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We report the experimental observation of multi-bound-soliton solutions of the nonlinear Schrödinger

equation (NLS) in the context of hydrodynamic surface gravity waves. Higher-order N-soliton solutions

with N ¼ 2, 3 are studied in detail and shown to be associated with self-focusing in the wave group

dynamics and the generation of a steep localized carrier wave underneath the group envelope. We also

show that for larger input soliton numbers, the wave group experiences irreversible spectral broadening,

which we refer to as a hydrodynamic supercontinuum by analogy with optics. This process is shown to be

associated with the fission of the initial multisoliton into individual fundamental solitons due to higher-

order nonlinear perturbations to the NLS. Numerical simulations using an extended NLS model described

by the modified nonlinear Schrödinger equation, show excellent agreement with experiment and highlight

the universal role that higher-order nonlinear perturbations to the NLS play in supercontinuum generation.
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The generation of new frequency components is a defin-
ing feature of nonlinear physics. Indeed, perhaps the most
spectacular phenomenon of nonlinear physics occurs when
a narrow-band input wave group undergoes rapid spectral
broadening as a result of strong nonlinear interactions to
create a broadband spectrum. Such spectral broadening has
been particularly studied in an optical context, where the
interaction between an intense electromagnetic pulse and a
nonlinear medium can generate a quasicontinuous broad-
band spectrum known as a supercontinuum [1–3]. Much
insight into the physics of supercontinuum generation has
been obtained using models of the underlying wave propa-
gation described by the nonlinear Schrödinger equation
(NLS) [4], along with extensions to include higher-order
dispersive and nonlinear perturbations [1]. Besides optical
waves, an important feature of the NLS model is that it
provides a general description of a wide range of weakly
nonlinear dispersive systems, such as Langmuir waves in
an unmagnetized plasma, Bose-Einstein condensates, and
deep-water surface gravity waves [5]. In fact, for surface
gravity waves, the NLS equation was derived more than
40 years ago [4] and was shown to be integrable via the
inverse scattering transform [6].

A variety of exact solutions has since been presented,
with the most celebrated being the propagation-invariant
bright soliton first observed experimentally in the late
1970s [7]. More recently, breather solutions of the NLS
have attracted significant attention as it has been sug-
gested that breathers on finite background [8–10] can be

considered as prototypes of the rogue waves [11] observed
on the surface of the ocean [12]. Such breathers on finite
background have now been seen experimentally under
controlled conditions in a range of systems, including
optics [13,14], plasma physics [15], and hydrodynamics
[16,17]. In a hydrodynamical context, a different class of
NLS in the form of breathers on zero background has,
however, received less attention [18–20]. In fact, it is
very surprising that such solutions generally known as
higher-order solitons or Satsuma-Yajima breathers and
which have been seen in optics more than 30 years ago
[21] have never been observed in wave tank laboratory
experiments. Higher-order solitons can be considered as
the nonlinear superposition of multiple fundamental
solitons with evolving relative phases such that recurrent
cycles of envelope compression and expansion are
observed over a characteristic distance scale known as
the soliton period. Significantly, it is the initial compres-
sion stage of higher-order soliton propagation that is
important in optical supercontinuum generation, as the
associated large spectral broadening causes deviation
from ideal NLS dynamics and induces fission into multiple
fundamental solitons [1].
In this Letter, we present the experimental observations

of higher-order solitons in a water wave tank and show that
in the perturbative regime of hydrodynamic nonlinearity, a
higher-order water wave soliton can also split into funda-
mental solitons and generate a broad and continuous spec-
trum in the sameway as seen in optics. By analogy with the
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corresponding optical phenomenon, we describe this as
a hydrodynamic supercontinuum. Significantly, we show
that the observed wave dynamics and fission mechanism
are well described within the framework of an extended
NLS model, the modified nonlinear Schrödinger equation
(MNLS), with the distance at which soliton fission occurs
scaling in the same way as in optics. Our results show
clearly that the essential physics of water wave propagation
remains well described by this model over a wide range of
experimental parameters and indeed suggest that fission of
the multisoliton bound state and associated supercontin-
uum generation may be a universal phenomenon encoun-
tered in a wide range of nonlinear systems governed by
perturbed NLS-type equations.

Our analysis is based on the focusing NLS equation
appropriate for describing deep-water wave packet evolu-
tion in space x [22]:
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Here, k0 represents the carrier wave number and !0 is
the corresponding angular frequency related to k0 via the
dispersion relation !0 ¼

ffiffiffiffiffiffiffiffi
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p
, where g denotes the gravi-

tational acceleration. Deep-water wave packets propagate
with the group velocity: cg ¼ ðd!=dkÞjk¼k0 ¼ !0=2k0.

Taking into account the second Stokes harmonic, the
surface elevation �ðx; tÞ can be represented in terms of
the complex envelope Aðx; tÞ as
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where c.c. denotes the complex conjugate and # ¼
ðk0x�!0tÞ. After rescaling the space, time, and amplitude
variables in Eq. (1), one obtains the well-known dimen-
sionless form of the NLS:

ic X þ c TT þ 2jc j2c ¼ 0: (3)

The two-soliton solution, which corresponds to a breather
on zero background of Eq. (3), can be written analytically
as [18]

c 2ðX; TÞ ¼ 4½coshð3TÞ þ 3 coshðTÞ expð8iXÞ�
coshð4TÞ þ 4 coshð2TÞ þ 3 cosð8XÞ expðiXÞ:

(4)

With X ¼ 0 in the wave tank defined as the position of the
mechanical paddle generating the waves, the initial condi-
tion for exciting the two-soliton solution takes the simple
hyperbolic-secant form with amplitude c 2ðX ¼ 0; TÞ ¼
2sechðTÞ. Note that general analytic forms for higher N
can be derived using a variety of techniques [19], but
writing them in closed form becomes unpractical for
orders larger than N ¼ 3 [23]. Nonetheless, the particular
initial condition for exciting any N soliton has the simple
generic form c NðX ¼ 0; TÞ ¼ NsechðTÞ. Figure 1 shows

the theoretical evolution of the envelope of the two- and
three-soliton solutions along X and T. Excitation of these
breathers in a water tank is an important confirmation of
the ability of the NLS to capture extreme localization of
water waves with high amplitude features. However, we
emphasize that the NLS model is only the lowest-order
approximation and that the dynamics of the surface waves
can be influenced by higher-order effects; as we discuss
later, this can dramatically increase the spectral broadening
during the evolution of multisoliton solutions.
Our experimental setup is described in Ref. [17]. The

initial condition generated by the wave maker is programed
according to Eq. (2). Each particular soliton solution
requires a special choice of carrier parameters. At x ¼ 0
the initial local steepness of the carrier at the soliton center,
defined as "0 ¼ Na0k0, where a0 is the amplitude of the
N ¼ 1 soliton, plays a key role in the experiment, with
higher steepness "0 yielding more rapidly evolving dynam-
ics. On the other hand, wave breaking defines a threshold
steepness value beyond which the excited soliton solution
will break before reaching its maximal amplitude. Our
experiments indicate that breaking of the two-soliton and
the three-soliton packets starts at initial steepnesses of 0.20
and 0.15, respectively, and we thus kept the steepnesses
below these values. The initial conditions in the experi-
ments were of course chosen to ensure that the evolution
dynamics of interest and the maximal amplification of the
higher-order soliton were captured within the tank dimen-
sions. To observe maximal amplification within the tank,
the amplitude and steepness are, respectively, a0 ¼ 5 mm
and "0 ¼ 0:16 (for N ¼ 2 soliton), and a0 ¼ 2 mm and
"0 ¼ 0:12 (for N ¼ 3 soliton). Note that these values are
far from the wave-breaking limit and that at x ¼ 0 the
amplitude of the soliton is Na0.
The experimental results showing the measured evolu-

tion of these multisolitons are shown in Fig. 2. The upper
panel shows the evolution of the two-soliton solution
while the lower panel shows the three-soliton solution.

FIG. 1 (color online). Theoretical evolution of the (a) N ¼ 2
soliton and (b) N ¼ 3 soliton solutions of the NLS.
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As expected from NLS dynamics for the chosen initial
conditions, the wave packet undergoes initial compression
until it reaches its maximum amplitude at 8 m (for the
N ¼ 2 case) and 9.6 m (N ¼ 3 case). It is important to note
that gauges are at 20 cm intervals in experiments, which
determines resolution in the recorded evolution.

To quantitatively interpret these results in terms of the
expected properties of higher-order solitons, we compare
the experimentally observed wave groups at their maximal
amplitude with that of the higher-order soliton solutions
simulated from the NLS. To this end, Fig. 3 shows the
measured profile (upper blue curve) together with the
corresponding simulated soliton solution (lower red curve)
at the spatial coordinate of maximal amplitude, and excel-
lent agreement is indeed observed for both the second- and
third-order solitons. However, we can also see discrepan-
cies in the form of a slight asymmetry in the experimental
data. Such an asymmetry is in fact expected from symme-
try breaking induced by higher-order nonlinear terms which
become non-negligible when the wave group spectral band-
width increases significantly during the phase of compres-
sion of higher-order solitons. Indeed, the propagation of

deep-water waves (and optical pulses) can be modeled by
the NLS only if the wave group or pulse envelope spectrum
is narrow enough so that perturbations to the dispersive and
nonlinear terms can be neglected. In optics, such perturba-
tions that can be included in the frame of a generalized
nonlinear Schrödinger (GNLS) model have been shown to
play a central role in the continuous spectral broadening
referred to as supercontinuum [1]. For the case of deep-
water waves, the physics of higher-order perturbations can
be accounted for by using the MNLS, also sometimes
referred to as the Dysthe equation, which includes addi-
tional terms compared to the NLS [24] and which can be
considered as a hydrodynamic equivalent of the GNLS in
optics. Of course, the optical GNLS and the MNLS are not
mathematically identical, but the models are physically
analogous in that they both exhibit a term which represents
the frequency dependence of the nonlinearity as well as a
delayed nonlinearity responsible for a frequency down-shift
(representing the induced mean flow of the wave train in
hydrodynamics [25]). Although the magnitude of these
terms is different in both models, they induce similar
physical perturbations to the narrow-band NLS model.
The influence of higher-order perturbations on the spectral
evolution of the N ¼ 2, 3 solitons is confirmed in Fig. 4,
where we compare the experimental spectral evolution with
the corresponding simulated evolution from both the NLS
and the MNLS. The experimental spectra were calculated
from the recorded wave envelopes using the Hilbert trans-
form. We see how the spectral evolution as predicted from
the NLS is perfectly symmetrical around the carrier fre-
quency and agrees well with the experiments until the stage
of maximum compression where asymmetry is manifested.
On the other hand, results obtained from the MNLS model
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FIG. 2 (color online). (a) Recorded experimental evolution of
the N ¼ 2 soliton along the wave flume for an initial carrier
amplitude of a0 ¼ 5 mm and carrier steepness of "0 ¼ 0:16.
(b) Recorded experimental evolution of the N ¼ 3 soliton along
the wave flume for a carrier amplitude of a0 ¼ 2 mm and carrier
steepness of "0 ¼ 0:12. The gauges are equally spaced by 20 cm
along the wave tank, but for clarity we only plot the evolution at
selected distances.
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FIG. 3 (color online). Comparison of the measured wave train
(upper blue curves) with the corresponding NLS simulation
(lower red curves) at the point of maximal measured wave
amplification for (a) the two-soliton breather with carrier para-
meters a0 ¼ 5 mm, "0 ¼ 0:16 recorded at 8 m, and (b) the three-
soliton breather with carrier parameters a0 ¼ 2 mm, "0 ¼ 0:12
recorded at 9.6 m. The spatial deviations between the NLS
simulation and the experiments are 1 and 3 cm for the N ¼ 2
and N ¼ 3 solitons, respectively.
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do show asymmetry toward higher frequencies, in excellent
agreement with the experimental observations. This result
is important as it confirms the ability of the MNLS to desc-
ribe accurately the propagation of 1D deep-water waves for
steepness values below the wave-breaking threshold.

In an optical context, the propagation of N-soliton solu-
tions can lead to the generation of a broad supercontinuum
when perturbation arising from higher-order dispersion
and nonlinearity becomes important and split the initial
bound state into fundamental individual solitons of differ-
ent amplitudes and durations that separate with propaga-
tion, a mechanism generally referred to as soliton fission
[1,26–28]. We next proceed to demonstrate that the very
same phenomenon can also manifest itself in hydrodynam-
ics. To this end, we increase the nonlinearity in the dy-
namical system in order to increase the spectral bandwidth
of the wave group at the stage of maximum compression
so that higher-order perturbations to the NLS become
even more significant and break the initial bound state.
The symmetry breaking caused by the higher-order terms
then results in soliton fission with the individual solitons
traveling at different velocities and eventually spreading
across the wave group just as in the optical case [1,29,30].
In hydrodynamic propagation, increasing the nonlinearity
can be achieved either by increasing the order of the
launched multisoliton or by increasing the carrier steep-
ness. We favored the former in our experiment because
increasing the steepness can cause the initial wave to
break. Launching a N ¼ 4 soliton [4sechðTÞ] into the
tank with a carrier amplitude a0 ¼ 1 mm and a carrier-
steepness value of "0 ¼ 0:16, we observe clear signatures
of soliton fission into distinct fundamental solitons as seen
in Fig. 5(a), which shows the temporal amplitude of the
wave group at the beginning (inset) and end of the tank.
Correspondingly to the fission, we observe a quasicon-
tinuous spectrum at the end of the wave tank as shown
in Fig. 5(c), similar to an optical supercontinuum. The

hydrodynamic and optical analogy is further confirmed
by noting that the distance at which fission occurs in the
wave tank scales using the same criterion as that derived
for pulses in optics. Specifically, the fission process is
triggered at the distance of maximum temporal compres-
sion where the effects of higher-order perturbations are
more pronounced and which can be approximated by
LD=N, where LD is the dispersive length [1]. The disper-
sive length is simply given by the temporal width T0 of the
wave group envelope at the input divided by the dispersion
coefficient of the NLS [1], and in the water wave case is
equal to LD ¼ T2

0g=2, implying a fission length of about

4 m for our experiment. In principle, the fission could also
be triggered by significant noise amplification, but we have
carefully checked through numerical simulations that the
noise influence is negligible here and that the fission can be
unambiguously attributed to higher-order perturbations to
the NLS. The fact that we observe fission in the hydro-
dynamic case so apparently makes it clear that mathemati-
cal differences in the NLS perturbation terms relative to the
optical system are not physically significant: it is because
the higher-order perturbations break the symmetry of the
integrable NLS that fission occurs, and this also inevitably
leads to significant permanent spectral broadening with
asymmetry. This is an important observation that illustrates
how systems governed by the NLS are very sensitive to the
presence of perturbations that are likely to break any bound
state into its fundamental constituents. In order to highlight
the crucial of the higher-order perturbations in the fission
process, we have performed numerical simulations using
the extended MNLS; see Figs. 5(b) and 5(d). We see
excellent agreement with the output experimental spec-
trum. In particular, fission at LD=N is clearly observed in
the simulated temporal evolution [Fig. 5(b)], and the mag-
nitude of the spectral broadening is correctly predicted.

FIG. 4 (color online). Spectral evolution of the N ¼ 2 (top)
and N ¼ 3 (bottom) solitons. (a),(d) Experimental evolution
calculated from the measured envelopes using the Hilbert
transform; (b),(e) simulated evolution using the NLS;
and (c),(f) simulated evolution using the MNLS.

FIG. 5 (color online). (a) Experimentally measured surface
elevation at 1 m (inset) and 10 m from the flap with initial
condition 4sechðTÞ at x ¼ 0. The experimental carrier parame-
ters are a0 ¼ 1 mm and "0 ¼ 0:16. The three largest fundamen-
tal solitons ejected from the fission are marked by the letter S.
(b) MNLS simulation of the wave train envelope in the frame
of reference moving at group velocity. The dashed white line
indicates the theoretically calculated fission distance.
(c) Experimental spectra at 1 m (lower red curve) and 10 m
(upper blue curve). (d) Corresponding results from MNLS
simulations.
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Of course, there are some differences between the opti-
cal and hydrodynamic supercontinua as we observe. First,
the difference in the linear dispersion properties between
the optical and hydrodynamic systems means that we
cannot satisfy a phase-matching condition for narrow-
band soliton-dispersive wave radiation in hydrodynamics
as usually seen in optics [1]. Second, within the MNLS
regime, the frequency down-shift experienced by solitons
is weaker for water solitons than for optical solitons. A
direct consequence is that after the fission where solitons
are ejected and separated with further propagation, the
spectral broadening essentially ceases. This is in contrast
with the optics case where the strong down-shift of the
individual solitons can extend significantly the supercon-
tinuum bandwidth toward the lower frequencies.

In conclusion, we have reported the observation of multi-
soliton breathers on zero background in hydrodynamics. The
measured maximal wave amplitudes are in very good agree-
ment with the analytical solutions of the NLS, and discrep-
ancies are due to the higher-order effects which can be
accounted for by the MNLS. When the nonlinearity of the
system is increased, higher-order perturbations break the
multisoliton bound state into fundamental solitons. Such a
soliton fission mechanism is associated with extended spec-
tral broadening along the flume, leading to the generation of a
waterwave supercontinuumsimilar to that observed in optics.

These results not only reveal yet another correspondence
between the dynamics of 1D wave tanks and fiber-optic
systems, but most importantly they confirm that soliton
fission and supercontinuum generation are likely to be
universal phenomena encountered in a wide range of non-
linear systems governed by perturbed NLS-type equations.
Naturally, it is also important to stress that in the absence of
such higher-order perturbations, fission will not occur as
the system is perfectly integrable in this case. We antici-
pate that these results will motivate not only further studies
in hydrodynamics to observe nonlinear interactions of
surface gravity waves but also studies in other nonlinear
systems governed by a similar type of NLS equations.
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