33 research outputs found

    Relation fonctionnelle entre le pool de nucléotides et PARP-1 : une nouvelle source d'instabilité génétique

    Get PDF
    Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that in CDA-deficient cells DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. Indeed, the intracellular accumulation of dCTP inhibits PARP-1 activity compromising the activation of Chk1 and the downstream checkpoints efficiency, allowing the subsequent accumulation of unreplicated DNA in mitosis. This unreplicated DNA leads to the formation of ultrafine anaphase bridges (UFBs) between sister-chromatids at “difficult-to-replicate” sites such as centromeres and fragile sites. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3’-5’ DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of UFBs due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our results describe previously unknown pathological consequences of the distortion of dNTP pools and reveal an unexpected role for PARP-1 in preventing unreplicated DNA accumulation in mitosis and in preventing chromosome segregation defects.La stabilité du génome est compromise par les déséquilibres du pool de dNTPs qui affectent la vitesse de progression des fourches de réplication. Par exemple, la déficience en cytidine désaminase (CDA) conduit à un excès de dCTP qui induit un ralentissement des fourches de réplication. Les résultats obtenus au cours de ma thèse ont permis de mettre en évidence un nouveau mécanisme par lequel un déséquilibre du pool de nucléotides compromet la complétion de la réplication et la ségrégation correcte des chromosomes. En utilisant des techniques de peignage moléculaire, de microscopie électronique et d’imagerie cellulaire permettant de quantifier le niveau basal de PAR, nous avons montré que la réplication incomplète de l’ADN lorsque la CDA est absente est due à l’inhibition partielle de PARP-1, et n’est pas liée au ralentissement de la vitesse de progression des fourches de réplication. En effet, l’accumulation intracellulaire de dCTP inhibe l’activité de PARP-1 ce qui réduit l’activation de Chk1 et l’efficacité des points de contrôle situés en aval, favorisant ainsi l’accumulation de séquences d’ADN non répliquées en mitose. Celles-ci conduisent alors à la formation de ponts anaphasiques ultrafins (UFBs) entre les chromatides sœurs au niveau de sites difficiles à répliquer tels que les centromères et les sites fragiles. Ces résultats ont des implications directes dans le syndrome de Bloom (BS), une maladie génétique rare combinant prédisposition aux cancers et instabilité génétique. Ce syndrome est la conséquence de la mutation du gène BLM, codant pour une hélicase RecQ du même nom. La déficience en BLM conduit à une chute de l’expression de la CDA résultant en une augmentation des UFBs entièrement due à l’inhibition de PARP-1 par la dCTP, indépendamment de BLM. Ces travaux décrivent ainsi une conséquence pathologique encore inconnue du déséquilibre du pool de nucléotides et révèlent un rôle inattendu de PARP-1 dans la surveillance des séquences d’ADN non répliquées prévenant leur accumulation en mitose et les défauts de ségrégation des chromosomes associés

    Genetic instability from a single S phase after whole-genome duplication

    Get PDF
    Diploid and stable karyotypes are associated with health and fitness in animals. By contrast, whole-genome duplications—doublings of the entire complement of chromosomes—are linked to genetic instability and frequently found in human cancers(1–3). It has been established that whole-genome duplications fuel chromosome instability through abnormal mitosis(4–8); however, the immediate consequences of tetraploidy in the first interphase are not known. This is a key question because single whole-genome duplication events such as cytokinesis failure can promote tumorigenesis(9). Here we find that human cells undergo high rates of DNA damage during DNA replication in the first S phase following induction of tetraploidy. Using DNA combing and single-cell sequencing, we show that DNA replication dynamics is perturbed, generating under- and over-replicated regions. Mechanistically, we find that these defects result from a shortage of proteins during the G1/S transition, which impairs the fidelity of DNA replication. This work shows that within a single interphase, unscheduled tetraploid cells can acquire highly abnormal karyotypes. These findings provide an explanation for the genetic instability landscape that favours tumorigenesis after tetraploidization

    Bloom’s Syndrome and PICH Helicases Cooperate with Topoisomerase IIα in Centromere Disjunction before Anaphase

    Get PDF
    Centromeres are specialized chromosome domains that control chromosome segregation during mitosis, but little is known about the mechanisms underlying the maintenance of their integrity. Centromeric ultrafine anaphase bridges are physiological DNA structures thought to contain unresolved DNA catenations between the centromeres separating during anaphase. BLM and PICH helicases colocalize at these ultrafine anaphase bridges and promote their resolution. As PICH is detectable at centromeres from prometaphase onwards, we hypothesized that BLM might also be located at centromeres and that the two proteins might cooperate to resolve DNA catenations before the onset of anaphase. Using immunofluorescence analyses, we demonstrated the recruitment of BLM to centromeres from G2 phase to mitosis. With a combination of fluorescence in situ hybridization, electron microscopy, RNA interference, chromosome spreads and chromatin immunoprecipitation, we showed that both BLM-deficient and PICH-deficient prometaphase cells displayed changes in centromere structure. These cells also had a higher frequency of centromeric non disjunction in the absence of cohesin, suggesting the persistence of catenations. Both proteins were required for the correct recruitment to the centromere of active topoisomerase IIα, an enzyme specialized in the catenation/decatenation process. These observations reveal the existence of a functional relationship between BLM, PICH and topoisomerase IIα in the centromere decatenation process. They indicate that the higher frequency of centromeric ultrafine anaphase bridges in BLM-deficient cells and in cells treated with topoisomerase IIα inhibitors is probably due not only to unresolved physiological ultrafine anaphase bridges, but also to newly formed ultrafine anaphase bridges. We suggest that BLM and PICH cooperate in rendering centromeric catenates accessible to topoisomerase IIα, thereby facilitating correct centromere disjunction and preventing the formation of supernumerary centromeric ultrafine anaphase bridges

    Functional relationship between nucleotide pool and PARP-1 : a new source of genetic instability

    No full text
    La stabilité du génome est compromise par les déséquilibres du pool de dNTPs qui affectent la vitesse de progression des fourches de réplication. Par exemple, la déficience en cytidine désaminase (CDA) conduit à un excès de dCTP qui induit un ralentissement des fourches de réplication. Les résultats obtenus au cours de ma thèse ont permis de mettre en évidence un nouveau mécanisme par lequel un déséquilibre du pool de nucléotides compromet la complétion de la réplication et la ségrégation correcte des chromosomes. En utilisant des techniques de peignage moléculaire, de microscopie électronique et d’imagerie cellulaire permettant de quantifier le niveau basal de PAR, nous avons montré que la réplication incomplète de l’ADN lorsque la CDA est absente est due à l’inhibition partielle de PARP-1, et n’est pas liée au ralentissement de la vitesse de progression des fourches de réplication. En effet, l’accumulation intracellulaire de dCTP inhibe l’activité de PARP-1 ce qui réduit l’activation de Chk1 et l’efficacité des points de contrôle situés en aval, favorisant ainsi l’accumulation de séquences d’ADN non répliquées en mitose. Celles-ci conduisent alors à la formation de ponts anaphasiques ultrafins (UFBs) entre les chromatides sœurs au niveau de sites difficiles à répliquer tels que les centromères et les sites fragiles. Ces résultats ont des implications directes dans le syndrome de Bloom (BS), une maladie génétique rare combinant prédisposition aux cancers et instabilité génétique. Ce syndrome est la conséquence de la mutation du gène BLM, codant pour une hélicase RecQ du même nom. La déficience en BLM conduit à une chute de l’expression de la CDA résultant en une augmentation des UFBs entièrement due à l’inhibition de PARP-1 par la dCTP, indépendamment de BLM. Ces travaux décrivent ainsi une conséquence pathologique encore inconnue du déséquilibre du pool de nucléotides et révèlent un rôle inattendu de PARP-1 dans la surveillance des séquences d’ADN non répliquées prévenant leur accumulation en mitose et les défauts de ségrégation des chromosomes associés.Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that in CDA-deficient cells DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. Indeed, the intracellular accumulation of dCTP inhibits PARP-1 activity compromising the activation of Chk1 and the downstream checkpoints efficiency, allowing the subsequent accumulation of unreplicated DNA in mitosis. This unreplicated DNA leads to the formation of ultrafine anaphase bridges (UFBs) between sister-chromatids at “difficult-to-replicate” sites such as centromeres and fragile sites. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3’-5’ DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of UFBs due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our results describe previously unknown pathological consequences of the distortion of dNTP pools and reveal an unexpected role for PARP-1 in preventing unreplicated DNA accumulation in mitosis and in preventing chromosome segregation defects

    Cytidine deaminase deficiency impairs sister chromatid disjunction by decreasing PARP-1 activity

    No full text
    International audienceBloom Syndrome (BS) is a rare genetic disease characterized by high levels of chromosomal instability and an increase in cancer risk. Cytidine deaminase (CDA) expression is downregulated in BS cells, leading to an excess of cellular dC and dCTP that reduces basal PARP-1 activity, compromising optimal Chk1 activation and reducing the efficiency of downstream checkpoints. This process leads to the accumulation of unreplicated DNA during mitosis and, ultimately, ultrafine anaphase bridge (UFB) formation. BS cells also display incomplete sister chromatid disjunction when depleted of cohesin. Using a combination of fluorescence in situ hybridization and chromosome spreads, we investigated the possible role of CDA deficiency in the incomplete sister chromatid disjunction in cohesin-depleted BS cells. The decrease in basal PARP-1 activity in CDA-deficient cells compromised sister chromatid disjunction in cohesin-depleted cells, regardless of BLM expression status. The observed incomplete sister chromatid disjunction may be due to the accumulation of unreplicated DNA during mitosis in CDA-deficient cells, as reflected in the changes in centromeric DNA structure associated with the decrease in basal PARP-1 activity. Our findings reveal a new function of PARP-1 in sister chromatid disjunction during mitosis

    A balanced pyrimidine pool is required for optimal Chk1 activation to prevent ultrafine anaphase bridge formation

    No full text
    International audienceCytidine deaminase (CDA) deficiency induces an excess of cellular dCTP, which reduces basal PARP-1 activity, thereby compromising complete DNA replication, leading to ultrafine anaphase bridge (UFB) formation. CDA dysfunction has pathological implications, notably in cancer and in Bloom syndrome. It remains unknown how reduced levels of PARP-1 activity and pyrimidine pool imbalance lead to the accumulation of unreplicated DNA during mitosis. We report that a decrease in PARP-1 activity in CDA-deficient cells impairs DNAdamage-induced Chk1 activation, and, thus, the downstream checkpoints. Chemical inhibition of the ATR-Chk1 pathway leads to UFB accumulation, and we found that this pathway was compromised in CDA-deficient cells. Our data demonstrate that ATR-Chk1 acts downstream from PARP-1, preventing the accumulation of unreplicated DNA in mitosis, and, thus, UFB formation. Finally, delaying entry into mitosis is sufficient to prevent UFB formation in both CDA-deficient and CDA-proficient cells, suggesting that both physiological and pathological UFBs are derived from unreplicated DNA. Our findings demonstrate an unsuspected requirement for a balanced nucleotide pool for optimal Chk1 activation both in unchallenged cells and in response to genotoxic stress

    Fast and furious . . . or not, Plk4 dictates the pace

    No full text
    International audienc
    corecore