69 research outputs found

    Epilepsie im Kindesalter: Wann kann die antiepileptische Therapie abgesetzt werden?: Eine Meinungsäußerung des Königsteiner Arbeitskreises

    Get PDF
    Abstract : The Königsteiner Arbeitskreis (KA) discussed the optimal timing of discontinuation of antiepileptic drugs (AE) in children. Because the controlled trials are rare and inconsistent it was decided to publish the results of the discussion and the approach of the KA members. In neonates AE are usually withdrawn within 2-12 weeks after the last seizure. In infantile spasms, vigabatrin is discontinued 6-12 and sulthiam 6-36 months after the cessation of spasms. After steroids the majority of the KA members continue AE for 2 years. For Rolandic epilepsy 1-3 seizurefree years seem to be sufficient to stop AE, even when focal spike waves persist. In symptomatic focal epilepsy the decision of discontinuation is influenced by the underlying disease. In absence epilepsy AE are discontinued after 2 years; whereas in myoclonic astatic epilepsy most members prefer 2-5 seizure-free years before AE are tapered. Agreement exists about the high risk of relapse after withdrawal of AE in juvenile myoclonic epilepsy and the majority of the members never stop AE in patients with this syndrome. Some KA members however, consider discontinuation after 2-3 seizure-free years. With respect to the rate of withdrawal, most members prefer a slow (3-12 months) tapering. Rapid (< 3 months) tapering is practised only by 2 KA members. The role of EEG for the decision of AE discontinuation is limited to some epileptic syndromes (i.e. absence epilepsy). The paper reflects the opinion of the KA and is not feasible as a guideline. The decision to discontinue AE is always an individual decision based on the underlying disease, the kind of epilepsy and the psychosocial circumstances of the patien

    Treatment of Infantile Spasm Syndrome: Update from the Interdisciplinary Guideline Committee Coordinated by the German-Speaking Society of Neuropediatrics

    Full text link
    OBJECTIVES The manuscript serves as an update on the current management practices for infantile spasm syndrome (ISS). It includes a detailed summary of the level of current evidence of different treatment options for ISS and gives recommendations for the treatment and care of patients with ISS. METHODS A literature search was performed using the Cochrane and Medline Databases (2014 to July 2020). All studies were objectively rated using the Scottish Intercollegiate Guidelines Network. For recommendations, the evidence from these studies was combined with the evidence from studies used in the 2014 guideline. RECOMMENDATIONS If ISS is suspected, electroencephalography (EEG) should be performed within a few days and, if confirmed, treatment should be initiated immediately. Response to first-line treatment should be evaluated clinically and electroencephalographically after 14 days. The preferred first-line treatment for ISS consists of either hormone-based monotherapy (AdrenoCorticoTropic Hormone [ACTH] or prednisolone) or a combination of hormone and vigabatrin. Children with tuberous sclerosis complex and those with contraindications against hormone treatment should be treated with vigabatrin. If first-line drugs are ineffective, second-line treatment options such as ketogenic dietary therapies, sulthiame, topiramate, valproate, zonisamide, or benzodiazepines should be considered. Children refractory to drug therapy should be evaluated early for epilepsy surgery, especially if focal brain lesions are present. Parents should be informed about the disease, the efficacy and adverse effects of the medication, and support options for the family. Regular follow-up controls are recommended

    Cerebral Arterial Stenoses and Stroke: Novel Features of Aicardi-Goutières Syndrome Caused by the Arg164X Mutation in SAMHD1 Are Associated with Altered Cytokine Expression

    Get PDF
    Aicardi-Goutières syndrome (AGS) is a rare inborn multisystemic disease, resembling intrauterine viral infection and resulting in psychomotor retardation, spasticity and chilblain-like skin lesions. Diagnostic criteria include intracerebral calcifications and elevated interferon-alpha and pterin levels in cerebrospinal fluid (CSF). We report on four adult siblings with unknown neurodegenerative disease presenting with cerebrovascular stenoses, stroke and glaucoma in childhood, two of whom died at the age of 40 and 29 years. Genome-wide homozygosity mapping identified 170 candidate genes embedded in a common haplotype of 8Mb on chromosome 20q11-13. Next generation sequencing of the entire region identified the c.490C>T (p.Arg164X) mutation in SAMHD1, a gene most recently described in AGS, on both alleles in all affected siblings. Clinical diagnosis of AGS was then confirmed by demonstrating intracerebral calcifications on cranial computed tomography in all siblings and elevated pterin levels in CSF in three of them. In patient fibroblasts, lack of SAMHD1 protein expression was associated with increased basal expression of IL8, while stimulated expression of IFNB1 was reduced. We conclude that cerebrovascular stenoses and stroke associated with the Arg164X mutation in SAMHD1 extend the phenotypic spectrum of AGS. The observed vascular changes most likely reflect a vasculitis caused by dysregulated inflammatory stress response. © 2010 Wiley-Liss, Inc

    Efficacy, Retention, and Tolerability of Brivaracetam in Patients With Epileptic Encephalopathies: A Multicenter Cohort Study From Germany

    Get PDF
    Objective: To evaluate the efficacy and tolerability of brivaracetam (BRV) in a severely drug refractory cohort of patients with epileptic encephalopathies (EE).Method: A multicenter, retrospective cohort study recruiting all patients treated with EE who began treatment with BRV in an enrolling epilepsy center between 2016 and 2017.Results: Forty-four patients (27 male [61%], mean age 29 years, range 6 to 62) were treated with BRV. The retention rate was 65% at 3 months, 52% at 6 months and 41% at 12 months. A mean retention time of 5 months resulted in a cumulative exposure to BRV of 310 months. Three patients were seizure free during the baseline. At 3 months, 20 (45%, 20/44 as per intention-to-treat analysis considering all patients that started BRV including three who were seizure free during baseline) were either seizure free (n = 4; 9%, three of them already seizure-free at baseline) or reported at least 25% (n = 4; 9%) or 50% (n = 12; 27%) reduction in seizures. An increase in seizure frequency was reported in two (5%) patients, while there was no change in the seizure frequency of the other patients. A 50% long-term responder rate was apparent in 19 patients (43%), with two (5%) free from seizures for more than six months and in nine patients (20%, with one [2 %] free from seizures) for more than 12 months. Treatment-emergent adverse events were predominantly of psychobehavioural nature and were observed in 16%.Significance: In this retrospective analysis the rate of patients with a 50% seizure reduction under BRV proofed to be similar to those seen in regulatory trials for focal epilepsies. BRV appears to be safe and relatively well tolerated in EE and might be considered in patients with psychobehavioral adverse events while on levetiracetam

    Delineating the GRIN1 phenotypic spectrum: a distinct genetic NMDA receptor encephalopathy

    Get PDF
    Objective:To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology.Methods:We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes.Results:We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families.Conclusions:De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.Johannes R. Lemke (32EP30_136042/1) and Peter De Jonghe (G.A.136.11.N and FWO/ESF-ECRP) received financial support within the EuroEPINOMICS-RES network (www.euroepinomics.org) within the Eurocores framework of the European Science Foundation (ESF). Saskia Biskup and Henrike Heyne received financial support from the German Federal Ministry for Education and Research (BMBF IonNeurONet: 01 GM1105A and FKZ: 01EO1501). Katia Hardies is a PhD fellow of the Institute for Science and Technology (IWT) Flanders. Ingo Helbig was supported by intramural funds of the University of Kiel, by a grant from the German Research Foundation (HE5415/3-1) within the EuroEPINOMICS framework of the European Science Foundation, and additional grants of the German Research Foundation (DFG, HE5415/5-1, HE 5415/6-1), German Ministry for Education and Research (01DH12033, MAR 10/012), and grant by the German chapter of the International League against Epilepsy (DGfE). The project also received infrastructural support through the Institute of Clinical Molecular Biology in Kiel, supported in part by DFG Cluster of Excellence "Inflammation at Interfaces" and "Future Ocean." The project was also supported by the popgen 2.0 network (P2N) through a grant from the German Ministry for Education and Research (01EY1103) and by the International Coordination Action (ICA) grant G0E8614N. Christel Depienne, Caroline Nava, and Delphine Heron received financial support for exome analyses by the Centre National de Genotypage (CNG, Evry, France)

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    Get PDF
    Copy number variants (CNV) are established risk factors for neurodevelopmental disorders with seizures or epilepsy. With the hypothesis that seizure disorders share genetic risk factors, we pooled CNV data from 10,590 individuals with seizure disorders, 16,109 individuals with clinically validated epilepsy, and 492,324 population controls and identified 25 genome-wide significant loci, 22 of which are novel for seizure disorders, such as deletions at 1p36.33, 1q44, 2p21-p16.3, 3q29, 8p23.3-p23.2, 9p24.3, 10q26.3, 15q11.2, 15q12-q13.1, 16p12.2, 17q21.31, duplications at 2q13, 9q34.3, 16p13.3, 17q12, 19p13.3, 20q13.33, and reciprocal CNVs at 16p11.2, and 22q11.21. Using genetic data from additional 248,751 individuals with 23 neuropsychiatric phenotypes, we explored the pleiotropy of these 25 loci. Finally, in a subset of individuals with epilepsy and detailed clinical data available, we performed phenome-wide association analyses between individual CNVs and clinical annotations categorized through the Human Phenotype Ontology (HPO). For six CNVs, we identified 19 significant associations with specific HPO terms and generated, for all CNVs, phenotype signatures across 17 clinical categories relevant for epileptologists. This is the most comprehensive investigation of CNVs in epilepsy and related seizure disorders, with potential implications for clinical practice

    GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture

    Get PDF
    Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about one-third are resistant to current treatments. Here we report a multi-ancestry genome-wide association study including 29,944 cases, stratified into three broad categories and seven subtypes of epilepsy, and 52,538 controls. We identify 26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that common variants explain between 39.6% and 90% of genetic risk for GGE and its subtypes. Subtype analysis revealed markedly different genetic architectures between focal and generalized epilepsies. Gene-set analyses of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain. Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current antiseizure medications. Finally, we leverage our results to identify alternate drugs with predicted efficacy if repurposed for epilepsy treatment

    Magnetic resonance spectroscopy in patients with MELAS.

    No full text
    Localized magnetic resonance spectroscopy (MRS) yields sensitive metabolic markers to provide insight into the pathophysiology of mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) in vivo. Findings in full MELAS syndrome at 1H MRS of the brain typically include severely elevated lactate and reduced N-acetylaspartate, glutamate, myo-inositol, and total creatine concentrations in stroke-like lesions. Similar but less extreme alterations are also common in gray matter (GM) regions that appear normal at magnetic resonance imaging. Phosphorus spectroscopy of peripheral muscle permits investigation of the bioenergetic status. A decline of the phosphorylation potential indicates a low energy reserve at rest. Phosphocreatine resynthesis during post-exercise recovery is delayed pointing to reduced mitochondrial capacity. As MRS is inherently non-invasive, follow-up studies can be performed to assess treatment response quantitatively
    corecore