129 research outputs found

    Misspecified Linear Bandits

    Full text link
    We consider the problem of online learning in misspecified linear stochastic multi-armed bandit problems. Regret guarantees for state-of-the-art linear bandit algorithms such as Optimism in the Face of Uncertainty Linear bandit (OFUL) hold under the assumption that the arms expected rewards are perfectly linear in their features. It is, however, of interest to investigate the impact of potential misspecification in linear bandit models, where the expected rewards are perturbed away from the linear subspace determined by the arms features. Although OFUL has recently been shown to be robust to relatively small deviations from linearity, we show that any linear bandit algorithm that enjoys optimal regret performance in the perfectly linear setting (e.g., OFUL) must suffer linear regret under a sparse additive perturbation of the linear model. In an attempt to overcome this negative result, we define a natural class of bandit models characterized by a non-sparse deviation from linearity. We argue that the OFUL algorithm can fail to achieve sublinear regret even under models that have non-sparse deviation.We finally develop a novel bandit algorithm, comprising a hypothesis test for linearity followed by a decision to use either the OFUL or Upper Confidence Bound (UCB) algorithm. For perfectly linear bandit models, the algorithm provably exhibits OFULs favorable regret performance, while for misspecified models satisfying the non-sparse deviation property, the algorithm avoids the linear regret phenomenon and falls back on UCBs sublinear regret scaling. Numerical experiments on synthetic data, and on recommendation data from the public Yahoo! Learning to Rank Challenge dataset, empirically support our findings.Comment: Thirty-First AAAI Conference on Artificial Intelligence, 201

    EFFECT OF ULTRA-DILUTED HISTAMINE ON HYPOXIC CHICK LUNG TISSUE INFLAMMATORY CHANGES

    Get PDF
    Objectives: Since its discovery, the role of histamine in inflammation is controversial; thus, according to some authority, it is mainly pro-inflammatory, and according to others, it is anti-inflammatory in nature. In this scenario, we thought that the contradictory results are dose dependent, thus in this study, our aim was to find the specific role of ultra-diluted histamine in pulmonary inflammation. Materials and Methods: Ultra-diluted histamine ( ~1 pg/ml) was administered in chick lung hypoxic inflammation in an restricted organoid culture along with lysozyme, ovalbumin, and blank controls. Results: The ultra-diluted histamine showed a significant role as an anti-inflammatory and bronchodilator agent and the anti-inflammatory action was found similar to lysozyme. Conclusion: Ultra-diluted histamine may be used as an anti-inflammatory agent

    One-Component Order Parameter in URu2_2Si2_2 Uncovered by Resonant Ultrasound Spectroscopy and Machine Learning

    Get PDF
    The unusual correlated state that emerges in URu2_2Si2_2 below THO_{HO} = 17.5 K is known as "hidden order" because even basic characteristics of the order parameter, such as its dimensionality (whether it has one component or two), are "hidden". We use resonant ultrasound spectroscopy to measure the symmetry-resolved elastic anomalies across THO_{HO}. We observe no anomalies in the shear elastic moduli, providing strong thermodynamic evidence for a one-component order parameter. We develop a machine learning framework that reaches this conclusion directly from the raw data, even in a crystal that is too small for traditional resonant ultrasound. Our result rules out a broad class of theories of hidden order based on two-component order parameters, and constrains the nature of the fluctuations from which unconventional superconductivity emerges at lower temperature. Our machine learning framework is a powerful new tool for classifying the ubiquitous competing orders in correlated electron systems

    Strong increase in ultrasound attenuation below T2 in Sr2RuO4 : possible evidence for domains

    Get PDF
    Funding information: B.J.R. and S.G. acknowledge support from the Office of Basic Energy Sciences of the U.S. Department of Energy under award No. DE-SC0020143. B.J.R. and S.G. acknowledge support from the Cornell Center for Materials Research with funding from the Materials Research Science and Engineering Centers program of the National Science Foundation (cooperative agreement No. DMR-1719875). T.G.K. acknowledges support from the National Science Foundation under Grant No. PHY-2110250. N.K. acknowledges support from Japan Society for the Promotion of Science (JSPS) KAKENHI (Grants No. JP17H06136, No. JP18K04715, and No. 21H01033) and Japan Science and Technology Agency Mirai Program (JPMJMI18A3) in Japan.Recent experiments suggest that Sr2RuO4 has a two-component superconducting order parameter (OP). A two-component OP has multiple degrees of freedom in the superconducting state that can result in low-energy collective modes or the formation of domain walls—a possibility that would explain a number of experimental observations including the smallness of the signature of time reversal symmetry breaking at Tc and telegraph noise in critical current experiments. We use resonant ultrasound spectroscopy to perform ultrasound attenuation measurements across the superconducting Tc of Sr2RuO4. We find that compressional sound attenuation increases by a factor of 7 immediately below Tc , in sharp contrast with what is found in both conventional (s-wave) and high-Tc (d-wave) superconductors. Our observations are most consistent with the presence of domain walls that separate different configurations of the superconducting OP. The fact that we only observe an increase in sound attenuation for compressional strains, and not for shear strains, suggests an inhomogeneous superconducting state formed of two distinct, accidentally degenerate superconducting OPs that are not related to each other by symmetry. Whatever the mechanism, a factor of 7 increase in sound attenuation is a singular characteristic that must be reconciled with any potential theory of superconductivity in Sr2RuO4.Publisher PDFPeer reviewe

    Thermodynamic Evidence for a Two-Component Superconducting Order Parameter in Sr2_2RuO4_4

    Full text link
    Sr2_2RuO4_4 has stood as the leading candidate for a spin-triplet superconductor for 26 years. Recent NMR experiments have cast doubt on this candidacy, however, and it is difficult to find a theory of superconductivity that is consistent with all experiments. What is needed are symmetry-based experiments that can rule out broad classes of possible superconducting order parameters. Here we use resonant ultrasound spectroscopy to measure the entire symmetry-resolved elastic tensor of Sr2_2RuO4_4 through the superconducting transition. We observe a thermodynamic discontinuity in the shear elastic modulus c66c_{66}, requiring that the superconducting order parameter is two-component. A two-component pp-wave order parameter, such as px+ipyp_x+i p_y, naturally satisfies this requirement. As this order parameter appears to be precluded by recent NMR experiments, we suggest that two other two-component order parameters, namely {dxz,dyz}\left\{d_{xz},d_{yz}\right\} or {dx2y2,gxy(x2y2)}\left\{d_{x^2-y^2},g_{xy(x^2-y^2)}\right\}, are now the prime candidates for the order parameter of Sr2_2RuO4_4

    Elastocaloric determination of the phase diagram of Sr2_2RuO4_4

    Get PDF
    One of the main developments in unconventional superconductivity in the past two decades has been the discovery that most unconventional superconductors form phase diagrams that also contain other strongly correlated states. Many systems of interest are therefore close to more than one instability, and tuning between the resultant ordered phases is the subject of intense research1. In recent years, uniaxial pressure applied using piezoelectric-based devices has been shown to be a particularly versatile new method of tuning, leading to experiments that have advanced our understanding of the fascinating unconventional superconductor Sr2_2RuO4_4. Here we map out its phase diagram using high-precision measurements of the elastocaloric effect in what we believe to be the first such study including both the normal and the superconducting states. We observe a strong entropy quench on entering the superconducting state, in excellent agreement with a model calculation for pairing at the Van Hove point, and obtain a quantitative estimate of the entropy change associated with entry to a magnetic state that is observed in proximity to the superconductivity. The phase diagram is intriguing both for its similarity to those seen in other families of unconventional superconductors and for extra features unique, so far, to Sr2_2RuO4_4

    Spatial control of heavy-fermion superconductivity in CeIrIn5

    Get PDF
    M.D.B. acknowledges studentship funding from EPSRC under grant EP/I007002/1.Although crystals of strongly correlated metals exhibit a diverse set of electronic ground states, few approaches exist for spatially modulating their properties. In this study, we demonstrate disorder-free control, on the micrometer scale, over the superconducting state in samples of the heavy-fermion superconductor CeIrIn5. We pattern crystals by focused ion beam milling to tailor the boundary conditions for the elastic deformation upon thermal contraction during cooling. The resulting nonuniform strain fields induce complex patterns of superconductivity, owing to the strong dependence of the transition temperature on the strength and direction of strain. These results showcase a generic approach to manipulating electronic order on micrometer length scales in strongly correlated matter without compromising the cleanliness, stoichiometry, or mean free path.PostprintPeer reviewe

    Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO--Virgo data

    Get PDF
    We present a directed search for continuous gravitational wave (CW) signals emitted by spinning neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence of a numerous population of neutron stars has been reported in the literature, turning this region into a very interesting place to look for CWs. In this search, data from the full O3 LIGO--Virgo run in the detector frequency band [10,2000] Hz[10,2000]\rm~Hz have been used. No significant detection was found and 95%\% confidence level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest limit of about 7.6×10267.6\times 10^{-26} at 142 Hz\simeq 142\rm~Hz. These results are significantly more constraining than those reported in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and r-mode amplitude. These limits can be also translated into constraints in the black hole mass -- boson mass plane for a hypothetical population of boson clouds around spinning black holes located in the GC.Comment: 25 pages, 5 figure
    corecore