detect the Rossiter-McLaughlin effect despite its small amplitude. Because of the low signal to noise of the effect and of a small impact parameter we cannot place a constraint on the projected spin-orbit angle. We find two confiicting values for the stellar rotation. Our determination, via spectral line broadening gives v sin I = 2.2 \pm 0.3 km/s, while another method, based on the activity level using the index log R'HK, gives an equatorial rotation velocity of only v = 1.35 \pm 0.20 km/s. Using these as priors in our analysis, the planet could either be misaligned or aligned. This should send strong warnings regarding the use of such priors. There is no evidence for eccentricity nor of any radial velocity drift with time.Comment: 13 pages, 8 figures, 7 tables, accepted for publication in A&

    The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns

    Get PDF
    We report measurements of the thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns with the Spitzer Infrared Array Camera (IRAC). Our measured occultation depths are 0.510 +- 0.042 % and 0.41 +- 0.11 % at 4.5 and 8 microns, respectively. In addition to the CoRoT optical measurements, these planet/star flux ratios indicate a poor heat distribution to the night side of the planet and are in better agreement with an atmosphere free of temperature inversion layer. Still, the presence of such an inversion is not definitely ruled out by the observations and a larger wavelength coverage is required to remove the current ambiguity. Our global analysis of CoRoT, Spitzer and ground-based data confirms the large mass and size of the planet with slightly revised values (Mp = 3.47 +- 0.22 Mjup, Rp = 1.466 +- 0.044 Rjup). We find a small but significant offset in the timing of the occultation when compared to a purely circular orbital solution, leading to e cos(omega) = -0.00291 +- 0.00063 where e is the orbital eccentricity and omega is the argument of periastron. Constraining the age of the system to be at most of a few hundreds of Myr and assuming that the non-zero orbital eccentricity is not due to a third undetected body, we model the coupled orbital-tidal evolution of the system with various tidal Q values, core sizes and initial orbital parameters. For log(Q_s') = 5 - 6, our modelling is able to explain the large radius of CoRoT-2b if log(Q_p') <= 5.5 through a transient tidal circularization and corresponding planet tidal heating event. Under this model, the planet will reach its Roche limit within 20 Myr at most.Comment: 13 pages, 2 tables, 11 figures. Accepted for publication in Astronomy and Astrophysic
    • …
    corecore