672 research outputs found

    Rapid In Situ Characterization of Soil Erodibility With a Field Deployable Robot

    Get PDF
    Predicting the susceptibility of soil to wind erosion is difficult because it is a multivariate function of grain size, soil moisture, compaction, and biological growth. Erosive agents like plowing and grazing also differ in mechanism from entrainment by fluid shear; it is unclear if and how erosion thresholds for each process are related. Here we demonstrate the potential to rapidly assemble empirical maps of erodibility while also examining what controls it, using a novel “plowing” test of surface-soil shear resistance (r) performed by a semi-autonomous robot. Field work at White Sands National Monument, New Mexico, United States, examined gradients in erodibility at two scales: (i) soil moisture changes from dry dune crest to wet interdune (tens of meters) and (ii) downwind-increasing dune stabilization associated with growth of plants and salt and biological crusts (kilometers). We found that soil moisture changes of a few percent corresponded to a doubling of r, a result confirmed by laboratory experiments, and that soil crusts conferred stability that was comparable to moisture effects. We then compared different mechanisms of mechanical perturbation in a controlled laboratory setting. A new “kick-out” test determines peak shear resistance of the surface soil as a proxy for yield strength. Kick-out resistance exhibited a relation with soil moisture that was distinct from the plowing test and that was correlated with the independently measured threshold-fluid stress for wind erosion. Results show that our new method maps soil erodibility in arid environments and provides an understanding of environmental controls on variations in soil erodibility. (For more information: Kod*lab

    NNSS Soils Monitoring: Plutonium Valley (CAU366)

    Get PDF
    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events

    Dust emission from crusted surfaces: Insights from field measurements and modelling

    Get PDF
    Crusted surfaces can be major sources of mineral dust emission. Quantitative understanding of dust emission from crusted surfaces is limited, because (1) theories on dust emission are not well tested for such surfaces; and (2) modelling is hampered by a lack of input data sufficient to describe the surface conditions. Combining detailed field measurements with physics-based numerical modelling, we present new insights into dust emission from crusted surfaces. Our measurements confirm that crust erodibility and dust-emission intensity can increase or decrease after previous erosion events. To support interpretation of the measurements and to test the applicability of a state-of-the-art parameterisation to simulate dust emission from crusted surfaces, we apply the dust emission scheme of Shao (2004). Saltation flux, which is input to the scheme, is approximated using the parameterisation of Kawamura (1964) and a scaling factor obtained from observations. Limitations of this approach are discussed. Our results show that the dust emission scheme is suitable to estimate dust emission from crusted surfaces if accurate input data and parameters describing the soil-surface condition are provided. The parameters were optimized for each dust event to achieve a best estimate. The variation of the resulting parameter values confirms the observed variability of dust-emission efficiency between the events and provides further evidence that it was caused by variations in crust erodibility. Our study demonstrates that available physics-based dust-emission parameterisations are able to simulate dust emissions under complicated conditions, but also that refined information on the soil-surface conditions are needed as input to the schemes.This study was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) grant KL 2932/1-1 awarded as a postdoctoral research fellowship to MK. TEG and RSVP acknowledge support from NASA grant NNX16AH13G. 15 NPW acknowledges support through funding from the Department of Interior, Bureau of Land Management. We thank Ralph Lorenz for providing pressure loggers and the Davis anemometer used on Site F. We also thank Sharalyn Peterson, Justin Van Zee, and Bradley Cooper for field and lab assistance. LPI point data were recorded using DIMA (https://jornada.nmsu.edu/monit-assess/dima). Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The USDA is an equal opportunity provider and employer. We thank two anonymous reviewers for their positive and helpful comments.Peer ReviewedPostprint (author's final draft

    Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Get PDF
    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station 401. This difference may be the result of using filter media at Station 400 with a smaller pore size than the media used at the other two stations. Average annual gamma exposure at Station 401 is slightly greater than at Station 400 and 402. Average annual gamma exposure at all three TTR stations are in the upper range to slightly higher than values reported for the CEMP stations surrounding the TTR. At higher wind speeds, the saltation counts are greater at Station 401 than at Station 402 while the suspended particulate concentrations are greater at Station 402 than at Statin 401. Although these observations seem counterintuitive, they are likely the result of differences in the soil material present at the two sites. Station 401 is located on an interfluve elevated above two adjacent drainage channels where the soil surface is likely to be composed of coarser material. Station 402 is located in finer sediments at the playa edge and is also subject to dust from a dirt road only 500 m to the north. During prolonged high wind events, suspended dust concentrations at Station 401 peaked with the initial winds then decreased whereas dust concentrations at Station 402 peaked with each peak in the wind speed. This likely reflects a limited PM10 source that is quickly expended at Station 401 relative to an abundant PM10 source at Station 402. In CY2013, to facilitate comparisons between radiological analyses of collected dust, the filter media at all three stations will be standardized. In addition, a sequence of samples will be collected at Station 400 using both types of filter media to enable development of a mathematical relationship between the results derived from the two filter types. Additionally, having acquired approximately four years of observations at Stations 400 and 401 and a year of observations at Station 402, a period-of-record analysis of the radiological and airborne dust conditions will be undertaken

    Robotic Measurement of Aeolian Processes

    Get PDF
    Measurements used to study wind shear stress and turbulence, surface roughness, sand flux, and dust emissions are typically obtained from stationary instrumentation, and are thus limited spatially. They are also dependent on deployment of instrumentation for specific events and thus the are limited temporally. We have been adapting a rough-terrain legged robot capable of rapidly traversing desert terrain to serve as a semi-autonomous, reactive mobile sensory platform (RHex [1]), which would not share these limitations. We report on early trials of the robotic platform at the Jornada LTER and White Sands National Monument to test the feasibility of gathering measurements of airflow and rates of particle transport on a dune, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in an arid soil. The robot not only serves as a mobile platform for science instruments; it can also perform controlled “kick tests” to locally examine soil strength. We outline a strategy for mapping soil erodibility and its controlling parameters using the unique capabilities of RHex, and the implications for understanding erosion and dust emission from complex terrain

    Ground robotic measurement of aeolian processes

    Get PDF
    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These devices are often cumbersome and logistically difficult to set up and maintain, especially near steep or vegetated dune surfaces. Significant advances in instrumentation are needed to provide the datasets that are required to validate and improve mechanistic models of aeolian sediment transport. Recent advances in robotics show great promise for assisting and amplifying scientists’ efforts to increase the spatial and temporal resolution of many environmental measurements governing sediment transport. The emergence of cheap, agile, human-scale robotic platforms endowed with increasingly sophisticated sensor and motor suites opens up the prospect of deploying programmable, reactive sensor payloads across complex terrain in the service of aeolian science. This paper surveys the need and assesses the opportunities and challenges for amassing novel, highly resolved spatiotemporal datasets for aeolian research using partially-automated ground mobility. We review the limitations of existing measurement approaches for aeolian processes, and discuss how they may be transformed by ground-based robotic platforms, using examples from our initial field experiments. We then review how the need to traverse challenging aeolian terrains and simultaneously make high-resolution measurements of critical variables requires enhanced robotic capability. Finally, we conclude with a look to the future, in which robotic platforms may operate with increasing autonomy in harsh conditions. Besides expanding the completeness of terrestrial datasets, bringing ground-based robots to the aeolian research community may lead to unexpected discoveries that generate new hypotheses to expand the science itself. For more information: Kod*lab (http://kodlab.seas.upenn.edu/

    Size distribution of emitted dust in Morocco

    Get PDF
    Atmospheric mineral dust constitutes one of the most important aerosols in terms of mass in the global atmosphere. Dust impacts on the Earth’s climate are closely related to its physical and chemical properties, i.e. its particle size distribution (PSD), mineralogical composition, particle shape, and mixing state. Despite the knowledge acquired on dust properties over the last decades, understanding of dust particle size and composition at emission is still incomplete, partly due to the scarcity of coincident PSD measurements for emitted dust and the parent soil. In this context, the ERC project FRAGMENT (FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe) conducts dust field campaigns in different regions of the world, obtaining a detailed characterization of the soil, airborne particles and meteorology. The first measurement campaign took place in September 2019 at “El Bour”, a dry lake located in the Draa River Basin at the edge of the Sahara desert in Morocco.Peer reviewe

    Insights into the size-resolved dust emission from field measurements in the Moroccan Sahara

    Get PDF
    The particle size distribution (PSD) of mineral dust has a strong effect on the impacts of dust on climate. However, our understanding of the emitted dust PSD, including its variability and the fraction of super-coarse dust (diameter >10 μm), remains limited. Here, we provide new insights into the size-resolved dust emission process based on a field campaign performed in the Moroccan Sahara in September 2019 in the context of the FRontiers in dust minerAloGical coMposition and its Effects upoN climaTe (FRAGMENT) project. The obtained dust concentration and diffusive flux PSDs show significant dependencies upon the friction velocity (u∗), wind direction and type of event (regular events versus haboob events). For instance, the number fraction of sub-micrometre particles increases with u∗, along with a large decrease in the mass fraction of super-coarse dust. We identify dry deposition, which is modulated by u∗ and fetch length, as a potential cause for this PSD variability. Using a resistance model constrained with field observations to estimate the dry deposition flux and thereby also the emitted dust flux, we show that deposition could represent up to ∼90% of the emission of super-coarse particles (>10 μm) and up to ∼65% of the emission of particles as small as ∼5 μm in diameter. Importantly, removing the deposition component significantly reduces the variability with u∗ in the PSD of the emitted dust flux compared with the diffusive flux, particularly for super-coarse dust. The differences between regular and haboob event concentration and diffusive flux PSDs are suspected to result from a smaller and variable dust source fetch during the haboob events, and/or an increased resistance of soil aggregates to fragmentation associated with the observed increase in relative humidity along the haboob outflow. Finally, compared to the invariant emitted dust flux PSD estimated based on brittle fragmentation theory, we obtain a substantially higher proportion of super-micrometre particles in the dust flux. Overall, our results suggest that dry deposition needs to be adequately considered to estimate the emitted PSD, even in studies limited to the fine and coarse size ranges (<10 μm).The field campaign and its associated research, including this work, was primarily funded by the European Research Council under the Horizon 2020 research and innovation programme through the ERC Consolidator Grant FRAGMENT (grant agreement no. 773051) and the AXA Research Fund through the AXA Chair on Sand and Dust Storms at BSC. Cristina González-Flórez was supported by a PhD fellowship from the Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) grant no. 2020-FI-B 00678. Martina Klose received funding through the Helmholtz Association's Initiative and Networking Fund (grant agreement no. VH-NG-1533). Konrad Kandler was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant nos. 264907654, 416816480. Yue Huang acknowledges financial support from the Columbia University Earth Institute Postdoctoral Research Fellowship. The SANTRI instruments used in this study were constructed under a grant (no. EAR-1124609) from the US National Science Foundation.Peer reviewe

    Report from the second cytomegalovirus and immunosenescence workshop.

    Get PDF
    The Second International Workshop on CMV & Immunosenescence was held in Cambridge, UK, 2-4th December, 2010. The presentations covered four separate sessions: cytomegalovirus and T cell phenotypes; T cell memory frequency, inflation and immunosenescence; cytomegalovirus in aging, mortality and disease states; and the immunobiology of cytomegalovirus-specific T cells and effects of the virus on vaccination. This commentary summarizes the major findings of these presentations and references subsequently published work from the presenter laboratory where appropriate and draws together major themes that were subsequently discussed along with new areas of interest that were highlighted by this discussion.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table
    corecore