263 research outputs found

    Parylene-C as High Performance Encapsulation Material for Implantable Sensors

    Get PDF
    AbstractThis work presents high performance multilayer coatings for a wide range of applications and substrate materials including medical implants and implantable bio-transducers. This was done by combining the glow discharge polymerization and the chemical vapor deposition of Parylene-C processes in a special designed cluster-closed coating system. An outstanding performance of the resulting multilayer in terms of adhesion to substrate and barrier properties was observed by performing the wet adhesion test in normal saline (0.9% NaCl)

    Perovskites as surface-assisted room temperature protonic conductor humidity sensor

    Get PDF
    This paper shows a correlation between surface effective porosity due to various sintering regimes and humidity sensitive electrical properties of the perovskite-based bulk type humidity sensors. Furthermore, room temperature humidity transduction mechanism of the thick film type humidity sensors was studied in details through electrochemical impedance spectroscopy (EIS) and major transmissive components were detected by fitting to the equivalent circuits. The materials were synthesized employing solid state reaction and bulk and film type devices were fabricated by hydraulic pressing and screen printing techniques, respectively. The morphological and elemental characterizations were carried on using FESEM, EFTEM, and EDX. Physical properties including open porosity/bulk density were investigated through ASTM methods. An innovative self-designed material test fixture with ceramic supports was fabricated for high S/N ratio electrical measurement of the bulk samples. All the sensors were set up at 20-95% RH. The morphological, physical, and electrical results of bulk pellets indicate direct correlation of the open cavities and AC conduction. Presence of the ionic transport is clearly observed from the frequency-conductance spectra at room temperature. Noise-free detected behavior via EIS proves that proton transfer mechanism is a dominant responsible

    Enhanced protein immobilization on polymers - a plasma surface activation study

    Get PDF
    Over the last years, polymers have gained great attention as substrate material, because of the possibility to produce low-cost sensors in a high-throughput manner or for rapid prototyping and the wide variety of polymeric materials available with different features (like transparency, flexibility, stretchability, etc.). For almost all biosensing applications, the interaction between biomolecules (for example, antibodies, proteins or enzymes) and the employed substrate surface is highly important. In order to realize an effective biomolecule immobilization on polymers, different surface activation techniques, including chemical and physical methods, exist. Among them, plasma treatment offers an easy, fast and effective activation of the surfaces by micro/nanotexturing and generating functional groups (including carboxylic acids, amines, esters, aldehydes or hydroxyl groups). Hence, here we present a systematic and comprehensive plasma activation study of various polymeric surfaces by optimizing different parameters, including power, time, substrate temperature and gas composition. Thereby, the highest immobilization efficiency along with a homogenous biomolecule distribution is achieved with a 5-min plasma treatment under a gas composition of 50% oxygen and nitrogen, at a power of 1000 W and a substrate temperature of 80 C. These results are also confirmed by different surface characterization methods, including SEM, XPS and contact angle measurements

    Investigation of room temperature protonic conduction of perovskite humidity sensors

    Get PDF
    This paper shows a correlation between surface effective porosity due to various sintering regimes and humidity sensitive electrical properties of the perovskite-based bulk type humidity sensors, at room temperature. Furthermore, room temperature humidity transduction mechanism of the thick film type humidity sensors was studied in detail through electrochemical impedance spectroscopy (EIS) and major transmissive components were detected by the fitting of the Bode diagrams and Nyquist complexes to the equivalent circuits. The microstructural, morphological and elemental characterizations were carried on using XRD, EFTEM, FESEM, and EDX. Physical properties including open porosity/bulk density were investigated through American Standard Test Method (ASTM). An innovative self-designed material test fixture with ceramic supports was fabricated for a high S/N ratio electrical measurement of the bulk samples. All the sensors were set up at 20-95% RH. The morphological, physical, and electrical results of the bulk pellets indicate a direct correlation of the open cavities and AC conduction. The higher the open porosity is, the greater is the conduction and vice versa. Presence of the ionic transport is clearly observed from the frequency-conductance spectra at room temperature. Noise-free detected behavior via EIS proves that the proton transfer mechanism is a dominant responsible, and executed by both charge transfer resistance and kinetically controlled charge transfer (diffusive species) at low and middle to high RH. Next to the Warburg effect (at 80% RH), for the first time, a Gerischer impedance was found as a dominant agent of transduction at 85% RH to above

    Barium strontium titanate humidity sensor: impact of doping on the structural and electrical properties

    Get PDF
    The influence of Mg2+ doping (3 mol %) on structural and humidity sensing properties of (Ba0.5,Sr0.5)TiO3 (BST) perovskite nanocomposite were studied in details. Microstructural properties revealed the particle size, surface area, and average pore volume diminished for doped sample. For the MgO doped BST sensor, the film resistance and total impedance are changed more than four orders of magnitude in the 20–95% RH range, while BST sensor shows three orders change. The 3 mol % MgO doped sample with maximum hysteresis of 6.1 RH% and response/recovery time of about 30/80 s exhibits faster characteristics compare to pure BST sample with 6.8 RH% hysteresis and response/recovery of 41 s and 98 s, respectively. Transduction mechanism was found based on the proton transfer and further confirmed by a Bode plot and Nyquist complex impedance plane plot

    A Real-Time Thermal Sensor System for Quantifying the Inhibitory Effect of Antimicrobial Peptides on Bacterial Adhesion and Biofilm Formation

    Get PDF
    The increasing rate of antimicrobial resistance (AMR) in pathogenic bacteria is a global threat to human and veterinary medicine. Beyond antibiotics, antimicrobial peptides (AMPs) might be an alternative to inhibit the growth of bacteria, including AMR pathogens, on different surfaces. Biofilm formation, which starts out as bacterial adhesion, poses additional challenges for antibiotics targeting bacterial cells. The objective of this study was to establish a real-time method for the monitoring of the inhibition of (a) bacterial adhesion to a defined substrate and (b) biofilm formation by AMPs using an innovative thermal sensor. We provide evidence that the thermal sensor enables continuous monitoring of the effect of two potent AMPs, protamine and OH-CATH-30, on surface colonization of bovine mastitis-associated Escherichia (E.) coli and Staphylococcus (S.) aureus. The bacteria were grown under static conditions on the surface of the sensor membrane, on which temperature oscillations generated by a heater structure were detected by an amorphous germanium thermistor. Bacterial adhesion, which was confirmed by white light interferometry, caused a detectable amplitude change and phase shift. To our knowledge, the thermal measurement system has never been used to assess the effect of AMPs on bacterial adhesion in real time before. The system could be used to screen and evaluate bacterial adhesion inhibition of both known and novel AMPs

    Organ complications after CD19 CAR T-cell therapy for large B cell lymphoma: a retrospective study from the EBMT transplant complications and lymphoma working party.

    Get PDF
    We investigated ≥ grade 3 (CTC-AE) organ toxicities for commercial CD19 chimeric antigen receptor T cell (CAR-T cell) products in 492 patients (Axi-Cel; n = 315; Tisa-Cel; n = 177) with Large B-cell Lymphoma in the European Society for Blood and Marrow Transplantation (EBMT) CAR-T registry. The incidence of ≥ grade 3 organ toxicities during the first 100 days after CAR-T was low and the most frequent were: renal (3.0%), cardiac (2.3%), gastro-intestinal (2.3%) and hepatic (1.8%). The majority occurred within three weeks after CAR-T cell therapy. Overall survival was 83.1% [79.8-86.5; 95% CI] at 3 months and 53.5% [49-58.4; 95% CI] at one year after CAR-T. The most frequent cause of death was tumour progression (85.1%). Non-relapse mortality was 3.1% [2.3-4.1; 95% CI] at 3 months and 5.2% [4.1-6.5; 95% CI] at one year after CAR-T. The most frequent causes of non-relapse mortality were cell-therapy-related toxicities including organ toxicities (6.4% of total deaths) and infections (4.4% of total deaths). Our data demonstrates good safety in the European real-world setting

    Clinical Characteristics and Treatment Patterns of Children and Adults With IgA Nephropathy or IgA Vasculitis: Findings From the CureGN Study

    Get PDF
    Introduction: The Cure Glomerulonephropathy Network (CureGN) is a 66-center longitudinal observational study of patients with biopsy-confirmed minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, or IgA nephropathy (IgAN), including IgA vasculitis (IgAV). This study describes the clinical characteristics and treatment patterns in the IgA cohort, including comparisons between IgAN versus IgAV and adult versus pediatric patients. Methods: Patients with a diagnostic kidney biopsy within 5 years of screening were eligible to join CureGN. This is a descriptive analysis of clinical and treatment data collected at the time of enrollment. Results: A total of 667 patients (506 IgAN, 161 IgAV) constitute the IgAN/IgAV cohort (382 adults, 285 children). At biopsy, those with IgAV were younger (13.0 years vs. 29.6 years, P < 0.001), more frequently white (89.7% vs. 78.9%, P = 0.003), had a higher estimated glomerular filtration rate (103.5 vs. 70.6 ml/min per 1.73 m2, P < 0.001), and lower serum albumin (3.4 vs. 3.8 g/dl, P < 0.001) than those with IgAN. Adult and pediatric individuals with IgAV were more likely than those with IgAN to have been treated with immunosuppressive therapy at or prior to enrollment (79.5% vs. 54.0%, P < 0.001). Conclusion: This report highlights clinical differences between IgAV and IgAN and between children and adults with these diagnoses. We identified differences in treatment with immunosuppressive therapies by disease type. This description of baseline characteristics will serve as a foundation for future CureGN studies

    The impact of welfare reform on the health insurance coverage, utilization and health of low education single mothers

    Full text link
    The Personal Responsibility Work Opportunity and Reconciliation Act (PRWORA) of 1996 imposed time limits on the receipt of welfare cash benefits and mandated cash benefit sanctions for failure to meet work requirements. Many studies examining the health implications of PRWORA have found associated declines in health insurance coverage and healthcare utilization among single mothers but no impact of PRWORA on health outcomes. A limitation of this literature is that most studies cover a time period before time limits were implemented in all states and also before individuals began actually timing out. This work builds on previous studies by exploring this research question using data from the Survey of Income and Program Participation that covers a time period after all states have implemented time limits (1991-2009). We use a difference-in-differences study design that exploits variability in eligibility for cash welfare benefits by marital status and state-level variation in timing of PRWORA implementation to identify the effect of PRWORA. Using ordinary least square regression models, controlling for state-level and federal policies, individual-level demographics and state and year fixed-effects, we find that PRWORA leads to 7 and 5 percentage point increases in self-reported poor health and self-reported disability among white single mothers without a diploma, respectively
    corecore