89 research outputs found

    Whole-body imaging of the musculoskeletal system: the value of MR imaging

    Get PDF
    In clinical practice various modalities are used for whole-body imaging of the musculoskeletal system, including radiography, bone scintigraphy, computed tomography, magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET-CT). Multislice CT is far more sensitive than radiographs in the assessment of trabecular and cortical bone destruction and allows for evaluation of fracture risk. The introduction of combined PET-CT scanners has markedly increased diagnostic accuracy for the detection of skeletal metastases compared with PET alone. The unique soft-tissue contrast of MRI enables for precise assessment of bone marrow infiltration and adjacent soft tissue structures so that alterations within the bone marrow may be detected before osseous destruction becomes apparent in CT or metabolic changes occur on bone scintigraphy or PET scan. Improvements in hard- and software, including parallel image acquisition acceleration, have made high resolution whole-body MRI clinically feasible. Whole-body MRI has successfully been applied for bone marrow screening of metastasis and systemic primary bone malignancies, like multiple myeloma. Furthermore, it has recently been proposed for the assessment of systemic bone diseases predisposing for malignancy (e.g., multiple cartilaginous exostoses) and muscle disease (e.g., muscle dystrophy). The following article gives an overview on state-of-the-art whole-body imaging of the musculoskeletal system and highlights present and potential future applications, especially in the field of whole-body MRI

    Referred pain from myofascial trigger points in head and neck–shoulder muscles reproduces head pain features in children with chronic tension type headache

    Get PDF
    Our aim was to describe the referred pain pattern and areas from trigger points (TrPs) in head, neck, and shoulder muscles in children with chronic tension type headache (CTTH). Fifty children (14 boys, 36 girls, mean age: 8 ± 2) with CTTH and 50 age- and sex- matched children participated. Bilateral temporalis, masseter, superior oblique, upper trapezius, sternocleidomastoid, suboccipital, and levator scapula muscles were examined for TrPs by an assessor blinded to the children’s condition. TrPs were identified with palpation and considered active when local and referred pains reproduce headache pain attacks. The referred pain areas were drawn on anatomical maps, digitalized, and also measured. The total number of TrPs was significantly greater in children with CTTH as compared to healthy children (P < 0.001). Active TrPs were only present in children with CTTH (P < 0.001). Within children with CTTH, a significant positive association between the number of active TrPs and headache duration (rs = 0.315; P = 0.026) was observed: the greater the number of active TrPs, the longer the duration of headache attack. Significant differences in referred pain areas between groups (P < 0.001) and muscles (P < 0.001) were found: the referred pain areas were larger in CTTH children (P < 0.001), and the referred pain area elicited by suboccipital TrPs was larger than the referred pain from the remaining TrPs (P < 0.001). Significant positive correlations between some headache clinical parameters and the size of the referred pain area were found. Our results showed that the local and referred pains elicited from active TrPs in head, neck and shoulder shared similar pain pattern as spontaneous CTTH in children, supporting a relevant role of active TrPs in CTTH in children

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    Variation in neurosurgical management of traumatic brain injury

    Get PDF
    Background: Neurosurgical management of traumatic brain injury (TBI) is challenging, with only low-quality evidence. We aimed to explore differences in neurosurgical strategies for TBI across Europe. Methods: A survey was sent to 68 centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. The questionnaire contained 21 questions, including the decision when to operate (or not) on traumatic acute subdural hematoma (ASDH) and intracerebral hematoma (ICH), and when to perform a decompressive craniectomy (DC) in raised intracranial pressure (ICP). Results: The survey was completed by 68 centers (100%). On average, 10 neurosurgeons work in each trauma center. In all centers, a neurosurgeon was available within 30 min. Forty percent of responders reported a thickness or volume threshold for evacuation of an ASDH. Most responders (78%) decide on a primary DC in evacuating an ASDH during the operation, when swelling is present. For ICH, 3% would perform an evacuation directly to prevent secondary deterioration and 66% only in case of clinical deterioration. Most respondents (91%) reported to consider a DC for refractory high ICP. The reported cut-off ICP for DC in refractory high ICP, however, differed: 60% uses 25 mmHg, 18% 30 mmHg, and 17% 20 mmHg. Treatment strategies varied substantially between regions, specifically for the threshold for ASDH surgery and DC for refractory raised ICP. Also within center variation was present: 31% reported variation within the hospital for inserting an ICP monitor and 43% for evacuating mass lesions. Conclusion: Despite a homogeneous organization, considerable practice variation exists of neurosurgical strategies for TBI in Europe. These results provide an incentive for comparative effectiveness research to determine elements of effective neurosurgical care

    Surgical treatment of bone metastases in patients with lung cancer

    No full text
    Lung cancer is the leading cause of cancer mortality. Bone metastases are a common complication in lung cancer. The therapeutic approach and the type of surgical treatment of these lesions have not been clearly defined. Outcome and prognosis of patients with bony metastases and a variety of surgical interventions were analysed retrospectively. In 58 patients we performed 62 surgeries. The most common locations of metastases were the spine (32 patients), the proximal femur (10) and the pelvis (11). Twenty-one patients had a singular and 20 had multiple osseous lesions; 17 showed additional visceral involvement. Nine patients had a local progression of their disease and 49 a systemic progression. Patients with local progression (n = 9) had a better prognosis than the patients with systemic progression (p = 0.0083). Fracture (p = 0.0017) worsened prognosis, whereas the number of bone lesions or the presence of a visceral lesion did not. Patients with small lesions showed a better survival than patients with large lesions (p = 0.02). Ten percent of the patients died within 30 days and 78% within one year after surgery. Fracture of bone due to metastatic lung cancer worsens the prognosis whereas the number of bone lesions, the presence of a visceral lesion and the surgical approach do not

    Traumatic brain injury : integrated approaches to improve prevention, clinical care, and research

    Get PDF
    Rahul Raj on työryhmän InTBIR Participants Investigators jäsen.Peer reviewe
    corecore