296 research outputs found

    Inheritance, Biochemical Abnormalities, and Clinical Features of Feline Mucolipidosis II: The First Animal Model of Human I-Cell Disease

    Get PDF
    Mucolipidosis II (ML II), also called I-cell disease, is a unique lysosomal storage disease caused by deficient activity of the enzyme N-acetylglucosamine-1-phosphotransferase, which leads to a failure to internalize enzymes into lysosomes. We report on a colony of domestic shorthair cats with ML II that was established from a half-sibling male of an affected cat. Ten male and 9 female kittens out of 89 kittens in 26 litters born to clinically normal parents were affected; this is consistent with an autosomal recessive mode of inheritance. The activities of three lysosomal enzymes from affected kittens, compared to normal adult control cats, were high in serum (11-73 times normal) but low in cultured fibroblasts (9-56% of normal range) that contained inclusion bodies (I-cells), reflecting the unique enzyme defect in ML II. Serum lysosomal enzyme activities of adult obligate carriers were intermediate between normal and affected values. Clinical features in affected kittens were observed from birth and included failure to thrive, behavioral dullness, facial dysmorphia, and ataxia. Radiographic lesions included metaphyseal flaring, radial bowing, joint laxity, and vertebral fusion. In contrast to human ML II, diffuse retinal degeneration leading to blindness by 4 months of age was seen in affected kittens. All clinical signs were progressive and euthanasia or death invariably occurred within the first few days to 7 months of life, often due to upper respiratory disease or cardiac failure. The clinical and radiographic features, lysosomal enzyme activities, and mode of inheritance are homologous with ML II in humans. Feline ML II is currently the only animal model in which to study the pathogenesis of and therapeutic interventions for this unique storage diseas

    Rapid disease progression in a patient with mismatch repair-deficient and cortisol secreting adrenocortical carcinoma treated with pembrolizumab

    Get PDF
    Context: Metastatic adrenocortical carcinoma (ACC) is an aggressive malignancy with a poor prognosis and limited therapeutic options. A subset of ACC is due to Lynch syndrome, an inherited tumour syndrome resulting from germline mutations in mismatch repair (MMR) genes. It has been demonstrated that several cancers characterised by MMR-deficiency are sensitive to immune checkpoint inhibitors that target PD-1. Here, we provide the first report of PD-1 blockade by pembrolizumab in a patient with Lynch syndrome and progressive cortisol-secreting metastatic ACC. Case report: A 58-year old female with known Lynch syndrome who presented with severe Cushing’s syndrome was diagnosed with a cortisol-secreting ACC. Three months following surgical resection and adjuvant mitotane therapy the patient developed metastatic disease and persistent hypercortisolaemia. She commenced pembrolizumab, but her second cycle was delayed due to a transient transaminitis. Computed tomography performed after twelve weeks and 2 cycles of pembrolizumab administration revealed significant disease progression and treatment was discontinued. Seven weeks later, the patient became jaundiced and died rapidly with fulminant liver failure. Conclusion: Treatment of MMR-deficient cortisol-secreting ACC with pembrolizumab may be ineffective due to supra-physiological levels of circulating corticosteroids, which may in turn mask severe drug-induced organ damage

    Pharmacometric in silico studies used to facilitate a national dose standardisation process in neonatology - application to amikacin.

    Get PDF
    BACKGROUND AND AIMS: Pharmacometric in silico approaches are frequently applied to guide decisions concerning dosage regimes during the development of new medicines. We aimed to demonstrate how such pharmacometric modelling and simulation can provide a scientific rationale for optimising drug doses in the context of the Swiss national dose standardisation project in paediatrics using amikacin as a case study. METHODS: Amikacin neonatal dosage is stratified by post-menstrual age (PMA) and post-natal age (PNA) in Switzerland and many other countries. Clinical concerns have been raised for the subpopulation of neonates with a post-menstrual age of 30-35 weeks and a post-natal age of 0-14 days ("subpopulation of clinical concern"), as potentially oto-/nephrotoxic trough concentrations (Ctrough >5 mg/l) were observed with a once-daily dose of 15 mg/kg. We applied a two-compartmental population pharmacokinetic model (amikacin clearance depending on birth weight and post-natal age) to real-world demographic data from 1563 neonates receiving anti-infectives (median birth weight 2.3 kg, median post-natal age six days) and performed pharmacometric dose-exposure simulations to identify extended dosing intervals that would ensure non-toxic Ctrough (Ctrough 80%. CONCLUSION: Pharmacometric in silico studies using high-quality real-world demographic data can provide a scientific rationale for national paediatric dose optimisation. This may increase clinical acceptance of fine-tuned standardised dosing recommendations and support their implementation, including in vulnerable subpopulations

    Stigma in health facilities: Why it matters and how we can change it

    Get PDF
    Stigma in health facilities undermines diagnosis, treatment, and successful health outcomes. Addressing stigma is fundamental to delivering quality healthcare and achieving optimal health. This correspondence article seeks to assess how developments over the past 5 years have contributed to the state of programmatic knowledge - both approaches and methods - regarding interventions to reduce stigma in health facilities, and explores the potential to concurrently address multiple health condition stigmas. It is supported by findings from a systematic review of published articles indexed in PubMed, Psychinfo and Web of Science, and in the United States Agency for International Development's Development Experience Clearinghouse, which was conducted in February 2018 and restricted to the past 5 years. Forty-two studies met inclusion criteria and provided insight on interventions to reduce HIV, mental illness, or substance abuse stigma. Multiple common approaches to address stigma in health facilities emerged, which were implemented in a variety of ways. The literature search identified key gaps including a dearth of stigma reduction interventions in health facilities that focus on tuberculosis, diabetes, leprosy, or cancer; target multiple cadres of staff or multiple ecological levels; leverage interactive technology; or address stigma experienced by health workers. Preliminary results from ongoing innovative responses to these gaps are also described. The current evidence base of stigma reduction in health facilities provides a solid foundation to develop and implement interventions. However, gaps exist and merit further work. Future investment in health facility stigma reduction should prioritize the involvement of clients living with the stigmatized condition or behavior and health workers living with stigmatized conditions and should address both individual and structural level stigma

    The Cerebral Microvasculature in Schizophrenia: A Laser Capture Microdissection Study

    Get PDF
    BACKGROUND: Previous studies of brain and peripheral tissues in schizophrenia patients have indicated impaired energy supply to the brain. A number of studies have also demonstrated dysfunction of the microvasculature in schizophrenia patients. Together these findings are consistent with a hypothesis of blood-brain barrier dysfunction in schizophrenia. In this study, we have investigated the cerebral vascular endothelium of schizophrenia patients at the level of transcriptomics. METHODOLOGY/PRINCIPAL FINDINGS: We used laser capture microdissection to isolate both microvascular endothelial cells and neurons from post mortem brain tissue from schizophrenia patients and healthy controls. RNA was isolated from these cell populations, amplified, and analysed using two independent microarray platforms, Affymetrix HG133plus2.0 GeneChips and CodeLink Whole Human Genome arrays. In the first instance, we used the dataset to compare the neuronal and endothelial data, in order to demonstrate that the predicted differences between cell types could be detected using this methodology. We then compared neuronal and endothelial data separately between schizophrenic subjects and controls. Analysis of the endothelial samples showed differences in gene expression between schizophrenics and controls which were reproducible in a second microarray platform. Functional profiling revealed that these changes were primarily found in genes relating to inflammatory processes. CONCLUSIONS/SIGNIFICANCE: This study provides preliminary evidence of molecular alterations of the cerebral microvasculature in schizophrenia patients, suggestive of a hypo-inflammatory state in this tissue type. Further investigation of the blood-brain barrier in schizophrenia is warranted

    Symposium on the Scottish labour market

    Get PDF
    In the post-war period, up to the late 1960s, Britain enjoyed a modicum of unemployment and government policies which were geared to producing Full Employment were considered a success. It was simple - boost demand and more people would find work. But the mid 1970s the economic regency enjoyed by those advocating demand sided policies fell into disrepute as the OPEC nations raised prices dramatically and brought in a new era of both rising prices and unemployment. The laws of economics, which previously had viewed policy decisions as the choice between lower unemployment and higher inflation were now redundant. Both unemployment and inflation were moving in the same direction. The era of stagflation had begun

    Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute quadriplegic myopathy (AQM) or critical illness myopathy (CIM) is frequently observed in intensive care unit (ICU) patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals.</p> <p>Results</p> <p>During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days), intermediate (5-8 days) and long (9-14 days) durations. A striking early and maintained up-regulation (6 h-14d) of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1) was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d). Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C), regulatory (troponin, tropomyosin), developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin) and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days.</p> <p>Conclusions</p> <p>Novel temporal patterns of gene expression have been uncovered, suggesting a unique, coordinated and highly complex mechanism underlying the muscle wasting associated with AQM in ICU patients and providing new target genes and avenues for intervention studies.</p

    Structural dynamics and catalytic properties of a multimodular xanthanase

    Get PDF
    The precise catalytic strategies used for the breakdown of the complex bacterial polysaccharide xanthan, an increasingly frequent component of processed human foodstuffs, have remained a mystery. Here, we present characterization of an endo-xanthanase from Paenibacillus nanensis. We show that it is a CAZy family 9 glycoside hydrolase (GH9) responsible for the hydrolysis of the xanthan backbone capable of generating tetrameric xanthan oligosaccharides from polysaccharide lyase family 8 (PL8) xanthan lyase-treated xanthan. Three-dimensional structure determination reveals a complex multimodular enzyme in which a catalytic (α/α) 6 barrel is flanked by an N-terminal "immunoglobulin-like" (Ig-like) domain (frequently found in GH9 enzymes) and by four additional C-terminal all β-sheet domains that have very few homologues in sequence databases and at least one of which functions as a new xanthan-binding domain, now termed CBM84. The solution-phase conformation and dynamics of the enzyme in the native calcium-bound state and in the absence of calcium were probed experimentally by hydrogen/deuterium exchange mass spectrometry. Measured conformational dynamics were used to guide the protein engineering of enzyme variants with increased stability in the absence of calcium; a property of interest for the potential use of the enzyme in cleaning detergents. The ability of hydrogen/deuterium exchange mass spectrometry to pinpoint dynamic regions of a protein under stress (e.g., removal of calcium ions) makes this technology a strong tool for improving protein catalyst properties by informed engineering

    Semaphorin, neuropilin and VEGF expression in glial tumours: SEMA3G, a prognostic marker?

    Get PDF
    Gliomas are characterised by local infiltration, migration of tumour cells across long distances and sustained angiogenesis; therefore, proteins involved in these processes are most likely important. Such candidates are semaphorins involved in axon guidance and cell migration. In addition, semaphorins regulate tumour progression and angiogenesis. For cell signalling, class-4 semaphorins bind directly to plexins, whereas class-3 semaphorins require additional neuropilin (NRP) receptors that also bind VEGF165. The anti-angiogenic activity of class-3 semaphorins can be explained by competition with VEGF165 for NRP binding. In this study, we analysed the expressions of seven semaphorins of class-3, SEMA4D, VEGF and the NRP1 and NRP2 receptors in 38 adult glial tumours. In these tumours, SEMA3B, SEMA3G and NRP2 expressions were related to prolonged survival. In addition, SEMA3D expression was reduced in high-grade as compared with low-grade gliomas. In contrast, VEGF correlated with higher grade and poor survival. Thus, our data suggest a function for a subset of class-3 semaphorins as inhibitors of tumour progression, and the prognostic value of the VEGF/SEMA3 balance in adult gliomas. Moreover, in multivariate analysis, SEMA3G was found to be the only significant prognostic marker
    corecore