292 research outputs found

    Finite element analysis of horizontal axis wind turbines performance

    Get PDF
    This paper presents an aeroelastic formulation based on the Finite Element Method (FEM) to predict the performance of an isolated horizontal axis wind turbine. Hamilton’s principle is applied to derive the equations of blade(s) aeroelasticity, based on a nonlinear beam model coupled with Beddoes-Leishman unsteady sectional aerodynamics. A devoted fifteen-degrees of freedom finite element, able to accurately model the kinematics and elastic behavior of rotating blades, is introduced and the spatial discretization of the aeroelastic equations is carried-out yielding a set of coupled nonlinear ordinary differential equations that are then solved by a time-marching algorithm. The proposed formulation may be enhanced to face the analysis of advanced blade shapes, including the presence of the tower, and represents the first step of an ongoing activity on wind energy based on a FEM approach. Due to similarities between wind turbine and helicopter rotor blades aeroelasticity, validation results firstly concern with the aeroelastic response of a helicopter rotor in hovering. Next, the performance of a wind turbine in terms of blade elastic response and delivered power are predicted and compared with available literature data

    Finite element analysis of horizontal axis wind turbines performance

    Get PDF
    This paper presents an aeroelastic formulation based on the Finite Element Method (FEM) to predict the performance of an isolated horizontal axis wind turbine. Hamilton’s principle is applied to derive the equations of blade(s) aeroelasticity, based on a nonlinear beam model coupled with Beddoes-Leishman unsteady sectional aerodynamics. A devoted fifteen-degrees of freedom finite element, able to accurately model the kinematics and elastic behavior of rotating blades, is introduced and the spatial discretization of the aeroelastic equations is carried-out yielding a set of coupled nonlinear ordinary differential equations that are then solved by a time-marching algorithm. The proposed formulation may be enhanced to face the analysis of advanced blade shapes, including the presence of the tower, and represents the first step of an ongoing activity on wind energy based on a FEM approach. Due to similarities between wind turbine and helicopter rotor blades aeroelasticity, validation results firstly concern with the aeroelastic response of a helicopter rotor in hovering. Next, the performance of a wind turbine in terms of blade elastic response and delivered power are predicted and compared with available literature data

    Analysis of helicopter cabin vibrations due to rotor asymmetry and gust encounter

    Get PDF
    The availability of a numerical tool capable to predict the vibration level inside the cabin due to main rotor-fuselage interaction is of great importance in helicopter design. Indeed, it would be a source of information concerning the fatigue-life of the structure, that in turn would allow a rough estimate of consequent maintenance costs. Furthermore, such a tool would be helpful also in the process of identifying design solutions aimed to the interior noise reduction, that is a crucial aspect for the widely-requested passenger comfort enhancement. In this paper, the simulation tool is obtained as a finite element structural dynamic model of the helicopter fuselage forced by vibratory hub loads, that are predicted through the aeroelastic analysis of the main rotor treated as isolated. In particular, the emphasis is on the evaluation of the incremental vibration level induced by rotor asymmetry and gust encounter, that could give raise to interior acoustic patterns annoying for passengers and to vibration peaks dangerous in terms of structural fatigue. All the results are obtained for two different flight conditions

    Innovative Helicopter In-Flight Noise Monitoring Systems Enabled by Rotor-State Measurements

    Get PDF
    The present contribution aims at providing a comprehensive illustration of a new approach to rotorcraft noise abatement, especially during terminal procedures, when the vehicle approaches the ground and the acoustic impact is higher. This approach pursues the development of technologies and tools for real-time, in-flight monitoring of the emitted noise. The effect of the acoustic radiation is presented to the pilot in a condensed, practical form on a new cockpit instrumentation, the Pilot Acoustic Indicator (PAI), to be used for performing quieter maneuvers. The PAI is based on the synergetic composition of pre-calculated acoustic data, which are used in a noise estimation algorithm together with the data gathered by an innovative contactless measurement system, capable of acquiring the main rotor blade motion. The paper reports on the current studies in unsteady and quasi-steady aeroacoustic prediction and tip-path-plane angle of attack and thrust coefficient observation. Results on novel methodologies are discussed, together with the main features of the PAI design and development process

    Underestimation of the Tambora effects in North American taiga ecosystems

    Get PDF
    The Tambora eruption (1815 AD) was one of the major eruptions of the last two millennia and has no equivalents over the last two centuries. Here, we collected an extensive network of early meteorological time series, climate simulation data and numerous, well-replicated proxy records from Eastern Canada to analyze the strength and the persistence of the Tambora impact on the regional climate and forest processes. Our results show that the Tambora impacts on the terrestrial biosphere were stronger than previously thought, and not only affected tree growth and carbon uptake for a longer period than registered in the regional climate, but also determined forest demography and structure. Increased tree mortality, four times higher than the background level, indicates that the Tambora climatic impact propagated to influence the structure of the North American taiga for several decades. We also show that the Tambora signal is more persistent in observed data (temperature, river ice dynamics, forest growth, tree mortality) than in simulated ones (climate and forest-growth simulations), indicating that our understanding of the mechanisms amplifying volcanic perturbations on climates and ecosystems is still limited, notably in the North American taiga.Peer reviewe

    An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    Get PDF
    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset

    Influence of ocean–atmospheric oscillations on lake ice phenology in eastern North America

    Get PDF
    Our results reveal long-term trends in ice out dates (1836–2013) for twelve lakes in Maine, New Brunswick and New Hampshire, in eastern North America. The trends are remarkably coherent between lakes (rs = 0.462–0.933, p < 0.01) and correlate closely with the March–April (MA) instrumental temperature records from the region (rs = 0.488–0.816, p < 0.01). This correlation permits use of ice out dates as a proxy to extend the shorter MA instrumental record (1876–2013). Mean ice out dates trended progressively earlier during the recovery from the Little Ice Age through to the 1940s, and gradually became later again through to the late 1970s, when ice out dates had returned to values more typical of the late nineteenth century. Post-1970’s ice out dates resumed trending toward earlier dates, with the twenty-first century being characterized by the earliest ice out dates on record. Spectral and wavelet time series analysis indicate that ice out is influenced by several teleconnections including the Quasi-biennial Oscillation, El Niño-Southern Oscillation, North Atlantic Oscillation, as well as a significant correlation between inland lake records and the Atlantic Multidecadal Oscillation. The relative influence of these teleconnections is variable with notable shifts occurring after ~1870, ~1925, and ~1980–2000. The intermittent expression of these cycles in the ice out and MA instrumental record is not only influenced by absolute changes in the intensity of the various teleconnections and other climate drivers, but through phase interference between teleconnections, which periodically damps the various signals

    Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE

    Get PDF
    This study was funded by the WSL-internal COSMIC project (5233.00148.001.01), the ETHZ (Laboratory of Ion Beam Physics), the Swiss National Science Foundation (SNF Grant 200021L_157187/1), and as the Czech Republic Grant Agency project no. 17-22102s.Though tree-ring chronologies are annually resolved, their dating has never been independently validated at the global scale. Moreover, it is unknown if atmospheric radiocarbon enrichment events of cosmogenic origin leave spatiotemporally consistent fingerprints. Here we measure the 14C content in 484 individual tree rings formed in the periods 770–780 and 990–1000 CE. Distinct 14C excursions starting in the boreal summer of 774 and the boreal spring of 993 ensure the precise dating of 44 tree-ring records from five continents. We also identify a meridional decline of 11-year mean atmospheric radiocarbon concentrations across both hemispheres. Corroborated by historical eye-witness accounts of red auroras, our results suggest a global exposure to strong solar proton radiation. To improve understanding of the return frequency and intensity of past cosmic events, which is particularly important for assessing the potential threat of space weather on our society, further annually resolved 14C measurements are needed.Publisher PDFPeer reviewe
    corecore