1,186 research outputs found

    Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints

    Full text link
    High polarization selective Si/SiO2 mid-infrared sub-wavelength grating mirrors with large bandwidth adapted to VCSEL integration are compared. These mirrors have been automatically designed for operation at \lambda = 2.3 μ\mum by an optimization algorithm which maximizes a specially defined quality factor. Several technological constraints in relation with the grating manufacturing process have been imposed within the optimization algorithm and their impact on the optical properties of the mirror have been evaluated. Furthermore, through the tolerance computation of the different dimensions of the structure, the robustness with respect to fabrication errors has been tested. Finally, it appears that the increase of the optical performances of the mirror imposes a less tolerant design with severer technological constraints resulting in a more stringent control of the manufacturing process.Comment: The final publication is available at http://iopscience.iop.org/2040-8986/13/12/125502

    Extreme Events in Resonant Radiation from Three-dimensional Light Bullets

    Get PDF
    We report measurements that show extreme events in the statistics of resonant radiation emitted from spatiotemporal light bullets. We trace the origin of these extreme events back to instabilities leading to steep gradients in the temporal profile of the intense light bullet that occur during the initial collapse dynamics. Numerical simulations reproduce the extreme valued statistics of the resonant radiation which are found to be intrinsically linked to the simultaneous occurrence of both temporal and spatial self-focusing dynamics. Small fluctuations in both the input energy and in the spatial phase curvature explain the observed extreme behaviour.Comment: 5 pages, 5 figures, submitte

    On the statistical interpretation of optical rogue waves

    Full text link
    Numerical simulations are used to discuss various aspects of "optical rogue wave" statistics observed in noise-driven fiber supercontinuum generation associated with highly incoherent spectra. In particular, we consider how long wavelength spectral filtering influences the characteristics of the statistical distribution of peak power, and we contrast the statistics of the spectrally filtered SC with the statistics of both the peak power of the most red-shifted soliton in the SC and the maximum peak power across the full temporal field with no spectral selection. For the latter case, we show that the unfiltered statistical distribution can still exhibit a long-tail, but the extreme-events in this case correspond to collisions between solitons of different frequencies. These results confirm the importance of collision dynamics in supercontinuum generation. We also show that the collision-induced events satisfy an extended hydrodynamic definition of "rogue wave" characteristics.Comment: Paper accepted for publication in the European Physical Journal ST, Special Topics. Discussion and Debate: Rogue Waves - towards a unifying concept? To appear 201

    Influence of Al-doped ZnO Transparent Contacts Deposited by a Spray Pyrolysis Technique on Performance of HIT Solar Cells

    Get PDF
    AbstractTransparent and conductive Al-doped ZnO (AZO) thin films were deposited by spray pyrolysis and analysed in the aim to improve optical and electrical properties involved in the efficiency of Heterostructure with Intrinsic Thin Layer (HIT) solar cell. X-ray diffraction measurement shows that AZO film grown on glass has (002) preferred orientation. High optical transmittance value of ∼80% in the visible region was observed and the optical band gap was found to be 3.31eV at room temperature. The influence of AZO thin films as transparent conductive oxide TCO on heterojunction with intrinsic thin-layer (HIT) solar cell performance was investigated using software simulation. The beneficial effect of implementing AZO front contact for increasing electrical energy conversion properties of HIT solar cell compared to the reference cell without the AZO layer

    Hydrodynamic Supercontinuum

    Get PDF
    We demonstrate experimentally multi-bound-soliton solutions of the Nonlinear Schr\"odinger equation (NLS) in the context of surface gravity waves. In particular, the Satsuma-Yajima N-soliton solution with N=2,3,4 is investigated in detail. Such solutions, also known as breathers on zero background, lead to periodic self-focussing in the wave group dynamics, and the consequent generation of a steep localized carrier wave underneath the group envelope. Our experimental results are compared with predictions from the NLS for low steepness initial conditions where wave-breaking does not occur, with very good agreement. We also show the first detailed experimental study of irreversible massive spectral broadening of the water wave spectrum, which we refer to by analogy with optics as the first controlled observation of hydrodynamic supercontinuum a process which is shown to be associated with the fission of the initial multi-soliton bound state into individual fundamental solitons similar to what has been observe in optics

    Evidence of joint commitment in great apes’ natural joint actions

    Get PDF
    Human joint action seems special, as it is grounded in joint commitment—a sense of mutual obligation participants feel towards each other. Comparative research with humans and non-human great apes has typically investigated joint commitment by experimentally interrupting joint actions to study subjects’ resumption strategies. However, such experimental interruptions are human-induced, and thus the question remains of how great apes naturally handle interruptions. Here, we focus on naturally occurring interruptions of joint actions, grooming and play, in bonobos and chimpanzees. Similar to humans, both species frequently resumed interrupted joint actions (and the previous behaviours, like grooming the same body part region or playing the same play type) with their previous partners and at the previous location. Yet, the probability of resumption attempts was unaffected by social bonds or rank. Our data suggest that great apes experience something akin to joint commitment, for which we discuss possible evolutionary origins

    Hydrodynamic supercontinuum

    Get PDF
    We report the experimental observation of multi-bound-soliton solutions of the nonlinear Schrödinger equation (NLS) in the context of hydrodynamic surface gravity waves. Higher-order N-soliton solutions with N=2, 3 are studied in detail and shown to be

    Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance

    Get PDF
    Reactive oxygen species and redox signaling undergo synergistic and antagonistic interactions with phytohormones to regulate protective responses of plants against biotic and abiotic stresses. However, molecular insight into the nature of this crosstalk remains scarce. We demonstrate that the hydrogen peroxide–responsive UDP-glucosyltransferase UGT74E2 of Arabidopsis thaliana is involved in the modulation of plant architecture and water stress response through its activity toward the auxin indole-3-butyric acid (IBA). Biochemical characterization of recombinant UGT74E2 demonstrated that it strongly favors IBA as a substrate. Assessment of indole-3-acetic acid (IAA), IBA, and their conjugates in transgenic plants ectopically expressing UGT74E2 indicated that the catalytic specificity was maintained in planta. In these transgenic plants, not only were IBA-Glc concentrations increased, but also free IBA levels were elevated and the conjugated IAA pattern was modified. This perturbed IBA and IAA homeostasis was associated with architectural changes, including increased shoot branching and altered rosette shape, and resulted in significantly improved survival during drought and salt stress treatments. Hence, our results reveal that IBA and IBA-Glc are important regulators of morphological and physiological stress adaptation mechanisms and provide molecular evidence for the interplay between hydrogen peroxide and auxin homeostasis through the action of an IBA UGT

    Theory of radiation trapping by the accelerating solitons in optical fibers

    Get PDF
    We present a theory describing trapping of the normally dispersive radiation by the Raman solitons in optical fibers. Frequency of the radiation component is continuously blue shifting, while the soliton is red shifting. Underlying physics of the trapping effect is in the existence of the inertial gravity-like force acting on light in the accelerating frame of reference. We present analytical calculations of the rate of the opposing frequency shifts of the soliton and trapped radiation and find it to be greater than the rate of the red shift of the bare Raman soliton. Our findings are essential for understanding of the continuous shift of the high frequency edge of the supercontinuum spectra generated in photonic crystal fibers towards higher frequencies.Comment: Several misprints in text and formulas corrected. 10 pages, 9 figures, submitted to Phys. Rev.
    corecore