16 research outputs found

    Non-chemical signatures of biological materials: Radio signals from Covid19?

    Get PDF
    All therapeutic methods dealing with coronavirus (past and present) are based on chemicals. We test for it (positive or negative) chemically and hope to cure it with a future vaccine (some complicated chemical preparation). If and when the virus mutates, another set of chemical protocols for its testing and a hunt for new chemicals as a vaccine shall begin again and again. But the history of modern (western) medicine tells us that our biotechnology is not so limited. Copious scientific evidence for sonic and low energy electromagnetic signals produced by all biological elements (DNA, cells, bacteria, parasites, virus) exists; in turn, the biological elements are affected by these non-chemical signals as well. A careful analysis and a catalogue of the spectrum of these non-chemical signals are proposed here as a unique biophysical signature

    Mémoires sur le Comté de Neuchâtel en Suisse

    No full text
    par (Georges) de MontmollinBd. 1: XVI, 256 Seiten ; Bd. 2: 302 Seiten, [1] BlattExlibrisstempel: "Eidgenössische Zentralbibliothek" 010606557_0001 Exemplar der ETH-BIBExlibrisstempel: "Schweizerische Bundeskanzlei" 000185777_0001 Exemplar der ETH-BI

    Pharmacokinetic and Pharmacodynamic Principles of Anti-infective Dosing

    No full text
    PURPOSE: An understanding of the pharmacokinetic (PK) and pharmacodynamic (PD) principles that determine response to antimicrobial therapy can provide the clinician with better-informed dosing regimens. Factors influential on antibiotic disposition and clinical outcome are presented, with a focus on the primary site of infection. Techniques to better understand antibiotic PK and optimize PD are acknowledged. METHODS: PubMed (inception – April 2016) was reviewed for relevant publications assessing antimicrobial exposures within different anatomical locations and clinical outcomes for various infection sites. FINDINGS: A limited literature base indicates variable penetration of antibiotics to different target sites of infection, with drug solubility and extent of protein binding providing significant PK influences in addition to the major clearing pathway of the agent. PD indices derived from in vitro and animal models determine the optimal magnitude and frequency of dosing regimens for patients. PK/PD modeling and simulation has been shown an efficient means of assessing these PD endpoints against a variety of PK determinants, clarifying the unique effects of infection site and patient characteristics to inform the adequacy of a given antibiotic regimen. IMPLICATIONS: Appreciation of the PK properties of an antibiotic and its PD measure of efficacy can maximize the utility of these life-saving drugs. Unfortunately, clinical data remains limited for a number of infection site-antibiotic exposure relationships. Modeling and simulation can bridge preclinical and patient data for the prescription of optimal antibiotic dosing regimens, consistent with the tenets of personalized medicine

    Impact on disease mortality of clinical, biological, and virological characteristics at hospital admission and overtime in COVID‐19 patients

    No full text
    International audienc

    Long-term neurological symptoms after acute COVID-19 illness requiring hospitalization in adult patients: insights from the ISARIC-COVID-19 follow-up study

    No full text
    in this study we aimed to characterize the type and prevalence of neurological symptoms related to neurological long-COVID-19 from a large international multicenter cohort of adults after discharge from hospital for acute COVID-19

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83-7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97-2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14-1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25-1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable

    Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study

    No full text
    Background: Up to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs). Methods: This is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support. Results: A total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97–2.11]), and tachypnoea at hospital admission (OR [95%CI]; 1.16 [1.14–1.18]). Patients who failed HFNC/NIV had a higher 28-day fatality ratio (OR [95%CI]; 1.27 [1.25–1.30]). Conclusions: In the present international cohort, the most frequently used advanced respiratory support was the HFNC. However, IMV was used more often in LMIC. Higher leucocyte count, tachypnoea, and treatment in LMIC were risk factors for HFNC/NIV failure. HFNC/NIV failure was related to worse clinical outcomes, such as 28-day mortality. Trial registration This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    Get PDF
    Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world's largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ∼30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death
    corecore