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Rapid In Situ Characterization of Soil Erodibility With a Field Deployable
Robot

Abstract
Predicting the susceptibility of soil to wind erosion is difficult because it is a multivariate function of grain size,
soil moisture, compaction, and biological growth. Erosive agents like plowing and grazing also differ in
mechanism from entrainment by fluid shear; it is unclear if and how erosion thresholds for each process are
related. Here we demonstrate the potential to rapidly assemble empirical maps of erodibility while also
examining what controls it, using a novel “plowing” test of surface-soil shear resistance (?r) performed by a
semi-autonomous robot. Field work at White Sands National Monument, New Mexico, United States,
examined gradients in erodibility at two scales: (i) soil moisture changes from dry dune crest to wet interdune
(tens of meters) and (ii) downwind-increasing dune stabilization associated with growth of plants and salt and
biological crusts (kilometers). We found that soil moisture changes of a few percent corresponded to a
doubling of ?r, a result confirmed by laboratory experiments, and that soil crusts conferred stability that was
comparable to moisture effects. We then compared different mechanisms of mechanical perturbation in a
controlled laboratory setting. A new “kick-out” test determines peak shear resistance of the surface soil as a
proxy for yield strength. Kick-out resistance exhibited a relation with soil moisture that was distinct from the
plowing test and that was correlated with the independently measured threshold-fluid stress for wind erosion.
Results show that our new method maps soil erodibility in arid environments and provides an understanding
of environmental controls on variations in soil erodibility. (For more information: Kod*lab)
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Rapid in-situ characterization of soil erodibility with a field

deployable robot

Feifei Qian1, Dylan Lee2, George Nikolich3, Daniel Koditschek1, and Douglas

Jerolmack2,4

Abstract.
Predicting the susceptibility of soil to wind erosion is difficult because it is a multi-

variate function of grain size, soil moisture, compaction, and biological growth. Erosive
agents like plowing and grazing also differ in mechanism from entrainment by fluid shear;
it is unclear if and how erosion thresholds for each process are related. Here we demon-
strate the potential to rapidly assemble empirical maps of erodibility while also exam-
ining what controls it, using a novel “plowing” test of surface-soil shear resistance (τr)
performed by a semi-autonomous robot. Field work at White Sands National Monument,
New Mexico, USA, examined gradients in erodibility at two scales: (i) soil moisture changes
from dry dune crest to wet interdune (10s m); and (ii) downwind-increasing dune sta-
bilization associated with growth of plants, and salt and biological crusts (kilometers).
We found that soil moisture changes of a few percent corresponded to a doubling of τr,
a result confirmed by laboratory experiments, and that soil crusts conferred stability that
was comparable to moisture effects. We then compared different mechanisms of mechan-
ical perturbation in a controlled laboratory setting. A new “kick-out” test determines
peak shear resistance of the surface soil as a proxy for yield strength. Kick-out resistance
exhibited a relation with soil moisture that was distinct from the plowing test, and that
was correlated with the independently measured threshold-fluid stress for wind erosion.
Results show that our new method maps soil erodibility in arid environments and pro-
vides an understanding of environmental controls on variations in soil erodibility.

Key points:
1. A novel field method is presented that uses a robot’s mechanical probing of soil to
provide measurements of a soil’s susceptibility to erosion.
2. Laboratory measurements are performed and compared to the field results to begin
understanding the controls on erodibility in different parts of the dune field.
3. Initial field results lead us to develop other tests of soil erodibility that can provide
an estimate of threshold wind-erosion stress.

1. Introduction

Human activities have accelerated the pace of desertifica-
tion, directly through changes in land use and indirectly
as a consequence of anthropogenic climate change [Dai ,
2013; Wu and Ci , 2002; Reich et al., 2001; Yong-Zhong
et al., 2005]. Increasing aridity increases the severity of dust
storms, reduces net ecological productivity, and perturbs the
biogeochemical cycle of the Earth [Schlesinger et al., 1990;
Rosenfeld et al., 2001; Loye-Pilot et al., 1986; Goudie and
Middleton, 2001; Dregne and Chou, 1992]. A major contrib-
utor to enhanced dust emission in arid and semi-arid land-
scapes is changes to the erodibility of soil [Bakker et al.,
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2008; Yang et al., 2003], through mechanical disturbances
such as grazing, off-road vehicle use, and agricultural activ-
ity [Trimble and Mendel , 1995; Goossens and Buck , 2009;
Van Oost et al., 2006]. These disturbances can induce soil
compaction, changes in soil water content, alteration of in-
filtration patterns, and a decrease in vegetation [Liddle and
Grieg-Smith, 1975; Webb, 1983; Webb and Wilshire, 2012;
Kutiel et al., 1999]).

The above considerations point to the importance of de-
termining the resistance of soil to both intrusive shearing
due to, e.g., plowing, and to normal forces from, e.g., grazing
animals. Shear and normal resistance of soil are also impor-
tant parameters for assessing vehicle navigability [Bekker ,
1960; Wong et al., 1989]. This mechanical resistance is
dictated ultimately by inter-granular friction, which itself
is a function of the rate and magnitude of loading [Maj-
mudar and Behringer , 2005], degree of compaction [How-
ell et al., 1999], size and shape of grains [Santamarina and
Cho, 2004], degree of saturation [Richefeu et al., 2006], veg-
etation [Fattet et al., 2011], and effective cohesion [Fredlund
et al., 1996]. The critical fluid shear stress for wind en-
trainment, τc, also depends on these factors [Chepil and
Woodruff , 1963]. For sand-sized particles, sediment flux is
proportional to the boundary fluid-shear stress τb in excess
of critical, q ∝ (τb − τc) [Martin and Kok , 2017]. Thus,
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determining τc is essential for predicting if, and how much,
erosion occurs for a given wind stress; it is also necessary for
predicting dust emission, which is almost exclusively asso-
ciated with sand saltation [Kok et al., 2012]. Intuitively we
expect that the mechanical resistance of soil, which we shall
denote by some resisting stress τr, will be related somehow
to the fluid threshold τc. It is not obvious, however, how the
two might relate; wind entrainment involves turbulent flow
impinging only on surficial grains, and high-impact collisions
of saltating grains with the surface, while disturbances like
plowing and stomping involve relatively slow deformation in
the bulk of the soil bed.

In this paper we use the term “erodibility” to mean the
inverse of a soil’s resistance to deformation or erosion, be
it a mechanical yield stress or a fluid threshold stress. Soil
erodibility varies over a variety of spatial scales in arid en-
vironments, in response to myriad environmental controls.
At the scale of 0.1 ∼ 3m the thickness and properties of
desert crusts can display significant variability [Belnap and
Gillette, 1998]. Plants are another factor at this scale, and
feedbacks between desert crusts and plant life further in-
troduce a codependence between vegetation and soil state
[Li et al., 2010, 2002]. Gradients in soil moisture can also
be sharp in arid environments, where changes of a few per-
cent may alter the wind erosion threshold by an order of
magnitude [Zender et al., 2003]. At the patch to landscape
scale of 10m ∼ 10km, changes in plant type, communities,
and density can have a dramatic effect on the net sedi-
ment transport rate through an area [Breshears et al., 2009;
Wolfe and Nickling , 1996]. Grain size may change across all
scales, from sorting over a dune to downstream fining across
an entire dune field [Jerolmack et al., 2011]. In addition
to this spatial variability, soil erodibility may vary in time
in response to wetting/drying, land-use changes, and fires,
among other factors [Giovannini et al., 2001; Celik , 2005;
Cosentino et al., 2006; Bakker et al., 2008]. Given the multi-
variate and potentially confounding environmental controls,
erodibility must be measured empirically. Given the spa-
tial and temporal heterogeneity in landscape structure, it is
desirable to obtain rapid and highly spatially-resolved mea-
surements; in other words, maps of erodibility that may be
updated periodically.

Aeolian scientists have traditionally used in-situ wind
tunnels to perform erosion tests [Gillette, 1978; Gillette
et al., 1980; Shao et al., 1993]. This method is inherently
limited in spatial resolution, however, primarily due to a lack
of portability; this has also limited the deployment of such
devices to a restricted number of field sites. More portable
devices to assess the threshold wind stress τc have been de-
veloped recently [Etyemezian et al., 2007; Sweeney et al.,
2008; Goossens and Buck , 2009], which have shown promise
for the rapid assessment of erobility. Still, such devices must
be deployed manually, and they do not assess the mechanical
resistance τr of soil. A recently developed, semi-autonomous
robotic platform holds the promise of being able to generate
maps of soil erodibility, and even of vegetation cover/type
[Qian et al., 2017]. The advantage of this platform lies in its
potential for rapid, automated data collection. Given that
a paucity of data is one of the biggest factors limiting our
knowledge of gradients in erodibility, it is sensible to seek to
develop a method to test erodibility that takes advantage of
this platform. This places constraints, however, on the size,
weight, and mechanical configurations of any related device.

In this work, we propose a novel method to quickly and
accurately characterize soil erodibility in-situ, by measuring
the granular resistance force on a robotic leg as it shears
through the surface layer of grains. We present the first lab-
oratory and field results obtained using this method, and
examine the controls of soil moisture and surface crusts on

erodibility at White Sands National Monument, USA (Fig-
ure 1). We begin by introducing the details of our exper-
imental protocols, followed by a demonstration of the ca-
pability of this platform to measure shear resistance and
explore environmental controls at White Sands. Labora-
tory experiments are then used to isolate the control of soil
moisture on shear resistance, and to confirm the validity of
field measurements. We then perform controlled laboratory
experiments to determine the resistance of soil to different
perturbations, and find that a mechanical measure of yield
strength with a robotic leg is a good proxy for the wind
erosion threshold. Finally the potential of this method as a
tool for examining the relative importance of different fac-
tors contributing to erodibility in the field is discussed.

2. Materials and Methods

2.1. Shear strength “Plowing” method

The foundation of the method used to characterize soil
erodibility is the hypothesis that soil susceptibility to erosion
and stability under external perturbations (such as vehicle
disturbance, wind shear, etc.) can be characterized through
measurements of mechanical shear strength of the substrate.
This type of measurement was targeted because of its poten-
tial to be rapidly deployed by a robotic leg as it walks over
a surface. In view of this goal, the shear strength measure-
ments in this paper were performed by a direct-drive robotic
leg [Kenneally and Koditschek , 2015] (Figure 2A, Figure 3A)
consisting of two gearless motors [Asada and Youcef-Toumi ,
1987] and a pair of symmetric five-bar aluminum leg links
(total leg length 30 cm when fully extended). Because the
leg actuators don’t have gearboxes, they respond sensitively
to external torques and forces [Kenneally et al., 2016]. This
allows us to accurately estimate the vertical (y axis) and
horizontal (x axis) ground reaction forces exerted on the
toe position using the leg kinematics [Kenneally et al., 2016].
At each time point, the actual toe position recorded by the
motor encoders was compared with the desired toe position
determined by the programmed trajectory. The amount of
force applied by the leg to the soil was estimated from this
position deflection through the kinematics of the leg. The
motors (T-Motor, U8) have a stall torque of 3.5 Nm, which
allows outputting a shear force of > 15 N with a resolution
of ≈ 0.01 N with the current configuration. The maximal
force measurable depends on the position of the end-effector.
In this study, we used the horizontal component of the leg
force as a measure of soil shear strength. It has been demon-
strated in the granular physics literature that bulk behav-
iors, such as the response of a granular media to shear and
penetration, are qualitatively similar for a wide variety of
materials [Cho et al., 2006; Li et al., 2013]. These simi-
larities persist despite variations in the polydispersity and
angularity of grains. These similarities allow us to apply
the same shear and penetration resistance characterization
method to a variety of soils, as well as use experimental re-
sults to provide insight on observations of the more complex
granular systems found in the field.

In both lab and field experiments, the robotic leg per-
formed a rectangular trajectory (Figure 2A, green arrows)
to characterize the shear strength of the surface layer of the
soil. At the beginning of each measurement, the direct-drive
shear leg was submerged a small depth (a few centimeters)
into the substrate, and subsequently dragged a thin layer
of grains across the surface while recording the shear resis-
tance force from the granular media. The leg then acted
like a plow, pushing sand to the sides and front of the in-
truder. Figure 2B shows a sample measurement where the
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robotic leg shears horizontally for 15cm with a shear speed of
u = 1cm/s at a depth of h = 4cm. We calculated the shear
strength of a soil at a certain depth as the average resistance
force over the steady state range of the shear motion (shaded
region in Figure 2B). An important issue to consider in per-
forming such measurements is that the effective friction µ of
a granular material varies with the dimensionless shear rate
(Inertial number)

I = γ̇D/
√
P/ρp (1)

following the so-called ‘µ(I) rheology’, where γ̇ ≈ u/h is
shear rate, D is grain size, P is the (lithostatic) confining
pressure and ρp is the particle density (see, e.g., [Forterre
and Pouliquen, 2008; Albert et al., 1999]). For I < 10−3,
however, granular flow is in the quasi-static regime where
µ is — to first order — independent of I. All shear ex-
periments in this study were performed with a shear rate
of u = 1cm/s, much smaller than the rearranging speed
urearrange =

√
2gdg ≈ 10cm/s [Albert et al., 1999] for the

granular material we used, and therefore the granular flow is
within the quasi-static regime where we expect the effective
friction coefficient to reflect only the static friction intrinsic
to the granular medium.

2.1.1. Plowing field experiment
The field site we chose was White Sands National Monu-

ment in New Mexico, USA (see Figure 1). White Sands is
a well-studied gypsum dune field located in the southwest
of US that arises abruptly from a line source of sediment,
has a well-defined dominant wind direction, and that fea-
tures a shallow groundwater table which makes interdune
surfaces moist — especially in the upwind portions of the
dune field [Langford , 2003; Kocurek et al., 2007; Kocurek
and Ewing , 2005; Reitz et al., 2010; Jerolmack et al., 2012].
For the purposes of the study, the dune field can be thought
of as being split into two primary regions. The first region is
largely un-vegetated, has moist interdune surfaces that are
within the capillary fringe, and is populated by transverse
dunes that give way to isolated barchans over a distance
of about 5km [Jerolmack et al., 2012]. The second region
begins approximately 7km downwind of the upwind mar-
gin, has dryer interdune surfaces outside of the capillary
fringe (due to deepening of groundwater table), and is as-
sociated with both the gradual emergence of plants and a
dramatic shift in the morphology of the dunes from barchan
to parabolic [Reitz et al., 2010; Jerolmack et al., 2012; Pel-
letier , 2015]. There is a wide range of surface soil textures,
including: dry, loose sand; dry, but highly compacted and
cemented sand; wet sand and silt; and a range of surface
crusts (Figure 4). These patterns make the dune field an
ideal arid environment to study variations in soil erodibility
and its environmental controls. First, the transition from
wet interdunes to dry dune crests in the unvegetated region
provides a gradient in soil moisture over a scale of less than
1̃00 m. The effects of soil moisture on both the wind erosion
threshold [Neuman, 2003; Wiggs et al., 2004; Ravi et al.,
2006; Edwards and Namikas, 2009] and the resisting shear
force [Herminghaus, 2005; Richefeu et al., 2006] are well
documented, and so provide a good test case for our new
method. Second, the downwind decline in dune migration
rate across the field is associated with an increasing gradi-
ent in biological activity — vegetation, and soil-stabilizing
crusts [Langston and Neuman, 2005] — over a scale of kilo-
meters. While it has been suggested that salt and biolog-
ical crusts should inhibit soil erosion [Belnap and Gillette,
1998; Langston and Neuman, 2005], there are few system-
atic in-situ studies of the mechanical strength conferred to
surface soils by different crust types. Shear strength tests
were conducted at two transects to exploit the moisture and
biological gradients (Figure 1A). Transect 1 was approxi-
mately 30m in length; it traversed an unvegetated barchan

dune (Figure 1B) along its stoss side, from moist interdune
to dry crest. Transect 1 was chosen in order to examine soil
moisture control. We sampled eleven locations along tran-
sect 1 (Figure 5A), with intervals of approximately 1 ∼ 3m.
Transect 2 occurred in the vegetated parabolic portion of the
dunes (Figure 1C), approximately 5km downwind of Tran-
sect 1 and close to the downwind margin. Soil moisture
variation is limited in this portion of the dune field due
to the deeper groundwater table, and the primary spatial
variation in surface soil characteristics is associated with a
mosaic of biological and salt crusts. Transect 2 was thus
chosen in order to sample the widest range of crusts. We
sampled eleven different locations along transect 2 (Figure
5B), at intervals of 1 ∼ 3m on the stoss portion which was
approximately 15m in length, and at intervals of 10 ∼ 15m
on the interdune portion which was approximately 50m in
length.

To characterize the spatial variation of erodibility in-situ,
we mounted the direct-drive robotic leg on a mobile ground-
based platform, the RHex robot [Saranli et al., 2001a] (Fig-
ure 2A). RHex is a bio-inspired, hexapedal robot that ex-
hibits high mobility over a variety of outdoor environments,
including terrain with obstacles [Saranli et al., 2001b], in-
clinations from hills [Ilhan et al., 2018] and stairs [Johnson
et al., 2011], and desert dunes [Qian et al., 2017; Roberts
et al., 2014a, b]. The RHex robot has been employed for var-
ious aeolian research expeditions [Qian et al., 2017; Roberts
et al., 2014a, b; Qian et al., 2016a; Van Pelt et al., 2016;
Qian et al., 2016b], and has demonstrated its capability
to perform a wide variety of measurements including wind
speed, saltation grain counts, erodibility, in strong wind
conditions to obtain high spatiotemporal resolution field
datasets [Qian et al., 2017]. For all shear experiments at
White Sands, we used a 1.5cm-wide cylindric intruder. The
shear depth was recorded by the robotic leg and used to cal-
culate the normalized shear strength. To prevent variations
in shear depth from test to test, we implemented a surface
detection algorithm to allow the shear leg to gently touch
down and detect the surface height before submerging to
the desired shear depth of 5cm. For all field tests, the shear
speed was set to u = 1cm/s to remain in the quasi-static
regime [Katsuragi and Durian, 2007; Goldman and Umban-
howar , 2008; Forterre and Pouliquen, 2008], and the shear
distance was set to 15cm to allow sufficient data range to
calculate average shear strength. The shear direction was
kept the same as the dominant wind-eroding direction (i.e.,
Northeast direction), which is also towards the largest gra-
dient of the dune slope.

Soil moisture was characterized in situ using a volumet-
ric water-content sensor (Decagon GS-1) that is based on
the measurement of dielectric permittivity. Given known
variations in water salinity at White Sands that might af-
fect permittivity based moisture measurements, we also col-
lected soil samples (20 ∼ 30ml) from the same depth as the
shear tests (≈ 5cm) to validate the moisture content. We
determined water content in the laboratory using a chemi-
cal reaction, gas pressure-based moisture tester (Humboldt
Speedy 2000). The Speedy test was chosen because of the
difficulty involved in measuring moisture content in gypsum
using classical gravimetric methods. When exposed to heat
the mineralogic structure of gypsum changes as water disas-
sociates from the mineral matrix. This leads to inaccurate
moisture readings as interfacial water content is confounded
with mineralogic water content. In contrast, the reagent
used in the Humboldt Speedy tester, calcium carbide, re-
acts only to the interfacial water between grains, and there-
fore gives more accurate moisture measurements than most
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alternative moisture measurement methods. The soil sam-
ples taken from the field were also analyzed to determine
their grain-size distribution using an image-based method
(Camsizer by Retsch), similar to the method described in
[Jerolmack et al., 2011].

2.1.2. Plowing laboratory experiment
To isolate the control of soil moisture on erodibility, we

performed laboratory experiments in a 30cm long, 11cm
wide sandbox with a controllable water-misting system (Fig-
ure 6A inset) that allows us to systematically vary soil mois-
ture on the sand surface. We used coarse sand (Washed
Play Sand, Home Depot, D50 = 0.56mm) as a model gran-
ular medium (grain size distribution see Figure 7); previ-
ous research [Li et al., 2013] has demonstrated that bulk
responses of granular media, despite variations in particle
size and shape, are qualitatively similar. The water mis-
ter was mounted on a linear actuator (Figure 6A) that
swept back and forth rapidly, essentially randomizing wa-
ter droplet locations to provide an approximately spatially-
uniform surface soil moisture. Before misting, beds of sand
were prepared by pouring sand into the box and leveling
the surface with a straight edge. We set the linear actuator
travel length to 80cm and the travel speed to 5cm/s. After
each misting cycle, we confirmed that the spatial distribu-
tion of soil moisture was approximately uniform by measur-
ing at eight different locations using the Decagon moisture
probe (Figure 6B). One limitation of the Decagon sensor
(and most of other electrical property measurement based
moisture probes) is that measurements of moisture are inte-
grated over the depth of the probe — roughly 5cm — which
is larger than the depth of the laboratory shear tests (2cm)
and certainly wind-shear erosion tests (roughly a grain di-
ameter; see below). Thus, we also measured surface-soil
moisture using the Speedy moisture tester; for each test,
one sample of six grams was scraped from as close to the
soil surface as possible, in the center of the sandbox. The
act of disturbing the surface introduced a degree of uncer-
tainty into the measurement that was found to vary from
0 ∼ 0.5% moisture. Throughout the rest of the paper, mois-
ture content is reported as percent wet weight, defined as
mwater/(msoil + mwater) ∗ 100[%] where m is mass. Mea-
surements from both the Decagon probe and Speedy tester
were converted to water content using a custom calibration,
by preparing different sand samples in the laboratory with
known moisture content. To eliminate systematic error that
might arise from granular material type, temperature and
groundwater salinity, we also performed measurements on a
completely dry bed; this provided an offset that was applied
to the Decagon probe, based on the measurement from the
Speedy tester. A separate calibration curve was also devel-
oped from the field data. The average soil moisture of the
sandbox (Figure 6D) increased linearly with the number of
misting cycles, indicating repeatable control.

After each misting cycle, we performed shear strength
tests with the direct drive robotic leg (Figure 8A) in a man-
ner similar to the field experiment. A total of 33 runs were
performed with moisture increasing gradually from 0 to 20%
(Figure 8B), which was approximately the saturation water
content for our test granular media. Shear tests were per-
formed following misting (Figure 8B), and actual soil mois-
ture was then measured at three locations in the sandbox.
For each number of misting cycles (i .e., desired moisture
content) we performed three repetitions of shear measure-
ments (Figure 8B). We report all results of shear measure-
ments with actual moisture measurements. The shear speed
was set to the same value as field experiments (1cm/s); how-
ever, a larger cylindrical intruder with a diameter of 3.6cm
was used, and the shear distance was set to 11cm to avoid
boundary effects. We configured the cylinder to be hori-
zontal (Figure 8A) to eliminate the force fluctuation due to

the change in the end-effector orientation. In this study,
all lab experiments were performed on a flat substrate, and
therefore shear strength was isotropic in all shear directions.
To compare lab and field results, soil shear resistance stress
τr was calculated as average shear force normalized by the
projected surface area of the intruder perpendicular to the
shear direction, W ∗ d, where W is the intruder width and
d is the shear depth recorded by the robotic leg.

2.2. Vertical penetration measurements

In both laboratory and field plowing experiments, we
obtained the measurements of granular resistance force in
the vertical direction as the robotic leg penetrated into the
soil (Figure 3C). At low intrusion speed, vertical resistance
forces exerted on a intruder dragging in homogeneous gran-
ular media increase linearly with the penetration depth, the
penetration resistance, and the projected surface area of the
intruder[Hill et al., 2005]. In our study, the intruder surface
area was kept the same, and we characterize the soil pen-
etration resistance using as the vertical penetration force
per depth. For each measurement we performed a linear
regression for vertical force vs. displacement for the entire
intrusion range (shaded region in Figure 3D) to obtain the
penetration resistance. Similar to the horizontal plowing ex-
periments, the intrusion speed was kept low (1cm/s) to avoid
grain inertia effects [Katsuragi and Durian, 2007; Goldman
and Umbanhowar , 2008], ensuring that the measured pene-
tration resistance force was friction dominated.

2.3. Yield stress “Kick-out” measurement in the
laboratory

In the context of rheology, the plowing method above is a
‘constant shear’ experiment [Gravish et al., 2010]. It is un-
clear, however, whether and how the resisting stress τr may
be related to a more traditional yield stress. Yield stress de-
scribes the point at which a granular material loses rigidity
and begins to flow [Liu and Nagel , 2010]. This behavior is
not accessible in a constant shear experiment, where granu-
lar displacement is forced to occur. We thus designed a new
“kick-out” test by measuring the threshold force to gener-
ate initial grain movement on a cylinder of 3.6cm by 1.2cm,
attached through a 17.5cm lever arm (Figure 3E) to a direct-
drive motor module (Ghost Robotics). We measure the yield
stress based on the following principle: the cylindrical in-
truder attached to the level arm is subject to a controlled,
slowly increasing motor torque ramp while displacement of
the intruder and resisting force are carefully measured. At
the torque associated with critical yield stress we expect the
intruder to “kick out” of the granular medium, resulting
in a jump in the resisting force followed by an associated
displacement. Similar to the plowing test, the direct-drive
motor used in this test does not have gear boxes so it re-
sponds sensitively to external torques and forces [Kenneally
et al., 2018]. This allowed for the resistive force of the sand
in response to the applied torque of the motor to be mea-
sured. The resistive force is modelled as being normal to
the surface area of the cylinder that is in contact with the
sand bed. This force is converted into a stress by dividing
by the effective surface area of the probe that is in contact
with bed at the moment of failure.

The protocol for applying force to the sand bed and deter-
mining a shear strength was as follows. First, the probe tip
was submerged 4 mm in diameter relative to the sand sur-
face. The probe was positioned strictly normal to the sand
at position π/2, defined by the reference frame pictured in
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Figure 3F inset. A groove in the sand surface ensured that
there were no compressive forces on the probe. This corre-
sponds to the ‘Time A’ schematic in the subpanel of Figure
3F inset. After positioning, the force output of the motor
was gradually increased. The sand deformed, though only
slightly, in response to this force and the probe shifted off
being strictly vertical by 0 ∼ 0.1 rad. Eventually, the force
output reached a peak that represented the peak resistive
force of the sand before failure. This can be seen in the
‘Time B’ schematic of Figure 3F inset. Next, a sudden fail-
ure of the sand bed occured and the probe ’kicked out’ of
its approximately vertical position. This can be seen in the
‘Time C’ schematic of Figure 3F inset. The peak resisting
force can be converted to a peak stress, τp, which we take
as a proxy for yield stress. This test was then repeated for
different soil surface moistures ranging from 0 ∼ 18% per-
cent, where the misting and bed preparation protocol was
identical to the plowing tests. Because this was a destruc-
tive test of the sand surface, after each test a new, dry bed
of sand was prepared and brought up to a given percent
moisture within the range being tested. Measurements of
soil moisture and kick-out tests were typically taken 10 to
15 minutes after misting; due to slow infiltation rate of wa-
ter into the bed, it is possible that time-varying capillary
pressures in the subsurface could exert some influence on
surface soil strength that cannot be captured with surface
soil moisture readings; we explore this effect in a later sec-
tion.

In this study, the “kick-out” measurements was per-
formed using a single motor, but we note that similar test
can also be performed using the direct-drive robotic leg
[Kenneally et al., 2016] used in the plowing and penetra-
tion tests. Given that the derived quantity τp is a spatially-
localized measure in an unconsolidated, low-cohesion soil
under virtually no confinement, our definition of the yield
stress is by necessity a working definition. We believe, how-
ever, that it captures the key dynamic; namely, the loss of
rigidity of the area being probed. It is worth noting that
the test developed here appears to work well for the pure,
dry sand used in the study and also for more resistant, wet
sand. This is not the case with traditional in-situ shear-
vane testers that are often used to determine yield stress
[Dzuy and Boger , 1985]; their sensitivity range limits them
to soils with a significant clay content. The design of the
motor for the current probe allows for very low magnitude,
controlled forces to be applied to the surface, and read out
from the motor at high resolution. Thus, small differences
in the peak shear before failure can be reliably detected in
the sandy soils used.

2.4. Threshold fluid-shear stress measurement in the
laboratory

The final perturbation method for laboratory sands was
to determine the critical fluid-shear stress necessary to ini-
tiate saltation, τc. The concept is that fluid shear stress
is gradually ramped up until the moment significant trans-
port is detected. Tests were undertaken using the Portable
In Situ Wind Erosion Laboratory (PI-SWERL) descibed in
[Etyemezian et al., 2007], which uses a rotating annular ring
enclosed in a chamber to generate wind shear close to the
sand bed. Given the larger surface area required for the
test, the PI-SWERL was placed in a larger sandbox with
dimensions 1 x 1 x 0.15 m (Figure 3G). Tests thus involved
a much larger volume of sand (and water) compared to the
shear strength measurements above, and therefore it took
more time to prepare beds of uniform soil moisture. On the
other hand, the protocol for the PI-SWERL test resulted

in much smaller disturbance to the sand surface compared
to the other techniques. Accordingly, the same sand bed
was used for multiple erosion tests, and was only replaced
once visually obvious disturbance to the sand surface had
occurred. The version of the PI-SWERL employed here
was outfitted with two optical gate sensors near the an-
nular shear ring. Peak voltages generated by the optical
gate occur when saltating grains occlude the gate above a
threshold area. Optical gate peak area is then obtained by
integrating the area of observed optical peaks over 1 second.
Shear stress was increased within the PI-SWERL by gradu-
ally increasing the rotation rate [RPM] of the annular shear
ring, following the protocol shown in Figure 3H. Beyond a
critical RPM (and associated wind shear stress), the optical
gate peak area increases dramatically (Figure 3H); this is
interpreted as the onset of sustained saltation. We chose an
optical gate peak area of 5 [Vs] as the value associated with
the critical RPM; a sensitivity analysis showed that results
did not change significantly over a threshold range of 5 ∼ 17
[Vs]. The RPM associated with this threshold optical gate
area was then converted to a critical shear stress τc using
the empirical relation between RPM and fluid stress τ given
in the PI-SWERL manual:

τ = −4.051× 10−12RPM3 + 5.351× 10−8RPM2

− 2.201× 10−5RPM + 0.0351. (2)

It is important to note that τc estimated by the PI-
SWERL may not be strictly analogous to an estimate result-
ing from a straight-line wind tunnel [Sweeney et al., 2008],
owing to the rotational nature of the shear and associated
differences in turbulence structure, and limited development
of a boundary layer due to the small chamber size. The shear
stress values generated by the PI-SWERL, however, were
sufficient to explore relative changes in the erosion thresh-
old with soil moisture, and also to test for a relation between
mechanical measures of shear resistance and the threshold
fluid shear stress.

The misting procedure was the same as for the previous
experiments, including a typical waiting period of 10 to 15
minutes between misting and measurement of soil moisture
and shear resistance. Because the soil bed was re-used for
several subsequent experiments, however, slow infiltration
of water could potentially cause temporal drift in the sub-
surface moisture that cannot be detected with surface mea-
surements, but that could influence capillary pressure and
hence erosion resistance of surface soils. To test for such
an effect, we conducted parallel tests with the PI-SWERL
to determine τc as a function of soil moisture for two dif-
ferent infiltration times after misting; 5 to 10 minutes, and
90 minutes. Results indicate a distinct offset between the
two waiting times, suggesting that developing subsurface
moisture profiles exert some influence on surface erodibility
that cannot be captured with surface-soil moisture measure-
ments (Figure 9). This result reinforces the importance of
waiting a consistent time between misting and taking mea-
surements; all reported measurements for τc were conducted
a maximum of fifteen minutes after the most recent misting
cycle, in order to mitigate any secular drift effect.

3. Results

3.1. Spatial variation of soil erodibility in the field at
White Sands

We first examine spatial changes in erodibility determined
from our two field transects at White Sands (Figure 5A,D).
The variables determined along each transect were the shear
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strength measurements from the “plowing” test, and corre-
sponding soil moisture using the Decagon probe.

The upwind “barchan transect” (Figure 5A) began in a
modestly vegetated and visibly moist interdune, with soil
moisture in the range of 4% ∼ 8% (Figure 5C). The tran-
sect followed the centerline of an unvegetated and actively
migrating barchan dune, moving up the stoss side. Dune
stoss sand was dryer than interdunes (< 2%), but exhibited
patches of visibly compacted and cemented sand (Figure
4E). The transect terminated at the barchan dune crest,
where soil moisture remained comparable to the stoss side
but sand was visibly loose and un-cemented. Measured
shear strength values fluctuated, and increased slightly,
moving from the moist interdune up to the mid-point of
the dryer but compacted dune stoss. On approach to the
dry and loose dune crest, however, shear strength dropped
by roughly half to reach a minimum (≈ 4.3 ± 0.9 N) at the
crest (Figure 5B).

The downwind “parabolic transect” (Figure 5D) con-
tained a mosaic of surface soil crusts (Figure 4D). The tran-
sect began in a heavily vegetated interdune close to the edge
of a dune (location 0), where the soil surface was covered
in a thin, tan-colored and potentially biological crust. The
transect traversed several meters of interdune (locations 1-2;
Figure 5D) that had a hard, white-salt surface crust before
transitioning (location 3) onto the stoss face of a vegetated
and stabilized parabolic dune. The stoss side was covered in
patchy brown crusts that were likely calcium carbonate. Soil
moisture was less than ≈ 1% at all locations except the first
two (locations 0 and 1; see Figure 5F). Despite the variety
of surface crusts, shear strength varied little over the entire
parabolic transect (Figure 5E). Although soil moisture was
(for the most part) very low, shear strength in the parabolic
transect was comparable to the wettest sands encountered
in the barchan transect.

3.2. Comparison of soil erodibility dependence on
moisture between field and laboratory measurements

At White Sands, the groundwater table is close to the
surface, and therefore the barchan interdune soil surfaces
are moist whereas the soil surface near the barchan crest
is dry. We hypothesize that soil moisture effects dominate
erodibility in the barchan dunes, while soil crusts act to
strengthen soil in the parabolics. The influence of moisture
on soil erodibility has been well characterized in the lab-
oratory and field [Chepil , 1956; Fecan et al., 1998]; these
previous results provide a benchmark for testing our new
shear-strength approach. In this study, we performed lab-
oratory experiments to isolate the control of soil moisture
on the measured shear strength of sand, using protocols dis-
cussed in Sec. 2.1.2. We found that shear strength increased
rapidly as soil moisture increased from 0% to 3% (Figure
10). Beyond 3%, shear strength decreased as moisture con-
tent continued to increase (Figure 10). Measurements of soil
strength at White Sands exhibited a similar non-monotonic
dependence on moisture (Figure 10); however, there are dis-
crepancies between laboratory and field data at higher soil
moisture values. Field data exhibited overall higher strength
in the higher moisture range (> 5%) compared to laboratory
measurements; these high-moisture locations correspond to
interdune locations where crusts were also observed.

3.3. Soil response to mechanical and fluid perturbation
methods

The above results suggest that the new robotic-shear de-
vice holds promise for reproducibly determining the mechan-
ical strength of surface soils. As discussed above, however,
it is not clear how shear strength from the “plowing” test is

related to the wind erosion threshold or a mechanical yield
strength. Moreover, granular physics studies have shown
that bulk behavior of granular media depends sensitively
on the perturbation methods [Jaeger and Nagel , 1992]. Ac-
cordingly, in this section we present results from three other
tests conducted in the laboratory sandbox under varying
soil moisture: a vertical penetration test, a yield-stress “kick
out” test, and a wind erosion test.

The vertical penetration results were most similar to the
“plowing” test (Figure 11B); penetration resistance was
lowest for dry soil, increased rapidly to a maximum at
1% ∼ 2% where values plateaued, and decreased as mois-
ture approached saturation. In contrast, peak stress from
the “kick out” test increased approximately linearly with in-
creasing moisture up to ≈ 7%, and then appeared to jump
to a much higher value; the effective yield stress would likely
continue to increase with higher moisture values, however we
were unable to explore the moisture regime of ≈ 7% to 17%
due to the limited torque range of the motor. We were only
able to recover a yield strength measurement again when
soil moisture approached saturation (soil moisture ≈ 17%),
and the yield stress dropped quickly to a value compara-
ble to the dry case (Figure 11). The threshold wind stress
determined from the PI-SWERL followed a similar trend
to the kick-out yield strength; it increased roughly linearly
up to a moisture of ≈ 7%. The maximum rotation rate of
the PI-SWERL blade prohibited us from measuring beyond
≈ 7%, but the threshold wind stress likley would continue
to increase with increasing soil moisture. Reported values
of threshold wind stress for moisture values > 7% shown in
(Figure 11) therefore represent minimum values. Unlike the
yield stress measurements, however, threshold wind stress
did not drop as the sand approached saturation.

4. Discussion

4.1. Environmental controls on shear strength at
White Sands

The field measurements of shear strength (using the
“plowing” test) and soil moisture at White Sands can be-
gin to be understood by comparison to laboratory measure-
ments, where soil moisture was changed systematically. For
a range of soil moisture from 0 to 5%, shear strength values
from the barchans and parabolics largely overlap with lab-
oratory measurements showing a rapid increase with mois-
ture followed by a gradual decline (Figure 10). Except for
dry sand, however, field values for shear strength are in
general larger than corresponding laboratory measurements
(e.g ., 1.69N/cm2 for field vs. 0.78 ± 0.04N/cm2 for lab at
8 ∼ 10% moisture content; 1.31 ± 0.08N/cm2 for field vs.
0.61 ± 0.12N/cm2 for lab at 15 ∼ 20% moisture content).
Thus, we conclude that soil moisture explains part, but not
all, of the variation in shear strength of the White Sands
surface soils. In the following paragraphs, we discuss ad-
ditional environmental controls besides soil moisture that
could play an important role on soil erodibility, and we dis-
cuss our future experiment plans to study these different
factors by integrating our new method with improved tech-
niques for measuring environmental variables.

One important environmental control is soil compaction.
Considering the barchan dune transect, the wettest inter-
dune sands had shear strengths that were twice as large as
the dry and loose sand on the dune crest; this can be at-
tributed mostly to the soil moisture effect. The relatively
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dry sand on the dune stoss, however, had a strength similar
to (and slightly larger than) the wet interdune sands. The
dune stoss face is composed of gypsum sand that has been
compacted and mildly cemented under deposition, and is
now being exposed again by erosion due to dune migration
[McKee, 1966]. It has been documented that compaction
can influence the yield stress and rheology of granular ma-
terials [Nedderman, 1992; Richard et al., 2005; Gravish and
Goldman, 2014]. It is also likely that cementation — which
is more common in White Sands than other dune fields due
to the hygroscopic nature of gypsum [Schenk and Fryberger ,
1988] — plays a role in strengthening the soil. Future lab-
oratory experiments could and should tune granular com-
paction (e.g., Gravish and Goldman [2014]) to explicitly ex-
amine its effect on shear strength as measured with our
robotic “plowing” test.

Another important environmental control is surface crust.
Surface soils in the parabolic transect had low soil moisture
values, for the most part. The sediments did not appear to
be visibly compacted or cemented like the stoss side of the
upwind barchan dune; yet their shear strength values were
comparably large. We posit that the diverse surface crusts
observed across the parabolic transect conferred strength to
the surface soils. Others have noted that surface crusts may
increase the resistance of desert surfaces to erosion [Bel-
nap and Gillette, 1997, 1998]; our in-situ measurements of
shear strength allow us to quantify this effect. At the few
locations in the parabolic transect where soil moisture was
high (8% ∼ 16%), shear strengths were significantly larger
than laboratory measurements at comparable soil moisture
values (Figure 10). We speculated that the correlation of
soil strength with soil moisture in these locations may re-
sult partly from other variables like crusting that co-vary
with moisture. We observed that these locations corre-
sponded to areas with higher levels of (apparently) biological
crusts. Preliminary tests of shear strength at different ver-
tical depths suggested that the biological crusts not only
increased soil strength on the surface, but also strengthened
the soil underneath the crust. This is likely due to chemi-
cal bonding that causes both crust development and grain
aggregation[Cerdà, 1998; Fattet et al., 2011]. This mech-
anism likely facilitates stabilization of the parabolic dunes
at White Sands, since the overall erosion threshold was en-
hanced even when the surface crust was no longer intact.
While the relationship between desert crusts and nearby
vegetation is poorly understand, the fact that they usually
occur together hints that the presence of certain types of
crusts is necessary for healthy plant communities in some
environments [Belnap et al., 2001; Lesica and Shelly , 1992].
Our results show that one potential reason for this is that
they make the surface harder to erode, helping plants to
further establish a foothold in the soil. This lends further
credence to the importance of desert crusts in maintaining
the health of ecosystems in aeolian environments [Collins
et al., 2008]. In future field experiments, we plan to deploy
the plowing method layer by layer with small shear depth
(mm scale), to investigate the variation of soil erodibility
in the vertical direction. Such investigation could provide
insights on how surface crusts affect the erodibility of the
soil underneath the crust.

Additional environmental controls such as grain size, or
the repeated wetting-drying history of gypsum grains, could
also affect soil erodibility. Exploring these controls, how-
ever, is currently beyond the scope of this paper and will be
investigated in a future study. Furthermore, we note that
future studies should address the effect of slope angle and
shear direction. Marvi et al. [2014] suggested that shear re-
sistance force decreased as slope inclination angle increased.
This would indicate that our field data collected from the

(sloping) stoss face may have slightly underestimated the
actual strength of the soil.

4.2. Comparison of different mechanical tests for
erodibility

For all probing techniques except the wind erosion test,
a qualitatively similar and non-monotonic relation was ob-
served between mechanical strength and soil moisture. This
general behavior is consistent with previous studies on the
mechanical strength of soil subject to varying degrees of
saturation. For dry grains, the interparticle forces arise pre-
dominantly from friction. As pore spaces begin to fill with
water, liquid capillary bridges form between grains that en-
hance the strength of the soil (think of sand castles). With
the continuing addition of water, eventually the pore spaces
become saturated and the strength of the soil drops [Schu-
bert , 1975; Kristensen et al., 1985; Iveson et al., 2002; Lu
et al., 2007]. Considering the wind erosion test, it is not
surprising that the threshold stress did not drop at satura-
tion. In this case the surface likely becomes coated with a
thin film of water, which would suppress direct entrainment
by the wind and also damp collisions from saltating grains
[Barnocky and Davis, 1988].

In terms of quantitative trends, the data from the four
testing techniques break into two categories. Shear strength
from the “plowing” test, and penetration resistance from the
normal loading test, both showed a rapid rise in strength
with increasing soil moisture that peaked at a low value of
moisture, ≈ 1% (Figure 10). This finding is consistent with
the effective Coulomb cohesion that arises from capillary
bridges in the so-called pendular state (discontinuous liq-
uid phase), which increases nonlinearly with soil moisture
and saturates at a few percent soil moisture [Richefeu et al.,
2006]. Strength measurements from both tests also exhib-
ited a relatively rapid drop over the soil moisture range of
15% to 20%; i.e., approaching saturation. Results from the
two tests differed for moisture values in between these two
limits; shear strength declined continuously as soil moisture
increased from 1% to 15%, while penetration resistance re-
mained approximately constant. We do not yet understand
the reason for the differences between these tests; however,
the strength of wet granular materials is known to depend
on the degree of confinement [Richefeu et al., 2006].

Yield stress determined from the kick-out test, and the
threshold fluid shear stress from the PI-SWERL, show simi-
lar trends to each other that are distinct from the other two
methods discussed in the previous paragraph (Figure 11C).
Both the yield stress and threshold fluid stress increase al-
most linearly with moisture until ≈ 5%. These trends are
consistent with the increases in tensile strength reported
experimentally by Lu et al. [2007] and Schubert [1975] for
medium sand with a wide size distribution. This provides
support that the increase in the strength of the sand comes
from an increase in capillary pressure as the sand becomes
more highly saturated. Moreover, the large rise in threshold
fluid stress with moisture validates the observation of Bisal
and Hsieh [1966] and Wiggs et al. [2004] that, under most
conditions, soil above 4%− 5% moisture is difficult to erode
by natural wind. Our observed linear trend is also consistent
with the empirical results reported for τc of coarse sands of
various wetness by McKenna-Neuman and Nickling [1989],
although their reported trend only goes from 0% − 2% soil
moisture. As mentioned, both the kick-out test and PI-
SWERL data are suggestive of a jump in the yield stress as
soil moisture increased from 5% to 7%, though our inability
to measure yield stress at moisture values larger than 7%
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(see above) makes this putative jump inconclusive. Oth-
ers have reported an increase in mechanical yield strength
at the transitional soil moisture zone between the pendular
and funicular states in partially saturated soils [Mitarai and
Nori , 2006].

Summing up our comparison of the four tests, each pro-
vides different and overlapping information on the mechani-
cal strength of soil as tested by increasing soil moisture in a
controlled laboratory setting. The kick-out test measure of
yield strength was strongly correlated with fluid threshold
stress, suggesting that a robotic kick-out test mounted on a
robotic platform could be an effective and efficient tool for
characterizing the susceptibility of soil to erosion by wind. A
limitation of both tests is that yield strengths for soil mois-
ture values > 7% could not be determined due to mechanical
limitations. In practice, however, aeolian transport would
be negligible for such soils because natural winds rarely get
strong enough. Both the kick-out and PI-SWERL tests are
explicitly designed to test yielding. It is not surprising that
the plowing and penetration tests showed different behav-
ior, as they are constant shear-rate tests that measure resis-
tance below the yield point. These tests may not be good
proxies for wind erosion, but they could be useful comple-
mentary measures for determining stability to plowing and
trampling. At present we do not understand entirely the
reasons for different trends among the four techniques; how-
ever, differences in confinement, the complex interaction of
water and sand in partially-saturated soils, and shear-rate
dependent rheology likely all play a role.

4.3. Challenges and open questions

Although we discussed our inability to determine thresh-
old fluid stress with the PI-SWERL for > 7% soil moistures,
we see that measurements begin to become unreliable at
even lower values. In particular, once moisture values reach
5%, the variance in threshold fluid stress grows rapidly (Fig-
ure 11C). We speculate that this may be due to increasing
variability in turbulent stresses in the PI-SWERL as the ro-
tation rate gets larger; this degrades any estimate for τc that
relies only on time-averaged flow velocities [Diplas et al.,
2008; Durán et al., 2011; Weaver and Wiggs, 2011].

Another shortcoming of our laboratory approach relates
to our considering soil strength as a function of soil moisture.
Although soil moisture is easy to measure, it must be con-
sidered at best a proxy variable for pressures induced by the
distribution of water in porous media. Capillary pressures,
for example, arise from gradients in water content. This
point is apparent in our tests of the influence of infiltration
time on the observed trends in τc seen in Figure 9. For com-
parable soil moisture values, soil with a longer infiltration
time was stronger. These results seem to support the idea
proposed by McKenna-Neuman and Nickling [1989] that a
soil’s matric potential could be a more important control of
τc than actual moisture content. In this work, surface soil
moisture was chosen based on its feasbility for deployment
on a robotic platform in the field, and also for comparison
to other studies that usually report moisture rather than
tension [Bolte et al., 2011; Wiggs et al., 2004]. Further work
to establish whether or not the response of the mechanical
yield strength test and measured τc remain consistent for
different near-surface matric potentials is necessary.

It is an open question as to whether surface mechanical
yield strength and τc respond similarly to other variables
that control soil state. Compaction and cohesion are both
known to influence yield strength and τc [Meng et al., 2012;

Léonard and Richard , 2004], but studies rarely if ever exam-
ine multiple measures of strength/erodibility. An interesting
consideration is desert crusts, which are expected to create
surface layers that are mechanically distinct from the sub-
surface. One may imagine a thin and smooth soil crust that
is resistant to wind erosion, but that is easily pierced by a
vertical penetration probe or a robotic shear leg. This raises
the question more broadly of chacterizing erodibility in more
stuctured or heterogeneous soils than the simple sands we
have considered here. The force curves generated by our
mechanical tests could become more complicated, and dif-
ferences between normal and shear loading may arise that
are indicative of anisotropy. If effects such as compaction
and cohesion elicit different responses from the different me-
chanical tests, however, this may indicate that a suite of
different tests could be used to disentangle the controls of
these variables (and others, such as soil moisture). Future
work should examine the control of these different parame-
ters, in isolation and in concert.

Though further developments could extend the applica-
bility of the proposed techniques to other settings (such as
desert crusts or soils with significant organic matter), the ex-
isting data show that the technique could already be applied
at some field sites where soil moisture is hypothesized to be
the dominant control of variability in the threshold stress,
such as most beaches [Jackson and Nordstrom, 1997]. Sur-
face moisture is recognized as one of the primary control
variables of τc in the field. However, the increase in τc as-
sociated with a given rise in moisture appears highly site
dependent and difficult to model [Webb and Strong , 2011].
Rapid, direct estimates of τc provided by RHex or a similar
robotic platform could overcome this problem. Given the ra-
pidity with which the shear strength test can be performed,
one practical way to field verify its ability to assess changes
in sediment flux related to variation in τc would be to at-
tempt to relate variations in measured sand flux to changes
in surface shear strength in the spirit of Wiggs et al. [2004].

Improvements to the probe used in [Qian et al., 2017]
would enable the kick-out yield-strength test described here
to be performed in conjunction with the constant displace-
ment plowing test that has already shown potential in being
able to characterize the erosive response of different sub-
strates in the field. Figure 2A shows the design of a probe
that is capable of performing both types of soil tests. Mod-
ifications to the probe tip to more directly engage the sand
surface, rather than integrating the surface with several mil-
limeters of sub-surface, are also under consideration. In fu-
ture work, the direct-drive robotic shear leg will likely func-
tion as both locomotive limb and erodibility sensor — as op-
posed to being mounted on the robot body — increasing the
versatility and usability of the system. We envision that in-
creased availability of semi-autonomous force-feedback tech-
nology would allow field researchers to further improve the
spatial resolution of soil erodibility measurements.

5. Conclusion

This study introduces a novel technique for assessing soil
erodibility by a mobile robot bearing direct drive motors
that manipulate the substrate while measuring forces and
torques required to reach critical thresholds. The field test
used the RHex robot as a platform to successfully gather
data on erodibility across two different spatial gradients at
White Sands, NM. Beyond demonstrating the feasibility of
the method, the field and lab tests also allowed us to gather
valuable information about how erodibility varies at White
Sands dune field. The data collected during the field cam-
paign highlight that the shear strength of natural desert soils



QIAN ET AL.: CHARACTERIZATION OF SOIL ERODIBILITY WITH A FIELD DEPLOYABLE ROBOT X - 9

varies as a measurable consequence of soil moisture and sur-
face crusts. We found that at the arid barchan dunes, soil
erodibility increased from crest to the bottom of stoss, and
then decreased as it entered the moist interdune area. Con-
trolled lab tests indicated that the observed erodibility vari-
ation on barchans was largely dominated by soil moisture.
On the vegetated parabolics, incased bio-activity and crust
development played an important role in strengthening soil
and stabilizing dune movement. This work demonstrates the
potential of various mechanical tests performable by semi-
autonomous robots to rapidly provide maps of a soil’s sus-
ceptibility to mechanical perturbation and wind erosion over
large areas.
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Figure 1. White Sands National Monument, NM, a
Southwestern desert in the United States. (A) Google
Maps image of White Sands. Black arrow indicates di-
rection of the dominant wind, and associated dune mi-
gration. Red squares indicate the locations of barchan
(square B) and parabolic (square C) dunes where field
measurements in this paper were conducted. Inset shows
the location of the White Sands National Monument on
the US map. (B) Photo of barchan dunes. (C) Photo of
parabolic dunes.
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Figure 2. Robotic shear strength measurements for soil
erodibility characterization. (A) Field experiment setup.
The RHex robot[Saranli et al., 2001a] walks in the dune
field at White Sands National Monument, NM, stops at
desired locations and performs mechanical shear test at
the desired shear depth using a direct-drive leg mounted
on its back. Green arrows indicate the moving trajectory
of the robot leg end-effector during a complete plowing
test, including vertical insertion, horizontal shear, and
withdrawal. (B) A sample set of measurements from our
field data. In the first row of the plots, the red and blue
curves represent the recorded horizontal (x) and vertical
(y) positions, respectively, of the end effector relative to
the center of motors. In the second and third rows, the
red and blue curves represent the horizontal force (Fx)
and vertical force (Fy) exerted on the end effector, re-
spectively. We characterize the shear strength as the av-
erage shear resistance force (F̄x) during the steady state
range of the shear motion (shaded region).
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Figure 3. Perturbation methods and soil responses. (A)
Horizontal shear experiment setup. (B) Shear resistance
force responses obtained from the plowing method shown
in (A) from White Sands. Color represents moisture con-
tent. Shaded region represents the shear duration. (C)
Vertical intrusion experiment setup. (D) Penetration re-
sistance force responses obtained from the vertical intru-
sion method shown in (C) from White Sands. Color rep-
resents moisture content. Shaded region represents the
intrusion duration. (E) Kick-out experiment setup. (F)
Yield force responses obtained from the kick-out method
shown in (E). (G) PI-SWERL experiment setup. (H) Fan
RPM and resulting saltated sediment counts measured by
the optical gate sensor from the PI-SWERL experiment
shown in (G).
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Figure 4. Variety of soil surfaces at White Sands. (A)
Dry, loosely packed gypsum sand at the crest of a barchan
dune. (B) Dry, closely packed gypsum sand on a barchan
stoss. (C) Moist gypsum sand from 1 ∼ 2cm subsurface
on a barchan dune. (D) Crusted soil surface found in the
interdune area. (E) Cemented gypsum sand at the be-
ginning of a barchan stoss. (F) Thin-crusted soil surface
found in a parabolic interdune. (G) Hard, white crust
found in a parabolic interdune. (H) Dark brown crust
found in the parabolic interdune. (I) Thin, beige crusted
soil found near the toe of a parabolic. (J) Patchy brown
crusts found on parabolic stoss.
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Figure 5. Spatial variation of soil shear strength mea-
sured from barchan and parabolic dunes at White Sands
National Monument. (A) Distribution of locations on
a barchan dune where shear strength data were col-
lected. (B) Average shear resistance force measured by
the direct-drive robotic leg from interdune to the dune
crest at an arid barchan dune. Inset: track left on the
soil surface after the shear test. (C) Moisture content
measured on the barchan transect. (D) Distribution of
locations on a parabolic dunes where shear strength data
were collected. Due to the large area sampled in the
parabolic interdune, location 0 and 1 were farther away
(> 10m) from the toe of stoss and therefore not within
the scale captured by the photo. (E) Average shear re-
sistance force measured by the direct-drive robotic leg
from interdune to the dune crest at a vegetated, parabolic
dune. Inset: track left on the crusted soil surface after
the shear test. (F) Moisture content measured on the
parabolics transect.
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Figure 6. Moisture control and measurement. (A)
Moisture control setup. A mister assembly was mounted
on a linear actuator that swept back and forth to evenly
wet the sand. (B) Soil moisture distribution in the sand-
box after various number of misting cycles. Colors rep-
resent moisture probe readings (Volts). (C) Custom cal-
ibration to convert moisture tester and moisture probe
readings to water content. Blue squares represent mois-
ture tester readings. Red circles represent moisture probe
readings. Blue and red solid lines represent calibration
curves for the moisture tester and probe, respectively.
Cyan and magenta dashed lines represent 68% confidence
interval for future moisture tester and probe measure-
ments, respectively. (D) Average moisture content as the
number of misting cycles increase.
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Figure 7. Cumulative grain size distribution of the sand
used in the laboratory study (D50 = 0.56mm). Qualita-
tively, sand was fine to medium size with a small coarse
size fraction overlying the main distribution.
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Figure 8. Experiment setup and measurements of the
laboratory plowing tests. (A) Laboratory experiment
setup. The direct-drive robotic leg was mounted on an
aluminum frame, and performed continuous shear in a
30cm long, 11cm wide sandbox. Black arrows indicate
the intruder trajectory during each trial. (B) Shear re-
sistance force, Fx, recorded by the direct-drive leg for
different moisture content. Color represents percentage
of water content in the soil samples.
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Figure 9. Infiltration time dependent differences in τc
(estimated by the PI-SWERL) against surface moisture.
Blue circles (long wait) depict τc for sand beds that have
undergone infiltration times of 90 minutes or longer af-
ter wetting. Green stars (short wait) show τc for beds
with infiltration times of 5 to 10 minutes. Error bars
represent the 68% confidence interval of moisture mea-
surements. Distinct groupings of the two measurements
suggest that the τc of sand surface is controlled by sub-
surface saturation state as well as surface moisture.



QIAN ET AL.: CHARACTERIZATION OF SOIL ERODIBILITY WITH A FIELD DEPLOYABLE ROBOTX - 21

0 5 10 15 20

Moisture content [%]

0

0.5

1

1.5

2

2.5

N
o

rm
al

iz
ed

 s
h

ea
r 

st
re

n
g

th
 [

N
/c

m
2
]

WS parabolics

WS barchan

Lab

Figure 10. Normalized soil shear strength plotted as a
function of moisture content. We define the normalized
shear strength as the average shear resistance force nor-
malized by the projected area of the plowing object per-
pendicular to the shear direction. Blue circles represent
lab data where moisture content was systematically var-
ied. Red diamonds and green squares represent field data
in barchan and parabolic dunes at White Sands(WS), re-
spectively. Moisture content for lab data was averaged
from 3 different locations in the sandbox. Errorbar rep-
resent 68% confidence interval of moisture measurements.
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Figure 11. Erodibility characterized using different per-
turbation methods. (A) Average shear force measured in
lab by the method described in Figure 3A. Error bars
represent the 68% confidence interval of moisture mea-
surements. (B) Penetration force per depth measured in
lab by the method described in Figure 3C. Error bars
represent the 68% confidence interval of moisture mea-
surements. (C) A comparison of surface shear strength
as measured by the test described in figure 3E and the
estimate of τc provided by the PI-SWERL as described in
Figure 3G. Stars represent yield strength, whereas circles
represent critical shear stress τc. Error bars represent the
68% confidence interval of moisture measurements. From
0-6% the two appear to be roughly proportional. There
is a jump in both τc and shear strength above 6 % mois-
ture. This is evident by the lower limit points colored
in red, which indicate that true measurements were un-
obtainable for the higher percent moisture values (with
the exception of outliers in τc at 11 and 13 %). At the
percent moisture corresponding to full saturation of the
surface, the measured shear strength approaches its dry
value.
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