9 research outputs found

    Closing the gap between science and management of cold-water refuges in rivers and streams

    Get PDF
    Human activities and climate change threaten coldwater organisms in freshwater eco-systems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as dis-tinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the founda-tion for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework pro-vides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change. behavioral thermoregulation, climate change adaptation, lotic ecosystem management, refugia, salmonids, temperature, thermal heterogeneity, thermal refugespublishedVersio

    Closing the gap between science and management of cold‐water refuges in rivers and streams

    Get PDF
    Human activities and climate change threaten coldwater organisms in freshwater ecosystems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as distinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the foundation for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework provides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change

    Effect of discharge and habitat type on the occurrence and severity of Didymosphenia geminata mats in the Restigouche River, eastern Canada

    No full text
    Copyright © 2018 John Wiley & Sons, Ltd. Since 2006, the Restigouche River watershed, eastern Canada, has been affected by nuisance growths of the mat-forming diatom, Didymosphenia geminata. In 2010, in view of the potential impacts of this alga on the local Atlantic salmon fishery, we created a volunteer monitoring network to assess D.geminata mat severity within the watershed. Over the course of 6 monitoring summers, more than 1,200 observations of D.geminata mat severity were reported in 20 subwatersheds of the Restigouche River basin. Observations were mapped to illustrate the yearly severity of D.geminata mats throughout the watershed. Metrics were then extracted from this dataset to assess the spatial and temporal variability of mat severity. At the reach scale, D.geminata occurrence was predominantly found in riffles compared to any other river habitat type. At the watershed scale, a two-sample Kolmogorov–Smirnov test highlighted a significant effect of maximum spring discharge on mean annual D.geminata mat severity, indicating that when maximum spring discharge is high, severity of D.geminata mats in the following months is significantly lower. Additionally, maximum spring discharge explained 71% of the variability in annual mat severity. This study contributes to the understanding of mat severity dynamics and illustrates the value of volunteer monitoring networks for studying complex ecosystem dynamics

    A conceptual model for the blooming behavior and persistence of the benthic mat-forming diatom Didymosphenia geminatain oligotrophic streams

    No full text
    [1] The benthic, mat-forming diatom Didymosphenia geminata has the unique ability to produce large amounts of algal biomass under oligotrophic conditions in cold, fast flowing streams and rivers. This presents an ecological paradox that challenges our current understanding of stream ecosystem dynamics. Our understanding of the drivers of D. geminata ecology is still limited. Here we present a conceptual model for the blooming behavior and persistence of this species to advance scientific understanding of strategies for life in fast flowing oligotrophic waters and support the design of future research and mitigation measures for nuisance algal blooms. The conceptual model is based on a synthesis of data and ideas from a range of disciplines including hydrology, geomorphology, biogeochemistry, and ecology. The conceptual model highlights the role of water chemistry, river morphology, and flow thresholds in defining the habitat window for D. geminata. We propose that bed disturbance is a primary control on accumulation and persistence of D. geminata and that the removal threshold can be determined by synthesizing site-specific information on hydrology and geomorphology. Further, we propose that a key to understanding the didymo paradox is the separation of cellular reproduction and mat morphology with specific controls acting in respect of the different processes

    New insights into the genetic etiology of Alzheimer’s disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices

    No full text
    Abstract Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10−72), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10−4), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10−5). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids

    Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices

    No full text

    Annual Selected Bibliography

    No full text
    corecore