261 research outputs found

    Geology and wall rock alteration at the Hercynian Draa Sfar Zn–Pb–Cu massive sulphide deposit, Morocco

    No full text
    International audienceDraa Sfar is a siliciclastic–felsic, volcanogenic massive sulphide (VMS) Zn–Pb–Cu deposit located 15 km north of Marrakesh within the Jebilet massif of the western Moroccan Meseta. The Draa Sfar deposit occurs within the Sarhlef series, a volcano-sedimentary succession that hosts other massive sulphide deposits (e.g., Hajar, Kettara) within the dominantly siliciclastic sedimentary succession of the lower Central Jebilet. At Draa Sfar, the footwall lithofacies are dominated by grey to black argillite, carbonaceous argillite and intercalated siltstone with localized rhyodacitic flows and domes, associated in situ and transported autoclastic deposits, and lesser dykes of aphanitic basalt and gabbro. Thin- to thick-bedded, black carbonaceous argillite, minor intercalated siltstone, and a large gabbro sill dominate the hanging wall lithofacies. The main lithologies strike NNE–SSW, parallel to a pronounced S1 foliation, and have a low-grade, chlorite–muscovite–quartz–albite–oligoclase metamorphic assemblage. The Draa Sfar deposit consists of two stratabound sulphide orebodies, Tazakourt to the south and Sidi M'Barek to the north. Both orebodies are hosted by argillite in the upper part of the lower volcano-sedimentary unit. The Tazakourt and Sidi M'Barek orebodies are highly deformed, sheet-like bodies of massive pyrrhotite (up to 95% pyrrhotite) with lesser sphalerite, galena, chalcopyrite, and pyrite. The Draa Sfar deposit formed within a restricted, sediment-starved, fault-controlled, anoxic, volcano-sedimentary rift basin. The deposit formed at and below the seafloor within anoxic, pelagic muds. The argillaceous sedimentary rocks that surround the Draa Sfar orebodies are characterized by a pronounced zonation of alteration assemblages and geochemical patterns. In the more proximal volcanic area to the south, the abundance of medium to dark green chlorite progressively increases within the argillite toward the base of the Tazakourt orebody. Chlorite alteration is manifested by the replacement of feldspar and a decrease in muscovite abundance related to a net addition of Fe and Mg and a loss of K and Na. In the volcanically distal and northern Sidi M'Barek orebody alteration within the footwall argillite is characterized by a modal increase of sericite relative to chlorite. A calcite–quartz–muscovite assemblage and a pronounced decrease in chlorite characterize argillite within the immediate hanging wall to the entire Draa Sfar deposit. The sympathetic lateral change from predominantly sericite to chlorite alteration within the footwall argillite with increasing volcanic proximity suggests that the higher temperature part of the hydrothermal system is coincident with a volcanic vent defined by localized rhyodacitic flow/domes within the footwall succession

    Draa Sfar, Morocco: A Visean (331 Ma) pyrrhotite-rich, polymetallic volcanogenic massive sulphide deposit in a Hercynian sediment-dominant terrane

    No full text
    International audienceDraa Sfar is a Visean, stratabound, volcanogenic massive sulphide ore deposit hosted by a Hercynian carbonaceous, black shale-rich succession of the Jebilet terrane, Morocco. The ore deposit contains 10 Mt grading 5.3 wt.% Zn, 2 wt.% Pb, and 0.3 wt.% Cu within two main massive sulphides orebodies, Tazakourt (Zn-rich) and Sidi M'Barek (Zn–Cu rich). Pyrrhotite is by far the dominant sulphide (70 to 95% of total sulphides), sphalerite is fairly abundant, chalcopyrite and galena are accessory, pyrite, arsenopyrite and bismuth minerals are rare. Pyrrhotite is monoclinic and mineralogical criteria indicate that it is of primary origin and not formed during metamorphism. Its composition is very homogeneous, close to Fe7S8, and its absolute magnetic susceptibility is 2.10− 3 SI/g. Ar–Ar dating of hydrothermal sericites from a coherent rhyolite flow or dome within the immediate deposit footwall indicates an age of 331.7 ± 7.9 Ma for the Draa Sfar deposit and rhyolite volcanism. The Draa Sfar deposit has undergone a low-grade regional metamorphic event that caused pervasive recrystallization, followed by a ductile–brittle deformation event that has locally imparted a mylonitic texture to the sulphides and, in part, is responsible for the elongated and sheet-like morphology of the sulphide orebodies. Lead isotope data fall into two compositional end-members. The least radiogenic end-member, (206Pb/204Pb = 18.28), is characteristic of the Tazakourt orebody, whereas the more radiogenic end-member (206Pb/204Pb not, vert, similar 18.80) is associated with the Sidi M'Barek orebody, giving a mixing trend between the two end-members. Lead isotope compositions at Draa Sfar testify to a significant continental crust source for the base metals, but are different than those of the Hajar and South Iberian Pyrite Belt VMS deposits. The abundance of pyrrhotite versus pyrite in the orebodies is attributed to low fO2 conditions and neither a high temperature nor a low aH2S (below 10− 3) is required. The highly anoxic conditions required to stabilize pyrrhotite over pyrite are consistent with formation of the deposit within a restricted, sediment-starved, anoxic basin characterized by the deposition of carbonaceous, pelagic sediments along the flank of a rhyolitic flow-dome complex that was buried by pelitic sediments. Deposition of sulphides likely occurred at and below the seafloor within anoxic and carbonaceous muds. Draa Sfar and other Moroccan volcanogenic massive sulphide deposits occur in an epicontinental volcanic domain within the outer zone of the Hercynian belt and formed within a sedimentary environment that has a high pelagic component. In spite of the diachronous emplacement between the IPB deposits (late Devonian to Visean) and Moroccan deposits (Dinantian), all were formed around 340 ± 10 Ma following a major phase of the Devonian compression

    Inheritance--Your Farm and Family.

    Get PDF
    28 p

    Cardiac myocyte-specific knock-out of calcium-independent phospholipase A2γ (iPLA2γ) decreases oxidized fatty acids during ischemia/reperfusion and reduces infarct size

    Get PDF
    Calcium-independent phospholipase A(2)γ (iPLA(2)γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA(2)γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA(2)γ knock-out (CMiPLA(2)γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA(2)γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA(2)γKO mice demonstrated attenuated Ca(2+)-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA(2)γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA(2)γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca(2+) by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA(2)γ, these results are consistent with salvage of myocardium after I/R by iPLA(2)γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion

    Genetic deletion of skeletal muscle iPLA2γ results in mitochondrial dysfunction, muscle atrophy and alterations in whole-body energy metabolism

    Get PDF
    Skeletal muscle is the major site of glucose utilization in mammals integrating serum glucose clearance with mitochondrial respiration. To mechanistically elucidate the roles of iPL

    CO2 enrichment and soil type additively regulate grassland productivity

    Get PDF
    The development of a predictive understanding of how atmospheric CO2 enrichment is affecting the primary productivity of the terrestrial biosphere is among the most pressing of ecological challenges. The terrestrial biosphere absorbs c. 25% of anthropogenic carbon (C) emissions (Le Quere et al., 2018). Uncertainty in CO2 effects on ecosystem C uptake is a major constraint in the prediction of C cycling and the provisioning of productivity- related ecosystem services. Grasslands cover c. 25% of the terrestrial area and are an important contributor to the global C balance (Sala et al., 1996). CO2 enrichment stimulates the aboveground net primary productivity (ANPP) of most water-limited grasslands by increasing plant water use efficiency (WUE; productivity per unit of transpiration; Morgan et al., 2004; Nowak et al., 2004; Fatichi et al., 2016), but grassland ANPP, as other ecosystem functions, is determined by drivers in addition to water availability which act simultaneously and often interactively with CO2 (Polley et al., 2011). CO2 enrichment usually shows greater stimulation of plant productivity when nitrogen (N) availability is relatively high (Owensby et al., 1994; Reich & Hobbie, 2013; Mueller et al., 2016), for example. Other drivers include precipitation timing (Hovenden et al., 2014), disturbance regimes (Newton et al., 2014), plant species composition (Langley & Megonigal, 2010; Fay et al., 2012; Polley et al., 2012) and soil properties (Epstein et al., 1997, 1998), including soil texture, which influences water availability to plants (Tor-Ngern et al., 2017)

    CO2 enrichment and soil type additively regulate grassland productivity

    Get PDF
    The development of a predictive understanding of how atmospheric CO2 enrichment is affecting the primary productivity of the terrestrial biosphere is among the most pressing of ecological challenges. The terrestrial biosphere absorbs c. 25% of anthropogenic carbon (C) emissions (Le Quere et al., 2018). Uncertainty in CO2 effects on ecosystem C uptake is a major constraint in the prediction of C cycling and the provisioning of productivity- related ecosystem services. Grasslands cover c. 25% of the terrestrial area and are an important contributor to the global C balance (Sala et al., 1996). CO2 enrichment stimulates the aboveground net primary productivity (ANPP) of most water-limited grasslands by increasing plant water use efficiency (WUE; productivity per unit of transpiration; Morgan et al., 2004; Nowak et al., 2004; Fatichi et al., 2016), but grassland ANPP, as other ecosystem functions, is determined by drivers in addition to water availability which act simultaneously and often interactively with CO2 (Polley et al., 2011). CO2 enrichment usually shows greater stimulation of plant productivity when nitrogen (N) availability is relatively high (Owensby et al., 1994; Reich & Hobbie, 2013; Mueller et al., 2016), for example. Other drivers include precipitation timing (Hovenden et al., 2014), disturbance regimes (Newton et al., 2014), plant species composition (Langley & Megonigal, 2010; Fay et al., 2012; Polley et al., 2012) and soil properties (Epstein et al., 1997, 1998), including soil texture, which influences water availability to plants (Tor-Ngern et al., 2017)

    Endocrine therapy for hormone receptor-positive metastatic breast cancer: American Society of Clinical Oncology Guideline

    Get PDF
    PURPOSE: To develop recommendations about endocrine therapy for women with hormone receptor (HR) -positive metastatic breast cancer (MBC). METHODS: The American Society of Clinical Oncology convened an Expert Panel to conduct a systematic review of evidence from 2008 through 2015 to create recommendations informed by that evidence. Outcomes of interest included sequencing of hormonal agents, hormonal agents compared with chemotherapy, targeted biologic therapy, and treatment of premenopausal women. This guideline puts forth recommendations for endocrine therapy as treatment for women with HR-positive MBC. RECOMMENDATIONS: Sequential hormone therapy is the preferential treatment for most women with HR-positive MBC. Except in cases of immediately life-threatening disease, hormone therapy, alone or in combination, should be used as initial treatment. Patients whose tumors express any level of hormone receptors should be offered hormone therapy. Treatment recommendations should be based on type of adjuvant treatment, disease-free interval, and organ function. Tumor markers should not be the sole criteria for determining tumor progression; use of additional biomarkers remains experimental. Assessment of menopausal status is critical; ovarian suppression or ablation should be included in premenopausal women. For postmenopausal women, aromatase inhibitors (AIs) are the preferred first-line endocrine therapy, with or without the cyclin-dependent kinase inhibitor palbociclib. As second-line therapy, fulvestrant should be administered at 500 mg with a loading schedule and may be administered with palbociclib. The mammalian target of rapamycin inhibitor everolimus may be administered with exemestane to postmenopausal women with MBC whose disease progresses while receiving nonsteroidal AIs. Among patients with HR-positive, human epidermal growth factor receptor 2-positive MBC, human epidermal growth factor receptor 2-targeted therapy plus an AI can be effective for those who are not chemotherapy candidates

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    A missense variant in CST3 exerts a recessive effect on susceptibility to age-related macular degeneration resembling its association with Alzheimer’s disease

    Get PDF
    Age-related macular degeneration (AMD) and Alzheimer’s disease (AD) are degenerative, multifactorial diseases involving age-related accumulation of extracellular deposits linked to dysregulation of protein homeostasis. Here, we strengthen the evidence that an nsSNP (p.Ala25Thr) in the cysteine proteinase inhibitor cystatin C gene CST3, previously confirmed by meta-analysis to be associated with AD, is associated with exudative AMD. To our knowledge, this is the first report highlighting a genetic variant that increases the risk of developing both AD and AMD. Furthermore, we demonstrate that the risk associated with the mutant allele follows a recessive model for both diseases. We perform an AMD-CST3 case–control study genotyping 350 exudative AMD Caucasian individuals. Bringing together our data with the previously reported AMD-CST3 association study, the evidence of a recessive effect on AMD risk is strengthened (OR = 1.89, P = 0.005). This effect closely resembles the AD-CST3 recessive effect (OR = 1.73, P = 0.005) previously established by meta-analysis. This resemblance is substantiated by the high correlation between CST3 genotype and effect size across the two diseases (R2 = 0.978). A recessive effect is in line with the known function of cystatin C, a potent enzyme inhibitor. Its potency means that, in heterozygous individuals, a single functional allele is sufficient to maintain its inhibitory function; only homozygous individuals will lack this form of proteolytic regulation. Our findings support the hypothesis that recessively acting variants account for some of the missing heritability of multifactorial diseases. Replacement therapy represents a translational opportunity for individuals homozygous for the mutant allele
    • …
    corecore