507 research outputs found

    Complete Genome Characterization of Eight Human Parainfluenza Viruses from the Netherlands.

    Get PDF
    We report the complete genome sequences of eight human parainfluenza viruses (HPIV) belonging to Human respirovirus 1 (HPIV-1), Human respirovirus 3 (HPIV-3), Human rubulavirus 2 (HPIV-2), and Human rubulavirus 4 (HPIV-4). The genome sequences were generated using random-primed next-generation sequencing and represent the first HPIV full-genome sequences from the Netherlands

    Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus–infected mice

    Get PDF
    Tertiary lymphoid organs (TLOs) are organized aggregates of B and T cells formed in postembryonic life in response to chronic immune responses to infectious agents or self-antigens. Although CD11c+ dendritic cells (DCs) are consistently found in regions of TLO, their contribution to TLO organization has not been studied in detail. We found that CD11chi DCs are essential for the maintenance of inducible bronchus-associated lymphoid tissue (iBALT), a form of TLO induced in the lungs after influenza virus infection. Elimination of DCs after the virus had been cleared from the lung resulted in iBALT disintegration and reduction in germinal center (GC) reactions, which led to significantly reduced numbers of class-switched plasma cells in the lung and bone marrow and reduction in protective antiviral serum immunoglobulins. Mechanistically, DCs isolated from the lungs of mice with iBALT no longer presented viral antigens to T cells but were a source of lymphotoxin (LT) β and homeostatic chemokines (CXCL-12 and -13 and CCL-19 and -21) known to contribute to TLO organization. Like depletion of DCs, blockade of LTβ receptor signaling after virus clearance led to disintegration of iBALT and GC reactions. Together, our data reveal a previously unappreciated function of lung DCs in iBALT homeostasis and humoral immunity to influenza virus

    COVID-19 vaccines in patients with cancer:immunogenicity, efficacy and safety

    Get PDF
    Patients with cancer have a higher risk of severe coronavirus disease (COVID-19) and associated mortality than the general population. Owing to this increased risk, patients with cancer have been prioritized for COVID-19 vaccination globally, for both primary and booster vaccinations. However, given that these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, and the extent of humoral and cellular immune responses in these patients, as well as the risks of vaccine-related adverse events. In this Review, we summarize the current knowledge generated in studies conducted since COVID-19 vaccines first became available. We also highlight critical points that might affect vaccine efficacy in patients with cancer in the future

    Shedding of Yellow Fever Virus From an Imported Case in the Netherlands After Travel to Brazil.

    Get PDF
    We report yellow fever infection in a Dutch traveler returning from Brazil. Yellow fever virus (YFV) was identified in serum and urine samples over a period of 1 month. Yellow fever virus genome sequences from the patient clustered with recent Brazilian YFV and showed with limited nucleotide changes during the resolving infection

    Multi-laboratory evaluation of ReaScan TBE IgM rapid test, 2016 to 2017

    Get PDF
    Tick-borne encephalitis (TBE) is a potentially severe neurological disease caused by TBE virus (TBEV). In Europe and Asia, TBEV infection has become a growing public health concern and requires fast and specific detection. Aim: In this observational study, we evaluated a rapid TBE IgM test, ReaScan TBE, for usage in a clinical laboratory setting. Methods: Patient sera found negative or positive for TBEV by serological and/or molecular methods in diagnostic laboratories of five European countries endemic for TBEV (Estonia, Finland, Slovenia, the Netherlands and Sweden) were used to assess the sensitivity and specificity of the test. The patients' diagnoses were based on other commercial or quality assured in-house assays, i.e. each laboratory's conventional routine methods. For specificity analysis, serum samples from patients with infections known to cause problems in serology were employed. These samples tested positive for e.g. Epstein-Barr virus, cytomegalovirus and Anaplasma phagocytophilum, or for flaviviruses other than TBEV, i.e. dengue, Japanese encephalitis, West Nile and Zika viruses. Samples from individuals vaccinated against flaviviruses other than TBEV were also included. Altogether, 172 serum samples from patients with acute TBE and 306 TBE IgM negative samples were analysed. Results: Compared with each laboratory's conventional methods, the tested assay had similar sensitivity and specificity (99.4% and 97.7%, respectively). Samples containing potentially interfering antibodies did not cause specificity problems. Conclusion: Regarding diagnosis of acute TBEV infections, ReaScan TBE offers rapid and convenient complementary IgM detection. If used as a stand-alone, it can provide preliminary results in a laboratory or point of care setting.Peer reviewe

    From more testing to smart testing:data-guided SARS-CoV-2 testing choices, the Netherlands, May to September 2020

    Get PDF
    BACKGROUND: SARS-CoV-2 RT-PCR assays are more sensitive than rapid antigen detection assays (RDT) and can detect viral RNA even after an individual is no longer infectious. RDT can reduce the time to test and the results might better correlate with infectiousness. AIM: We assessed the ability of five RDT to identify infectious COVID-19 cases and systematically recorded the turnaround time of RT-PCR testing. METHODS: Sensitivity of RDT was determined using a serially diluted SARS-CoV-2 stock with known viral RNA concentration. The probability of detecting infectious virus at a given viral load was calculated using logistic regression of viral RNA concentration and matched culture results of 78 specimens from randomly selected non-hospitalised cases. The probability of each RDT to detect infectious cases was calculated as the sum of the projected probabilities for viral isolation success for every viral RNA load found at the time of diagnosis in 1,739 confirmed non-hospitalised COVID-19 cases. RESULTS: The distribution of quantification cycle values and estimated RNA loads for patients reporting to drive-through testing was skewed to high RNA loads. With the most sensitive RDT (Abbott and SD Biosensor), 97.30% (range: 88.65–99.77) of infectious individuals would be detected. This decreased to 92.73% (range: 60.30–99.77) for Coris BioConcept and GenBody, and 75.53% (range: 17.55–99.77) for RapiGEN. Only 32.9% of RT-PCR results were available on the same day as specimen collection. CONCLUSION: The most sensitive RDT detected infectious COVID-19 cases with high sensitivity and may considerably improve containment through more rapid isolation and contact tracing

    Clearance of influenza virus from the lung depends on migratory langerin+CD11b− but not plasmacytoid dendritic cells

    Get PDF
    Although dendritic cells (DCs) play an important role in mediating protection against influenza virus, the precise role of lung DC subsets, such as CD11b− and CD11b+ conventional DCs or plasmacytoid DCs (pDCs), in different lung compartments is currently unknown. Early after intranasal infection, tracheal CD11b−CD11chi DCs migrated to the mediastinal lymph nodes (MLNs), acquiring co-stimulatory molecules in the process. This emigration from the lung was followed by an accumulation of CD11b+CD11chi DCs in the trachea and lung interstitium. In the MLNs, the CD11b+ DCs contained abundant viral nucleoprotein (NP), but these cells failed to present antigen to CD4 or CD8 T cells, whereas resident CD11b−CD8α+ DCs presented to CD8 cells, and migratory CD11b−CD8α− DCs presented to CD4 and CD8 T cells. When lung CD11chi DCs and macrophages or langerin+CD11b−CD11chi DCs were depleted using either CD11c–diphtheria toxin receptor (DTR) or langerin-DTR mice, the development of virus-specific CD8+ T cells was severely delayed, which correlated with increased clinical severity and a delayed viral clearance. 120G8+ CD11cint pDCs also accumulated in the lung and LNs carrying viral NP, but in their absence, there was no effect on viral clearance or clinical severity. Rather, in pDC-depleted mice, there was a reduction in antiviral antibody production after lung clearance of the virus. This suggests that multiple DCs are endowed with different tasks in mediating protection against influenza virus
    corecore