35 research outputs found

    Institutions, complementarity, human resource management and performance in a South-East Asian Petrostate: the case of Brunei

    Get PDF
    This is a study on the incidence and impact of specific sets of HR practices on organisational performance (OP) across different types of firm, within an emerging market setting, where institutional arrangements are fluid and developing. The literature on comparative capitalism suggests that, within advanced societies, formal and informal regulations are mutually supportive, and will be sustained by associated HR systems, optimising OP. In contrast, in settings where institutional arrangements are weaker, there will not be the same incentives for disseminating mutually supportive HR bundles, and when these do exist, they are unlikely to yield any better outcomes. We found that this was indeed the case in the petrostate of Brunei as the usage of integrated HR models did not work better than individual interventions. Whilst it is often assumed that, in petrostates, the primary focus of institution-building is to service the needs of the oil-and-gas industry, we found no evidence to suggest that integrated HR systems were any more effective there; this may reflect the extent to which the industry’s HR needs may be simply resolved through turning to overseas labour markets – both for skilled and unskilled labour. At the same time, we found that the efficacy of HR practices varied according to firm characteristics: even in challenging contexts, firms may devise their own solutions according to their capabilities and endowments

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    SMC complexes differentially compact mitotic chromosomes according to genomic context

    Get PDF
    Structural maintenance of chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modelling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids, while condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate that this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead, it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes

    Municipal Corporations, Homeowners, and the Benefit View of the Property Tax

    Full text link

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Song of the States

    No full text
    https://digitalcommons.library.umaine.edu/mmb-vp-copyright/3533/thumbnail.jp

    The Art of Science Communication—A Novel Approach to Science Communication Training

    No full text
    Effective communication is a requisite skill for scientists. However, formalized training in this area is often unavailable for members of the scientific community. As one approach to combat this problem, the American Society for Biochemistry and Molecular Biology (ASBMB) developed The Art of Science Communication, an eight-week-long online course that provides facilitated instruction on how to communicate science in an oral format. The course is offered three times a year, and as of December 2017, nearly 200 individuals from all career stages have taken part in it. The course completion rate is currently 60%, a rate three to five times as high as the average for similar Massive Open Online Courses (MOOCs). Participants have indicated that taking the course has improved their ability to communicate about their research, and that the skills and lessons learned have benefited them professionally. Moving forward, we are examining approaches that will help us improve the course and expand its reach throughout the scientific community. This article details the development of the course and examines the role and potential of such training within the larger scientific community
    corecore