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Diploid and stable karyotypes are associated with health and fitness in animals. By
contrast, whole-genome duplications—doublings of the entire complement of

chromosomes—are linked to geneticinstability and frequently found in human
cancers'>. It has been established that whole-genome duplications fuel chromosome
instability through abnormal mitosis*%; however, theimmediate consequences of
tetraploidy in the first interphase are not known. This is a key question because single
whole-genome duplication events such as cytokinesis failure can promote
tumorigenesis’. Here we find that human cells undergo high rates of DNA damage
during DNA replicationin the first S phase following induction of tetraploidy. Using
DNA combing and single-cell sequencing, we show that DNA replication dynamics is
perturbed, generating under- and over-replicated regions. Mechanistically, we find
that these defects result from a shortage of proteins during the G1/S transition, which
impairs the fidelity of DNA replication. This work shows that within a single
interphase, unscheduled tetraploid cells can acquire highly abnormal karyotypes.
These findings provide an explanation for the genetic instability landscape that
favours tumorigenesis after tetraploidization.

As whole-genome duplications (WGDs) can have different origins'®",
we developed several approaches toinduce tetraploidization through
either mitotic slippage, cytokinesis failure or endoreplication in the
diploid and genetically stable RPE-1human cell line. Most cells resulting
from cytokinesis failure contained two nuclei, whereas endoreplication
or mitotic slippage generated mononucleated tetraploid cells. Cell size,
cellnumber, nucleus size and centrosome number were considered to
distinguish diploid cells from tetraploid cells (Fig. 1a, b, Extended Data
Fig.1a-i). For each approach, amix of diploid and tetraploid cells was
obtained, enabling the comparison of internal diploid controls and
tetraploids. In all conditions, most tetraploid cells continued to cycle
throughoutthefirstinterphase, allowing us to probe the consequences
of tetraploidy within the first cell cycle.

Using YH2AX, an early marker of DNA damage, we found high levels
of DNA damage intetraploid cells (but notin controls) independently
of how they were generated (Fig. 1c-h, Extended Data Figs. 1a-i, 2a-f,
Methods). Moreover, whereas more than 10 yH2AX foci were presentin
only 5-9% of diploid cells, this proportion reaches 34-54% in tetraploid
cells (Fig.1c-h). Thenumber of yH2AX foci correlated with fluorescence
intensity (Extended Data Fig. 1j). We excluded the possibility that the
increaseintetraploid cells was simply owing to increased nuclear size
by normalizing the number of yH2AX foci to the nuclear area or nuclear

fluorescence intensity (Extended Data Fig. 1k-1). High levels of DNA
damage were also found in tetraploid BJ fibroblast and HCT116 cells
upon WGD (Extended Data Fig. 2g, h).

To evaluate levels of DNA damage after WGD, we compared DNA
damage between tetraploid and diploid cells with replication stress.
Replication stress results from the slowing or stalling of replication
forks, which can be induced by high doses of aphidicolin (APH; a DNA
polymerase inhibitor) or hydroxyurea'>** (a ribonucleotide reduc-
tase inhibitor). APH or hydroxyurea generated similar levels of DNA
damage in diploid cells, when compared with untreated tetraploid
cells (Extended DataFig. 2i). In addition to yH2AX, we also observed a
significantincreasein the number of foci containing the double strand
break repair factors FANCD2 and 53PB1* in the firstinterphase follow-
ing WGD (Fig. 1i-1). Further, tetraploid cells showed anincreased olive
tail moment in alkaline comet assays, indicating single and double
strand breaks (Extended Data Fig. 2j, k).

We next tested whether DNA damage is also generated in the sub-
sequent cell cycles. A high proportion of tetraploid RPE-1cells arrests
after thefirst cell cycleina LATS2-p53-dependent manner®, We thus
analysed DNA damage levels in p53-depleted cells (Extended Data
Fig.2l). During the second and third interphases following tetraploidi-
zation, we observed a considerable decrease in DNA damage levels
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Fig.1|Highlevels of DNA damagein the firstinterphase following
unscheduled WGD. a, Schematic of the methods used to generate tetraploid
cells. b, Top, images of diploid (D) and tetraploid (T) RPE-1 cells generated by
mitotic slippage, cytokinesis failure or endoreplication. Centrosomes labelled
with anti-CEP192 and cell membranes labelled with anti-B-catenin. Bottom,
outlined regions are shown at higher magnification. c, e, g, Images showing
DNA damage caused by mitotic slippage (c), cytokinesis failure (e) or
endoreplication (g) revealed by anti-yH2AX in diploid and tetraploid RPE-1cells
asindicated.d, f, h, The number of yH2AX foci following mitoticslippage (d),
cytokinesis failure (f) or endoreplication (h) perinterphase cellindiploid and

(Extended Data Fig. 2m-0). As most animal cells are normally organ-
izedintissues with cell-cell adhesions, we tested the consequences of
WGDin 3D cultures. Spheroids containing tetraploid cells displayed a
higher yH2AX index (Methods) compared with diploid cells (Extended
DataFig.3a-d).

Collectively, our results show that a transition from a diploid to a
tetraploid status after unscheduled WGD is accompanied by high levels
of DNA damage within the first cell cycle.

DNA replication-dependent DNA damage

We determined the cell cycle stage when the DNA damage occurs using
the fluorescence ubiquitination cell cycle indicator (FUCCI). During
GI, the number of YH2AX foci was quite low and similar to that found
in controls. As tetraploid cells entered S phase, we observed a slight
increase inthe number of foci, which increased substantially at theend
of Sphase (Fig. 2a, b, Extended DataFig. 3e, f). These results were further
confirmed by time-lapse imaging using H2B-GFP to visualize DNA and
53BP1-RFP (Extended Data Fig. 3g, h, Supplementary Videos 1, 2). To
confirm that DNA damage in tetraploid cells appeared during S phase,
we blocked cells at the G1/S transition using high doses of inhibitors
of CDK4/6 or CDK2 for 16 h (Extended Data Fig. 3i, j). We chose a16-h
period because this corresponds to the end of S phase in the cycling
population (Fig.2a, b) and thus enables us to distinguish whether DNA
damage accumulates in a specific cell cycle phase or, alternatively,
after acertain period of time. G1-arrested tetraploid cells showed low
levels of DNA damage, whereas cellsreleased in S phase exhibited high
levels of DNA damage (Extended Data Fig. 3i-0). Of note, we observed
asignificantincrease in the percentage of yH2AX foci co-localizing
with markers of active DNA replication sites visualized by proliferating

@
=}

Number of 53BP1 foci
per interphase cell
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o

tetraploid RPE-1cells. Dataare mean +s.e.m.; >100 interphase cells,
3independentexperiments. The percentage of interphase cells with at least
tenyH2AX fociforeach conditionisindicated under the graph. i, k, Images of
diploid and tetraploid RPE-1cells generated by mitotic slippage labelled with
anti-FANCD2 (i) or anti-53BP1 (k) antibodies. j, 1, The number of FANCD2 (j) or
53BP1(I) fociperinterphase cellindiploid and tetraploid RPE-1cells. Data are
mean *s.e.m.;>100 interphase cells, 3independent experiments. Dotted lines
indicate the nuclear region. CF, cytokinesis failure; ENR, endoreplication;

MS, mitoticslippage.d, f, h,j, I, One-sided analysis of variance (ANOVA) test.
Scalebars, 10 pm.

cell nuclear antigen (PCNA) and EdU incorporation in tetraploid cells
compared withdiploid cells (31% versus 7%) (Extended Data Fig. 3p, q).

By evaluating markers of DNA damage signalling and repair pathways
we observed that the number of foci containing KU8O and XRCC1—
proteins involved in non-homologous end joining*—remained low in
tetraploid cells. By contrast, the number of foci containing the homolo-
gous recombination (HR) factor RAD51 was increased. Moreover, the
percentage of RADS1foci co-localizing with yH2AX foci was significantly
increased in tetraploid cells compared with diploid cells (14% versus
3%).Focicontaining the replication stress markers replication protein
A (RPA) and FANCD2 were also increased in number, and we observed a
significantincreasein their colocalization with yH2AX fociin tetraploid
cells compared with diploid cells (40% versus 14%) (Extended Data
Fig. 4a-k). Together, these results demonstrate that tetraploid cells
experience high levels of DNA damage during S phase, indicated by
markers of DNA damage and HR.

We hypothesized that DNA damage in tetraploid cells arises from
errors occurring during DNA replication. To test this possibility, cells
were arrested in G1 (Extended Data Fig. 3k). We then released them
in the presence of very low doses of APH or PHA-767491 (PHA; a Cdc7
inhibitor) to inhibit DNA replication (detected by absence of EAU)
without generating DNA damage (Methods). This leads to inhibition
of DNA replication while maintaining the biochemical activity typical
of the S phase nucleus. DNA damage levels were markedly decreased
in tetraploid cells treated with APH or PHA (Fig. 2c, d, Extended Data
Fig.5a-f).Of note, inthe few tetraploid cells that escaped DNA replica-
tion inhibition (revealed by high EdU incorporation) there was still a
large number of yH2AX foci (Extended Data Fig. 5g, h). Together, these
results establish that WGD generates DNA replication-dependent DNA
damage. Deoxyribonucleoside triphosphate (ANTP) exhaustionleads to
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replication stressand geneticinstability"”. We tested whether supplying
nucleosides rescued the DNA damage defects described above. This
was however not the case in cells or in an in vivo model of polyploidy
generation (Extended Data Figs. 5i, j, 10g). These results suggest that
unscheduled WGD does notinduce exhaustion of nucleoside levels as
described in other oncogenic conditions”.

We characterized DNA replication using RPE-1cell lines stably express-
ing PCNA chromobodies (Supplementary Information, Methods). Quan-
titative 4D live imaging of DNA replication in diploid and tetraploid
cellsrevealed marked decreases in the total number of PCNA foci and
their volume and a similar effect on the number of EdU foci (Extended
DataFig. 6a-f). This suggests alack of scaling up with DNA content and
fewer active replication sites in tetraploid cells. Time-lapse analysis of
PCNA and fluorescence intensity was used as a readout of early and
late S phase’®, revealing alonger early S phase period in tetraploid cells
(Supplementary Information, Extended DataFig. 6g-i, Supplementary
Videos 3,4). We next performed DNA combing, which enables visualiza-
tion of replication fork behaviour in single DNA fibres"**. Median fork
speed and fork asymmetry (areadout of stalled or collapse forks) were
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diploid and tetraploid RPE-1cells from c. Dataare mean+s.e.m.; >100
interphasecells, 3independent experiments. e, Left, scheme for replication
fork analysis. Right,immunofluorescence of DNA fibres obtained from diploid
andtetraploid RPE-1cells. f, g, Left, the replication fork speed in diploid and
tetraploid RPE-1(f) or B] cells (g). Right, the CIdU/IdU ratio in diploid and
tetraploid RPE-1(f) or BJ cells (g). Dataare mean +s.e.m.; >330 replication forks
(F), >295 replication forks (g). i, Genome-wide copy number plots for G2/M
tetraploid RPE-1or BJ cellsinduced by mitotic slippage. Eachrow representsa
cell. Bottomright, workflow showing the method used to sort the cells.
b,d,f,One-sided ANOVA test. g, Two-sided t-test.Scale bars, 10 um.

increased in tetraploid cells (Fig. 2e-g, Extended Data Fig. 6j, k). We
attempted toanalyseinter-origin distance (I0D), as the number of active
regions caninfluence fork speed?. We noted atrend forincreased 10D in
tetraploid cells; however, it did not reach the threshold for significance
(apossible explanationis provided in Methods).

Toassessthetype of karyotype generated inasingle S phase after WGD,
we used single-cell DNA sequencing (Methods, Supplementary Informa-
tion, Supplementary Methods). We identified over-duplicated chromo-
somes (more than10) in additionto frequent over- and under-replicated
regions (9n, 7nand 4n) in G2/M tetraploid cells (Fig. 2h, Extended Data
Fig.7a,b).Both aneuploidy and heterogeneity scores and the proportion
of the genome affected by aneuploidies were increased in G2/M tetra-
ploid cells (Fig. 2h, Extended Data Fig. 7a-d, Methods). Our data establish
that WGD generates abnormal karyotypes within asingle S phase.

Non-optimal S phase in tetraploid cells

Tetraploid cellswould be expected to ‘scale up’ RNA and protein content
by afactor of two. However, we found no evidence of such anincrease



a b e p 7 f P=00198 P=00211 P=00008 I De1Osae
Haei Os-c2 15 15— | H2B P=00382 P=00063
2 P <0.0001 £ | 40 s s | Actin o 107m ] 3
ccl Phase g - & | 804 W= | B-catenin Xy H FH BB -1
v @%1.0 % [110f== —]0oRc1 32 a
52 § [115{—=——=|MCM2 [pe o $ 508 -
e 5| 75{ = == |CDT1 |complex §32 HEHIG 3
2% 2| 7o{===]cnce o< LR g
2 - s o o NENUNNNRNENE 5
— L = = | 45 == == |CDC45| DTDT:DTiDTIDT:DTiDT e
307 — == |PCNA_[PNAreplcation Fiairieigieis
initiation 5igicig: PR
i iziRiSiEiI3: G . :
€ G1 population 200 Trestin T tional 5§°9°c'g R’ - i 27 pooooot
expressing FUCCI Diploid 55_|Z| E2F1 'er;:lsal:‘;\)r:‘mna > = 0.0001
RFP- posit\ve cells 9 h P=00094 P=00253
P $r - 20 ” P<0.0001 P =0.0006 P=00008
Cell somng ( @Z@@ - 15 5 D T s 10 - 1x
S g .
z&' DNA Qontent % z2" 5| 15{===1r28 283
@ = c H
© %5 107 o|115]= —=]MCM2 ER-
S :
\ Xé‘ 23805 3|1o{F |oRct |PeRC £ £ 3 ]
WOA ge : oort o 283 ]
B (== 2l
Ploidy: §| 45{= =] ©DC45 |onArepication R D
Tetraploid MS: + g 200{ == == |Treslin |initiation 6—§ 3
k €5 e
1 m © 2 9 ¢ 8§ P=06051 P=00042 P=0.1258 P=0.4380
Diploid cells Tetraploid cells D T P=0.0408 P=07362 P=02851 P=00015
25 =0.2487 25+ R?=0.1549 15-|E| HoB w” P =0.0023 25 :
P =0.0002 P =0.3794 . <y 3 ﬁ 20
= 20 =20 . S £ 1104 == |ORC1 S _ Q5 2
= = B g |1151 == ==|MCM2 |prerc g 52
515 eee 515 . e 55| o] 22 8515
(0] o 0] o o° cens’s . T | 75 === == |CDT1 [complex »92 5§
£ s % £ . = i S = -
S 10 *\‘1}?‘5\ <10 R 5E| 0 — |cocs g3 <510 "
£ o £ olegeted o °B £2 el
= 5 E 5 35 454 -~ |CDC45 o e 5 0.5
. . § 5| 30{====|pcna [DNAreplcation § o HEHLH :
T T T d T T T 1 2% . + : < - 4
0 200 400 600 0 200 400 poo i © |20 e #=[Tresiin R Ploidy. DTDTDTOTDTOT
. . ranscriptional P o)
Mass at birth (pg) Mass at birth (pg) SS-E'EQH regu‘ampn g g E 8 % 3
05250503&38:
o] P q P <0.0001
p=0.139 P=00001 P =0.9824 P <0.0001 P=0.9579 P=0.6091 P=0.8341 P < 0.0001
P=00008 P=00188 P=00521 P=05689 P<0.0001 P=0.5538 P<0.0001 P=0.8823 P=04792 P=04100 P<0.0001
P =0.0513 786 — P>09999 P>0.9999 P>09999 P>0.9999 — P>09999 P>09999 P>09999 P>09999
P 5 - . 8= 8 = 200 :
k3] H = o]
. 151EIHZB g % £37%
S £ T4 @ 2
g %[5 — MCM2 s S8 S8
3o Pre-RC 283 ,{.& 5<
S E |10 = |ORCT | complex 25 5 S 3 55
© 3| 75/ we=]|cDT1 §3 BE 5 E
8L, o<1 €5 2%
g 5|4 CDC45 |DNA replication & o 39 3¢
< g 200 Treslin |initiation Ploidy: Ploidy:
&S
S
+ - G1 lengthening: + -

G1 lengthening:

Fig.3|Keyreplicationfactors donotscaleupintetraploid cells.

a, Tetraploid cells expressing FUCCl and the corresponding image under phase
microscopy.b, The ratio of protein produced during Glin diploid (D) and
tetraploid (T) cells. Dataare mean +s.e.m.; >50 Gl cells, 2 experiments.

¢, Schematic of fluorescence-activated cell sorting. d, Relative H2Blevels in
RPE-1cells. Dataare mean+s.e.m.; threeexperiments. e, g, Westernblots of total
protein extracts (e) or chromatin-bound extracts (g) obtained from RPE-1cells.
f,h, The proteinlevels from total protein extractsin e (f) and chromatin-bound
extractsing (h). Dataare meants.e.m.; threeindependent experiments.i, Stills
from time-lapse videos of RPE-1cells expressing FUCCI. j, Graph showing the
durationof Glin RPE-1cells. Dataare mean +s.e.m.; >35interphasecells,
2independentexperiments. k, Graphs showing the timein G1and the mass at

in total RNA and protein content in newly born tetraploid cells using
pyroninY staining and quantitative phase imaging (Fig. 3a, b, Extended
Data Fig. 8a—c). We next tested the levels of key DNA replication fac-
tors. We developed protocols to sort tetraploids from diploids on
the basis of FUCCI and DNA content from a common cell population
(Fig. 3¢, Extended Data Fig. 8d, e, Methods). The same number of cells
was loaded for diploid and tetraploid conditions and total protein
extracts and chromatin-bound extracts were probed by westernblot.
The chromatin-associated H2B variant, the cytoskeleton component
actin and the membrane component 3-catenin showed increases
consistent with tetraploidization. By contrast, using H2B as a read-
out of DNA content, there was no similar increase in G1 and S phase
DNA replication factors in tetraploid cells (Fig. 3d-f, Extended Data
Fig. 8f, ). We analysed the origin recognition complex 1* (ORC1), the
minichromosome maintenance 2 helicase”? (MCM2), Cdc10-dependent
transcript1protein (CDT1)?and CDC6*. These proteins are key mem-
bers of pre-replication complexes and are normally loaded in G1 during

birth of RPE-1cells. More than 50 interphase cells, 2independent experiments. |,
0, Westernblots of (I) or chromatin-bound extracts (0) obtained from RPE-1 cells
with extended Glduration.m, Relative H2B levels in RPE-1 cells with extended G1
duration. Dataare mean+s.e.m.; four experiments. n, p, Protein concentration
intotal proteinextracts froml(n) and chromatin-bound extracts from o (p).
Dataare mean +s.e.m.; three experiments. q, r, The number of yH2AX fociin
RPE-1cellswith Gllengthening or Glarrest using160 nM or 1 uM palbociclib
andreleasedin S phase. Tetraploidy induced by mitotic slippage (q) or
endoreplication (r). Dataare mean +s.e.m.; >100 interphase cells,
3independentexperiments.e, g, 1,0, The same number of cells was loaded for
each condition.j, q,r,One-sided ANOVAtest.d, f, h, m-o, Two-sided t-test.

k, Two-sided Pearsontest. Scalebars, 50 um (a), 10 pm (i).

origin licensing. We also tested PCNA, CDC45% and treslin®, which are
required for theinitiation of DNA replication. We further probed the lev-
els of E2F1, atranscription factor that activates the expression of S phase
genes” 2, With the exception of treslin, the total levels of these pro-
teins did not show the expectedincreasein tetraploid cells (Fig. 3e, f).
Furthermore, levels of pre-replication complexes, treslin and CDC45
alsodid notincrease inthe chromatin-bound fractions from tetraploid
cells (Fig. 3g, h, Extended Data Fig. 8h).

Innormal proliferative cell cycles, growth occurring during Gl phase
prepares cells for DNA replication, increasing the expression and accu-
mulation of key S phase regulators?®>°. We measured Gl duration in
tetraploid cells and found only aslight increase compared with diploid
cells (Fig. 3i, j, Extended Data Fig. 8i, j). Further, although there was a
significant correlation between cell mass and G1 duration in diploid
cells, as described previously™, this was not the case in tetraploid cells
(Fig. 3k). We then tested whether G1 lengthening favoured error-free
DNA-replicationintetraploid cells. We delayed S phase entry using very
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Fig.4|Increased E2F1levels are sufficient to rescue geneticinstabilityin
bothtetraploid cellsand in unscheduled polyploid cellsinvivo. a, Top,
workflow showing the method used to overexpress E2F1 (E2F1OE). Bottom,
yH2AXimmunofluorescencein cells overexpressing E2F1.b, ¢, Graphs showing
thenumber of yH2AX foci perinterphase cellin diploid (D) and tetraploid (T)
RPE-1cellsreleasedin S phase withand without E2F1 overexpression.
Tetraploidy induced by mitotic slippage (b) or endoreplication (c). Dataare
mean s.e.m.;>100 interphase cells, three experiments. d, Experimental
scheme toshow the brainand the salivary glands of Drosophilalarva.

e, Representative images of salivary glands from wild-type larvae and brain
lobes of control or sgh-mutant larvae. f,yH2Av indexin salivary glands (SG) and
indiploid (D) and polyploid (P) neural stem cells from the Drosophilalarvae
brain.NB, neuroblast. Dataare mean +s.e.m.; >60 interphase cells,

low doses of inhibitors of CDK4/6 or CDK2 (Extended Data Fig. 9a—c,
Supplementary Information, Methods). In this condition, the levels of
DNA replication factors from total cell or chromatin extracts scaled up
with DNA content (comparing Fig. 31-p with Fig. 3e-h and Extended Data
Fig. 9k). Further, the number and volume of active replication sites in S
phase scaled up with DNA content in tetraploid cells and the dynamic
behaviour of PCNA in tetraploid cells was similar to that in diploid cells
(Extended Data Fig. 9d-h, Supplementary Videos 5, 6). The time spent
inSphasewasnotaltered, but theratiobetween early andlate S phasein
tetraploid cells was restored (Extended DataFig. 9i,j). Inall cell lines, G1
lengthening was sufficient to reduce the number of YH2AX, FANCD2 and
53BP1fociintetraploid S phase cells (Fig. 3q-r, Extended Data Fig. 91-r).

Our data show that tetraploid cells transition from G1 to S phase
prematurely without undergoing scaling of global protein mass. They
enter S phase with insufficient DNA replication factors, which can be
compensated for by Gl lengthening.
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3experiments. g, yH2Avinbrainlobes of control or sgh-mutant larvae with or
without E2F1overexpression. h,yH2Avindexinneuroblasts with or

without E2F1overexpression. Dataare mean +s.e.m.; >30interphase cells,
3experiments.i, yH2Av in neuroblasts derived from sgh-mutant larvae with or
without E2F1overexpression. The yellow dotted lines indicate EdU-negative
nuclei, thesolied yellow lineindicates EdU-positive nuclei. j, yH2Avindexin
EdU-negative and EdU-positive nuclei with or without E2F1 overexpression.
Dataaremeants.e.m.;>30interphasecells, 3 experiments. k, Model in which a
single S phase generates geneticinstability in tetraploid cells. The white dotted
linesindicate the nuclear (a) or cellarea (e, g,i).b, c,f, h,j, One-sided ANOVA
test.Scalebars,10 pm (a, ebottomright, gbottom), 20 pm (e bottom middle, i),
50 um (e top, ebottom left, g top).

E2F1rescues genetic instability in tetraploid cells

As the time spent in G1 does not prepare tetraploid cells for S phase,
wereasoned thatincreased E2F1 levels might compensate for defects
in Gl length scaling up. E2F1is a transcription factor that promotes
proliferationand cell cycle progression by regulating S phase and DNA
replication factors?®%, We over-expressed E2F1in diploid cells, enabling
us to increase the expression of DNA replication proteins just before
generating tetraploid cells. This was sufficient to rescue the levels of
DNA damage in tetraploid cells (Fig. 4a-c, Extended Data Fig. 10a-c).

A key prediction of our findings is that unscheduled polyploid
Drosophila interphase neuroblasts® should also accumulate high
levels of DNA damage in vivo. Indeed, the yH2Av index (Methods) was
higher in polyploid neuroblasts compared with diploid neuroblasts
or programmed polyploid salivary gland cells, which normally accu-
mulate very high ploidies® (Fig. 4d-f). We tested the effect of E2F10E



in polyploid neuroblasts and found that this was sufficient to decrease
substantially DNA damage levels in vivo. Further, DNA damage was
mainly restricted to EAU" nuclei (Fig. 4g-j, Extended Data Fig. 10d-f).
Together, these data show that in vivo unscheduled polyploidy is a
source of DNA damage and geneticinstability in replicating cells, which
canbeinhibited by increased E2F1levels.

As WGDs are quite frequent in human tumours, which have high
levels of geneticinstability'>**, our findings predict that these tumours
must cope withincreased DNA damage levels and therefore upregulate
the DNA damage response pathway. We performed gene set enrich-
ment analysis (GSEA) using cohorts of tetraploid and diploid lung,
bladder and ovarian tumours®. This revealed an enrichment for DNA
repair pathwaysinall tetraploid tumours when compared with diploid
tumours (Extended Data Fig.10h). These results suggest anincreased
requirement for the DNA damage response in tumours with WGD.

Discussion

Here we analysed theinitial defects following WGD and identified avery
early window of high geneticinstability that could promote acquisitions
of multiple mutations, making it possible to bypass cell cycle controls
while promoting survival of tetraploid cells. Our results are consistent
withamodelinwhich tetraploid cells transit through thefirst cell cycle
while lacking the capacity to support faithful replication of increased
DNA content (Fig. 4k, Supplementary Discussion).

In non-physiological conditions, such as those studied here, newly
borntetraploids might not sense the increase in DNA content and may
therefore be unable to adapt G1 duration or protein content toreplicate
a4ngenome. Further research is needed to identify the molecular
mechanisms that promote ploidy increase while maintaining genetic
stability and cellhomeostasis to understand how tetraploid cancers and
tetraploids arising during evolution adapted to the new cellular state.
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Methods

Cell culture
Cells were maintained at 37 °C in a 5% CO, atmosphere. hTERT RPE-1
cells (ATCC cat. no. CRL-4000, RRID:CVCL 4388) and HEK 293 cells
(ATCC cat. no. CRL-1573, RRID:CVCL 0045) were grown in Dulbecco’s
modified medium (DMEM) F12 (11320-033 from Gibco) containing 10%
fetal bovine serum (GE Healthcare), 100 U ml™ penicillin, 100 U mI™
streptomycin (15140-122 from Gibco). BJ cells (ATCC cat. no. CRL-4001,
RRID:CVCL 6573) and HCT116 cells (ATCC cat. no. CCL-247, RRID:CVCL
0291) were grownin Dulbecco’s modified medium + GlutaMAX (61965-
026 from Gibco) containing 10% fetal bovine serum (GE Healthcare),
100 Uml™ penicillin, 100 U ml™ streptomycin (15140-122 from Gibco).
All cells were routinely checked for mycoplasma infection and are
negative for mycoplasma infection. Identity and purity of the human
celllinesused in this study were tested and confirmed using STR authen-
tication.

Generation of an RPE-1PCNA"™™° stable cell line

RPE-1cells were transfected with 10 pg Cell Cycle-Chromobody plasmid
(TagRFP) (from Chromotek) using JET PRIME kit (Polyplus Transfec-
tion, 114-07) according to the manufacturer’s protocol. After 24 h,
500 pg mi™ G418 (4727878001 from Sigma Aldrich) was added to the
cell culture medium and then a mixed population of clones expressing
PCNA chromobodies were selected.

Generation of an RPE-1FUCCI or RPE-1 CCNB1*® FUCCl stable
cellline
Toproducelentiviral particles, HEK 293 cells were transfected with 4 pg
pBOB-EF1-FastFUCCI-Puro (Addgene 86849) + 4 ng pMD2.G (Addgene
12259) +4 pg psPAX2 (Addgene 12260) using a FUGENE HD Transfection
Reagent (PromegaE2311) in OptiMEM medium (ThermoFisher 51985034).
Cells were incubated at 37 °Cin a 5% CO, atmosphere for 16 h and then
growthmedia were removed and replaced by 6 ml fresh OptiMEM. The
following day, viral particles wereisolated by filtering the medium con-
taining themthrough a 0.45-pum filter (Sartorius Stedim Biotech 16537).
Then, RPE-10or RPE-1CCNBI*P cells* were incubated with viral particles
in the presence of 8 ug ml™ polybrene (Santa Cruz sc-134220) at 37 °C
ina 5% CO, atmosphere for 24 h. RPE-1 GFP and RFP-positive cells were
then collected using Sony SH800 FACS (BD FACSDiva Software Version
8.0.1). RPE-10r RPE-1 CCNBI*P clones expressing FUCCI were selected
and the cell lines were established from one single clone.
pBOB-EF1-FastFUCCI-Puro® was a gift from K. Brindle and D. Jodrell
(Addgene 86849).

Generation of an RPE-1 GFP-53BP1 RFP-H2B stable cell line

This cell line was obtained as described below. In brief, to produce
lentiviral particles, HEK 293 cells were transfected with 4 pg pPSMPUW-
IRIS-Neo-H2BmRFP (Fachinetti laboratory) + 4 ng pMD2.G (Addgene
12259) + 4 pg psPAX2 (Addgene 12260). Then, RPE-1 cells were incubated
with viral particles and RPE-1 RFP-positive cells were collected using
Sony SH800 FACS (BD FACSDiva Software Version 8.0.1). RPE-1clones
expressing RFP-H2B were selected, and the cell line was established
from one single clone.

Then, new lentiviral particles were produced by transfecting HEK
293 cells with 4pg Apple-53BP1trunc (Addgene 69531) + 4 ug pMD2.G
(Addgene12259) +4 pg psPAX2 (Addgene 12260). RPE-1RFP-H2B cells
were incubated with viral particles, and RPE-1 clones expressing both
RFP-H2B and GFP-53BP1 were selected using flow cytometry (Sony
SH800 FACS). The cell line was established from one single clone.

Apple-53BP1trunc was a gift from R. Weissleder® (Addgene).

Generation of an RPE-1shp53 stable cell lines
This cellline was obtained as described below. In brief, to produce len-
tiviral particles, HEK 293 cells were transfected with 4 pg short hairpin

RNA (shRNA) p53-puromycin (Fachinetti laboratory) + 4 ug pMD2.G
(Addgene12259) +4 nug psPAX2 (Addgene 12260). Then, RPE-1 cells were
incubated with viral particles. After 24 h, 5 pg ml™ puromycin (A1113803
from Gibco) was added to the cell culture medium and then a mixed
population of clones expressing p53 shRNA was selected.

Induction of tetraploidy in human celllines

To induce mitotic slippage, cells were incubated with DMSO (D8418
from Sigma Aldrich) or with 50 pM monastrol (58439 from Selleck-
chem) +1 M MPI-0479605 (S7488 from Selleckchem) for at least 2 h.
Alternatively, CCNB1 depletion in RPE CCNB1*® cells was induced
as described®. In brief, cells were treated with 2 pg ml™ doxycycline
(D3447 from Sigma Aldrich) + 3 uM asunaprevir (54935 from Selleck-
chem) for 2 h. Then, 500 pM auxin (15148 from Sigma Aldrich) was
added tothe cell culture medium for atleast 4 h. In the figures, mitotic
slippage was induced by the combination of monastrol + MPI-0479605
treatment except for the following figures: Figs. 2i,3a-h, j-o, Extended
DataFigs.2a,b,7a,d, 8d-h, 9k, in which mitotic slippage was induced
by CCNB1depletion.

To induce cytokinesis failure, cells were incubated with 10 uM gen-
istein (G6649 from Sigma Aldrich) for at least 2 h. Alternatively, cell
were incubated with 0.75 uM dihydrocytochalasin D (DCD; D1641from
Sigma-Aldrich) or with 5 uM latrunculin (L5288 from Sigma-Aldrich)
for1h.Inthefigures, cytokinesis failure was induced by genistein treat-
ment except for the following figures: Extended Data Fig. 6j, k,inwhich
cytokinesis failure was induced by DCD treatment and Extended Data
Fig.2c, d,in which cytokinesis failure was induced by latrunculin treat-
ment.

To induce endoreplication, cells were incubated with 10 pM
SP600125 (S1460 from Selleckchem) for at least 2 h. Alternatively,
CCNA2 depletionin RPE CCNA2*P cells was induced as described>®.
Inbrief, cells were treated with 2 pg ml™ doxycycline (Sigma Aldrich
D3447) for 2 h. Then, 500 pM auxin (Sigma Aldrich 15148) + 3 uM
asunaprevir (Selleckchem S4935) was added to the cell culture
medium for atleast 4 h.In the figures, endoreplication was induced
by SP600125 treatment except for Figs. 3q, 4c, Extended Data Figs. 2e,
f,3f,5d,j, 8c,in which endoreplication was induced through CCNA2
depletion.

Cell cycle synchronization and DNA replication inhibition
Cellswere treated with1 pM palbociclib (Cdk4/6 inhibitor, Selleckchem
S1579), or with 0.5 pM abemaciclib (Cdk4/6 inhibitor, Selleckchem
$5716) or with1 uMK03861(Cdk2 inhibitor, Selleckchem S8100) for16 h
to synchronize cells at G1/S transition, and were collected (indicated
by ‘Glarrest’inthe figures). Alternatively, cells were then washed five
times with PBS and released in S phase for 10 h before being collected.
To extend G1 duration cells were treated with 160 nM palbociclib or
with 50 nM abemaciclib or with400 nM K03861 for 16 h and were col-
lected (indicated by ‘Gllengthening’in the figures). Alternatively, cells
were thenwashed 5timesin PBS and released in S phase for 10 hbefore
being collected.

Toinhibit DNAreplication, cellswerereleased in S phasein the pres-
ence of low doses of Aphidicolin (APH, AO781 from Sigma-Aldrich), a
DNA replication polymerase inhibitor, or of PHA767491 (PZ0178 from
Sigma-Aldrich), a Cdc7inhibitor (indicated by ‘release in S phase + APH’
or ‘releasein S phase + PHA', respectively, in the figures). Doses were
chosentosignificantly decrease EdU incorporation without affecting
the levels of DNA damage.

Nucleoside supplementation

Cellswere synchronized in G1using 1M palbociclib and thenreleased
inSphase (see ‘Cell cycle synchronization and DNA replicationinhibi-
tion’)inthe presence of nucleosides at the following concentrations: dC
7.3 mgl™ (Sigma AldrichD0776); dG 8.5 mg ™ (Sigma Aldrich D0901);
dU7.3 mgl(Sigma Aldrich D5412); dA 8 mgI™ (Sigma Aldrich D8668)



and dT 2.4 mgl™ (Sigma Aldrich T1895) (+in the figures) or dC 14.6 mg
I,dG17mgl™?; dU 14,6 mgl™; dA16 mgl™and dT 4,8 mgI™ (++inthe
figures).

Treatments

The drugs were used at the following concentrations: Auxin (Sigma
15148), 500 pM; doxycycline (Sigma D3447), 2 pg ml™; asunaprevir
(Selleckchem S4935), 3 uM; monastrol (Selleckchem S8439), 50 uM;
MPI-0479605 (Selleckchem S7488), 1 uM; genistein (Sigma G6649),
10 pM; SP600125 (Selleckchem S1460), 10 pM; abemaciclib (Selleck-
chem S5716), 50 nM or 0.5 uM; K03861 (Selleckchem S8100), 400 nM
or1pM; palbociclib (Selleckchem S1579),120 nM or 1 uM; aphidicolin
(Sigma A0781), 0,4 puM or 1 uM; hydroxyurea (Selleckchem S1896),
2 mM; PHA767491 (SigmaPZ0178),1 uM; RO3306 (Calbiochem 217699),
10 pM; dihydrocytochalasin D (Sigma D1641), 0,75 uM; latrunculin B
(SigmaL5288), 5 uM; 5’-chloro-2’-deoxyuridine (CIdU) (Sigma C6891),
100 pM; 5’-iodo-2’-deoxyuridine (IdU) (Sigmal7125),100 pM.

Fly husbandry and fly stocks
Flies were raised on cornmeal medium (0.75% agar, 3.5% organic wheat
flour, 5.0% yeast, 5.5% sugar, 2.5% nipagin, 1.0% penicillin-streptomycin
and 0.4% propionic acid). Fly stocks were maintained at 18 °C. Crosses
were carried outinplastic vialsand maintained at 25 °C. Stocks were main-
tained using balancer inverted chromosomes to prevent recombination.
Stocks used in this study: sgh'*, pavarottiRNAi (Pav ™) (Bloomington
Drosophila Stock Center BL#42573)%, UAS-E2F1 (FlyORF FO01065) and
UAS-Rb (Bloomington Drosophila Stock Center BL#50746).

In all experiments, larvae were staged to obtain comparable stages
of development. Egg collection was performed at 25 °C for 24 h. After
development at 25 °C, third instar larvae were used for dissection.

Preparation and imaging of human cells

Cells were plated on cover slips in 12-well plates and treated with the
indicated drugs. To label cells, they were fixed using 4% of paraformal-
dehyde (Electron Microscopy Sciences 15710) + Triton X-100 (2000-C
from Euromedex) 0.1% in PBS (20 min at 4 °C). Then, cells were washed
three timesusing PBS-T (PBS +0.1% Triton X-100 + 0.02% Sodium Azide)
and incubated with PBS-T + BSA (Euromedex 04-100-812-C) 1% for
30 minatroom temperature. After 3washes with PBS-T +BSA, primary
andsecondary antibodies wereincubatedin PBS-T+BSA1%for1hand
30 minatroomtemperature, respectively. After 2washes with PBS, cells
were incubated with 3 pg ml™ DAPI (Sigma Aldrich D8417) for15 min at
room temperature. After two washes with PBS, slides were mounted
using 1.25% n-propyl gallate (Sigma P3130), 75% glycerol (bidistilled,
99.5%, VWR 24388-295), 23.75% H,O0.

Images were acquired on an upright widefield microscope (DM6B,
LeicaSystems, Germany) equipped withamotorized xy stage and a40x
objective (HCX PL APO 40x/1.40-0.70 Oil from Leica). Acquisitions
were performed using Metamorph 7.10.1software (Molecular Devices)
and asCMOS camera (Flash4V2, Hamamatsu). Stacks of conventional
fluorescence images were collected automatically at a z-distance of
0.5 um (Metamorph 7.10.1software; Molecular Devices, SCR 002368).
Images are presented as maximum intensity projections generated
with ImageJ software (SCR 002285).

Whole-mount tissue preparation and imaging of Drosophila
larval brains

Brains or salivary glands from third instar larvae were dissected in
PBS and fixed for 30 min in 4% paraformaldehyde in PBS. They were
washed 3 times in PBST 0.3% (PBS, 0.3% Triton X-100 (Sigma T9284),
10 min for each wash) and incubated for several hours in agitation at
roomtemperature and overnight at 4 °Cwith primary antibodies at the
appropriate dilutionin PBST 0.3%. Tissues were washed three timesin
PBST 0.3% (10 min for eachwash) and incubated overnight at 4 °C with
secondary antibodies diluted in PBST 0.3%. Brains and salivary glands

were thenwashed 2 timesin PBST 0.3% (30 min for eachwash), rinsed in
PBSandincubated with 3 pg mI™ DAPI (4’,6-diamidino-2-phenylindole;
Sigma Aldrich D8417) at room temperature for 30 min. Brains and
salivary glands were then washed in PBST 0.3% at room temperature
for 30 min and mounted on mounting media. A standard mounting
medium was prepared with 1.25% n-propyl gallate (Sigma P3130), 75%
glycerol (bidistilled, 99.5%, VWR 24388-295), 23.75% H,0.

Images were acquired on a spinning disk microscope (Gataca Sys-
tems). Based ona CSU-WI1 (Yokogawa), the spinning head was mounted
onaninverted Eclipse Ti2 microscope equipped with a motorized xy
stage (Nikon).Images were acquired through a40x NA 1.3 oil objective
with a sCMOS camera (Prime95B, Photometrics). Optical sectioning
was achieved using a piezo stage (Nano-z series, Mad City Lab). The
Gataca Systems’ laser bench was equipped with 405, 491 and 561 nm
laser diodes, delivering 150 mW each, coupled to the spinning disk head
through asingle mode fibre. Multi-dimensional acquisitions were per-
formed using Metamorph 7.10.1software (Molecular Devices). Stacks
of conventional fluorescence images were collected automatically at
az-distance of 1.5 pm (Metamorph 7.10.1software; Molecular Devices
SCR002368).Images are presented as maximum intensity projections
generated with ImageJ software (SCR 002285).

Primary and secondary antibodies were used at the following con-
centrations: guinea pig anti-CEP192 antibody*° (1:500; R.B. laboratory),
rabbit anti-3 catenin (1:250; Sigma-Aldrich C2206, RRID AB 476831),
mouse anti-yH2A.X phospho S139 (1:1,000; Abcam ab22551, RRID AB
447150), mouse anti-XRCC1 (1:500; Abcam ab1838, RRID AB 302636),
rabbit anti-Rad51 (1:500; Abcam ab133534, RRID AB 2722613), mouse
anti-KU8O (1:200; ThermoFisher MA5-12933, RRID AB10983840), rab-
bit anti-FANCD2 (1:150; Novusbio NB100-182SS, RRID AB 1108397),
mouse anti-53BP1 (1:250; Millipore MAB3802, RRID AB 2206767), rabbit
anti-yH2Av (1:500; Rockland600-401-914, RRID AB 11183655), Alexa
Fluor 647 Phalloidin (1:250; ThermoFisher Scientific A22287, RRID
AB 2620155), goat anti-rabbit IgG (H+L) Highly Cross-Adsorbed Sec-
ondary Antibody, Alexa Fluor 647 (1:250; ThermoFisher A21245, RRID
AB 2535813), goat anti-guinea pig IgG (H+L) Highly Cross-Adsorbed
Secondary Antibody, Alexa Fluor 488 (1:250; ThermoFisher A11073,
RRID AB 253411), goat anti-mouse IgG (H+L) Cross-Adsorbed Second-
ary Antibody, Alexa Fluor 546 (1:250; ThermoFisher A11003, RRID AB
2534071), goat anti-rabbit IgG (H+L) Highly Cross-Adsorbed Secondary
Antibody, Alexa Fluor 546 (1:250; Thermo Fisher Scientific A-11035,
RRID AB 2534093).

Quantitative analysis of DNA damage

Drosophila neuroblasts and 3D spheroids. Quantitative analysis of
DNA damage was carried out as previously described®. In brief, DNA
damage was assessed in Drosophila using a yH2Av primary antibody
andin3D spheroids with ayH2AX antibody, and detected withan Alexa
Fluorsecondary antibody. Confocal volumes were obtained with optical
sections at1.5-pumintervals.Image analysis was performed using Fiji and
acustom plugin developed by QUANTACELL. After manual segmenta-
tion of the nuclei, athresholding operation was used to determine the
percentage of YH2Av- or YH2AX-positive pixels (coverage) and their
average intensity in a single projection. Coverage and intensity were
multiplied to obtain the yH2Av or yH2AX index. The threshold used
to detect and quantify the yH2Av index in polyploid neuroblasts does
not detect any damage in salivary glands. However, it is important to
mention thatin afraction of these cells, yH2Av dots (small and of low
fluorescence intensity) can be occasionally seen.

2D human cell lines. For DNA damage quantification, the signals
obtained in cultured cells were different from the signals found in
Drosophila neuroblasts. To asses DNA damage in human cells, we
used an Image]J software-based plugin developed by QUANTACELL,
where yH2AX signals were measured using z-projection stacks after
thresholding. Nuclear size, DAPlintensity, the number of yH2AX foci,
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YH2AX fluorescence intensity and the percentage of nuclear coverage
by YH2AX signal were obtained for each nucleus.

Time-lapse microscopy

Cellswere plated on a dish (627870 from Dutscher) and treated with the
indicated drugs. Images were acquired on aspinning disc microscope
(Gataca Systems). Based on a CSU-W1 (Yokogawa), the spinning head
was mounted on an inverted Eclipse Ti2 microscope equipped with a
motorized xystage (Nikon).Images were acquired througha40xNA1.3
oil objective withasCMOS camera (Prime95B, Photometrics). Optical
sectioning was achieved using a piezo stage (Nano-z series, Mad City
Lab). Gataca Systems’ laser bench was equipped with 405-, 491- and
561-nm laser diodes, delivering 150 mW each, coupled to the spin-
ning disk head through a single mode fibre. Laser power was chosen to
obtain thebestratio of signal/background while avoiding phototoxic-
ity. Multi-dimensional acquisitions were performed using Metamorph
7.10.1software (Molecular Devices). Stacks of conventional fluores-
cence images were collected automatically at a z-distance of 0.5 pum
(Metamorph 7.10.1 software; Molecular Devices, RRID SCR 002368).
Images are presented as maximum intensity projections generated
with ImageJ software (RRID SCR 002285), from stacks deconvolved
with an extension of Metamorph 7.10.1 software.

3D cultures

Mitotic slippage on 3D cultures. To generate spheroids, 500 cells
per well were seeded into 96 ultra-low-attachment well plates (Corn-
ing7007) in presence of DMSO (Sigma Aldrich D8418) or with 50 uM
monastrol (Selleckchem S8439) and 1 uM MPI-0479605 (Selleckchem
S$7488). Plates were spin down at 200g for 3 min, to allow spheroid
formation, and incubated for 24 h at 37 °C.

Immunostaining. Spheroids were collected and washed quickly with
PBS before fixation using 4% paraformaldehyde (Electron Microscopy
Sciences15710) in PBS for 40 min. Then, spheroids were permeabilized
for 5 min using Triton X-100 (Euromedex 2000-C) 0.3% in PBS and
blocked for 30 min using blocking buffer (PBS + 0.3% Triton X-100 +
0.02%sodiumazide +3%BSA). Aggregates were incubated with primary
antibodies diluted into blocking buffer overnight. After 3 washes using
blocking buffer, spheroids were incubated with secondary antibodies
inblocking buffer for 3 h. Cells were then washed several times for2 h
inblocking buffer and mounted on glass with EverBrite (Biotium). For
primary and secondary antibodies see Immunofluorescence micros-
copy and antibodies’.

Imaging and DNA damage analysis. Spheroids were imaged using
aninverted scanning laser confocal (Nikon AIRHD25) equipped with
a100x CFIPlan Apo Lambda S Sil objective (NA 1.35). z-stacks were
acquiredevery 0.3 pm. Diploid and tetraploid cells were distinguished
using celland nuclear size and centrosome number. Then, quantitative
analysis of DNA damage was carried out (see ‘Quantitative analysis of
DNA damage’).

EdU staining

EdUincorporationinto DNA was visualized with the Click-it EdU imag-
ing kit (Life Technologies C10338), according to the manufacturer’s
instructions. For human cell lines, EQU was used at a concentration of
1uM (Extended Data Figs. 6e, 9h) or 10 pM (Extended Data Fig. 5g, h)
for the indicated time. Cells were incubated with the Click-it reaction
cocktail for 15 min. EdU incorporation in polyploid neuroblasts was
done as previously described® with a pulse of 2 h before fixation.

Comet assay

Comet assays were performed using Single Cell Gel Electrophoresis
Assay kit (4250-050-ES from Trevigen) according to the manufacturer’s
instructions. Comets were thenimaged using an inverted Eclipse Ti-E

Nikonvideomicroscope equipped with a40x CFIPlan Fluor objective.
Images were analysed with OpenComet plugin on Fiji. Based on the
comet DNA content of DMSO treated cells, a manual threshold was
applied to identify diploid from tetraploid cells. The same threshold
was applied on the cells treated for mitotic slippage.

FACS of diploid and tetraploid cells

A mix of diploid and tetraploid cells (see ‘Induction of tetraploidy in
human cell lines’) were incubated with 2 pg mlI™ Hoescht 33342 (Sigma
Aldrich 94403) for1h at 37 °C, 5% CO,. Then, a single cell suspension
was generated. Cells were washed using PBS, the supernatant was
removed and cells were resuspended in a cold cell culture medium
at 1x 107 cell per ml and kept at 4 °C during all the experiments.
Fluorescence-activated cell sorting (FACS) was performed using Sony
SH800 FACS (BD FACSDiva Software Version 8.0.1). Compensation was
performed using the appropriate negative control samples. Experimen-
tal samples were thenrecorded and sorted using gating tools to select
the populations ofinterest. RFP*GFP~ cells (G1 cells) were first selected.
Then, in this population, DNA content was used to segregate diploid
(2n) and tetraploid (4n) Gl cells (Extended Data Fig. 8d). Once gates
have been determined, the same number of diploid and tetraploid G1
cells were sorted into external collection tubes. The number of cells
was then checked using a cell counter and the same number of diploid
antetraploid cells were collected for western blot analysis. In parallel,
post-sort analysis was performed to determine the purity of the sorted
populations (Extended Data Fig. 8e).

Cell cycle analysis and measure of RNA levels by flow cytometry
Cellswere detached by treatment with Accutase (Sigma), immediately
washed inPBS, fixedin2 ml 70% ethanol and stored at -20 °C overnight.
They were then washed in PBS and staining buffer (BD Pharmingen
554656).

For cell cycle analysis, DNA content was visualized by incubating the
cells with 2 pg ml™ Hoescht 33342 (Sigma Aldrich 94403) in staining
buffer for 15 minatroom temperature. Alternatively, to measure RNA
levels, cells were incubated with 2 pug mi™ Hoescht 33342 + pyronin
4 ng ml™ (Santa Cruz sc-203755A) in a staining buffer for 20 min at
roomtemperature. Flow cytometry analysis was done using LSRII (BD
Biosciences), by analysing 10,000 cells per condition. Data were then
analysed with FlowJo 10.6.0 software (Tree Star).

E2F1overexpression

RPE-1 cells were transfected using 0.25 pg pPCMVHA E2F1 (Addgene
24225) with aJET PRIME kit (Polyplus Transfection 114-07) according
to the manufacturer’s protocol. Five hours later, cells were incubated
with DMSO (D8418 from Sigma Aldrich) or with 50 pM monastrol (Sell-
eckchem S8439) +1 uM MPI-0479605 (Selleckchem S7488) to generate
tetraploid cells. After 2 h, DMSO or 1 uM palbociclib (Selleckhem S1579)
were added to the cell culture medium for 16 h. Cells were then fixed
in G1 (T,) or washed five times using PBS and released in S phase and
fixed after 10 h (T,,). The immunofluorescence protocol is described
inthe corresponding section.

pCMVHA E2F1was a gift from K. Helin* (Addgene plasmid 24225).

Western blot

For a whole-cell extract, cells were lysed in 8 M urea, 50 mM Tris HCI,
pH7.5and 150 mM (3-mercaptoethanol (Bio-Rad 161-0710), sonicated
and heated at 95 °C for 10 min. For chromatin-bound fractions, cells
were prepared using the Subcellular Protein Fractionation Kit for Cul-
tured Cells (ThermoFisher Scientific 78840), according to the manu-
facturer’sinstructions. Then, samples (equivalent of 2 x 10° cells) were
subjected to electrophoresisin NUPAGE Novex 4-12% Bis-Tris pre-cast
gels (Life Technologies NP0321). The same number of cells (see ‘FACS
sorting of diploid and tetraploid cells’) were loaded for diploid and
tetraploid conditions, allowing us to compare one diploid cell with



onetetraploid cell. Protein fractions from the gel were electrophoreti-
cally transferred to PYDF membranes (PVDF transfer membrane; GE
Healthcare RPN303F). After 1 h saturation in PBS containing 5% dry
non-fat milk and 0.5% Tween 20, the membranes were incubated for
1hwith a primary antibody diluted in PBS containing 5% dry non-fat
milk and 0.5% Tween 20. After three 10-min washes with PBS contain-
ing 0.5% Tween 20, the membranes were incubated for 45 min with a
1:2,500 dilution of peroxidase-conjugated antibody. Membranes were
then washed three times with PBS containing 0.5% Tween 20, and the
reaction was developed according to the manufacturer’s specifications
using ECL reagent (SuperSignal West Pico Chemiluminescent Substrate;
Thermo Scientific 34080).

Thebackground-adjusted volume intensity was calculated and nor-
malized usingaH2B signal (H2B was used as areadout of DNA content)
foreach protein, using Image Lab software version 6.0.1, Bio-Rad Labo-
ratories. Allthe original uncroppedblots (gel source data) are presented
inSupplementary Fig. 1.

Primary and secondary antibodies were used at the following concen-
trations. Mouse anti-a-tubulin (1:5,000; Sigma T9026, RRID AB477593),
mouse anti-CDC45 (1:100; Santa Cruz Biotechnology sc-55569, RRID AB
831146), rabbit anti-PCNA (1:500; Santa Cruz sc56, RRID AB 628110),
rabbit anti-actin (1:2,000; Sigma-Aldrich A5060, RRID AB 476738),
mouse anti-H2B (1:1,000; Santa Cruz Biotechnology sc-515808),
mouse anti-ORC1(1:100; Santa Cruz Biotechnology sc-398734), mouse
anti-MCM2 (1:500; BD Biosciences 610701, RRID AB 398024), mouse
anti-E2F1(1:2,000; Santa Cruz sc251, RRID AB 627476), mouse anti-CDC6
(1:500; Santa Cruzsc-9964, RRID AB 627236), rabbit anti-CDT1 (1:500;
Cell Signaling 8064S, RRID AB 10896851), rabbit anti-treslin (1:500;
Betyl A303-472A, RRID AB 10953949), goat anti-rabbit IgG (H+L)
Cross-Adsorbed Secondary Antibody, HRP (1:2,500; ThermoFisher
G21234, RRID AB 2536530), Peroxidase AffiniPure goat anti-mouse
IgG (H+L) (1:2500; Jackson ImmunoResearch 115-035-003, RRID AB
10015289).

3D reconstruction and analysis

3D videos (see ‘Time-lapse microscopy’) were imported into Imaris soft-
ware v.9.6.0 (Bitplane, RRID SCR 007370). For chosen cells, the module
‘Spot tracking’ of Imaris v.9.6.0 was used to detect the foci, as spots of
diameter 0.5 pminthexy-directionand 1pmin z-direction (modelling
PSF elongation). Because the volume of the foci changes in time, the
option ‘Enable growing regions’ was used. In each video, the threshold
was chosen onthebrightest frame (to detect amaximum of the correct
spots) and then applied to the whole video. For each cell, at each time
point, thenumber of spots and volumes were recorded. To determine
DNA replication timing, we quantified the signal of PCNA fluorescence
intensity in the nucleus. This replication timing was characterized
independently of any particular behaviour of PCNA. As soon as PCNA
fluorescence intensity was detected in the nucleus, ¢t = O (beginning of
S phase) was defined, and when PCNA fluorescence intensity was not
detected anymore the last time point was defined (end of S phase). For
each condition, atleast ten cells (Supplementary Data1) were studied
and the statistics from Imaris v.9.6.0 were averaged at each time point
usinga MATLAB script.

Molecular combing

Tetraploid HCT116 were generated by cytokinesis inhibition using
0.75 uMdihydrocytochalasin D (DCD, inhibitor of actin polymerization,
Sigma-Aldrich D1641) for 18 h overnight. Afterwards, the cells were
washed 3 times with PBS and cultured in DMEM supplemented with
10% FBS and 1% penicillin-streptomycin for additional 20 h. Tetraploid
RPE-1and BJ cells were generated by mitotic slippage or endoreplication
(see‘Induction of tetraploidy in humancell lines’). Then, the cells were
washed three times with PBS and cultured in DMEM supplemented with
10% FBS and 1% penicillin-streptomycin for an additional 20 h. For each
method, we determined that the proportion of tetraploid cells in the

treated population is about 40-60%. Due to the presence of diploid
cellsinthetreated population, the consequences of tetraploidization
onreplication fork speed, fork asymmetry and IOD are most probably
underestimated.

Diploid controls and the tetraploid-enriched population were
then pulse-labelled with 0.1 mM CIdU and 0.1 mM IdU for 30 min and
100,000-300,000 cells per condition were collected for further
analysis. The DNA was extracted from cells and prepped following
the manufacturer’s instructions using the FiberPrep DNA Extraction
Kit (Genomic Vision). Subsequently, the prepped DNA was stretched
onto coated glass coverslips (CombiCoverslips, Genomic Vision) by
using the FiberComb Molecular Combing System (Genomic Vision).
The labelling was performed with antibodies against ssDNA, IdU and
CldU using the Replication Combing Assay (RCA) (Genomic Vision).
The imaging of the prepared cover slips was carried out by Genomic
Vision and analysed using the FiberStudio 2.0.1 Analysis Software by
Genomic Vision. Replication speed was determined by measuring the
combined length of the CIdU and IdU tracks. Fork asymmetry was deter-
mined by measuring symmetry of the CldU and IdU incorporation by
the forks (the length of the first track (CIdU) is compared to the length
ofthe second track (IdU)). 10D was determined by measuring distance
between two origins on the same fibres.

Antibodies were used at the following concentrations. Rabbit
anti-ssDNA (1:5; IBL International 18731, RRID AB 494649), rat anti-CldU
(1:10; Abcam Ab6326, RRID AB 2313786), mouse anti-IdU (1:10; BD Bio-
sciences 555627, RRID AB 10015222), mouse Alexa Fluor 647 donkey
(1:25; Biozol JIM-715-605-151), rat Alexa Fluor 594 donkey (1:25; Bio-
zol JIM-712-585-153), rabbit Brilliant Violet 480 donkey (1:25; Jackson
Immuno Research 711-685-152, RRID AB 2651109).

Quantitative phase imaging and measurements

Cells were plated on glass-bottom dishes coated with 50 pg ml™
fibronectin for1h and rinsed, and trypsinized cells were plated at a
concentration of 1.5 x10° cells per ml. The cells used for the experiments
were seeded in T-25 dishes at a concentration of 0.7 x 10 cells per ml
2 days before the actual experiment. Onthe day of the experiment, the
cellswere detached with EDTA (versene), and plated ata concentration
of 1.5 x10° cells per ml. Forinducing tetraploidy, cells were treated with
2 ug ml™ doxycycline (Sigma Aldrich D3447) for 2 h. Then, 500 pM auxin
(Sigma Aldrich 15148) + 3 uM asunaprevir (Selleckchem S4935) was
added to the cell culture medium for at least 4 h. The cells were then
imaged for 35 hevery 20 mintotrack themthroughout their cell cycle.

The cell cycle state was indicated by the FUCCI system; G1 cells
express Cdt1-RFP while S/G2 cells express geminin—-GFP and mitosis
wasindicated by the nuclear envelope break down with geminin being
present through the cells*2. To quantify the fluorescence of geminin
inthe nucleus, first a background subtraction was performed on the
images. A region of interest (ROI) was used to define an area contain-
ing the background fluorescence inthe image. Anaverage value of the
ROl was thensubtracted fromall the frames. Subsequently, aROl was
drawn as close as possible to the cell, and then the mean gray value
was measured across all the frames. This helped identify the frames
of birth and G1/S transition during the cell cycle.

A detailed protocol for the mass measurement with phasics camera
isavailable inrefs.**** Images were acquired by a Phasics camera every
20 minfor 35 hforthe durationof the experiment. To obtain thereference
image, 32 empty fields were acquired onthe dish and amedianimage was
calculated. Thisreferenceimage was subtracted from the interferograms
(images acquired by phasics) by custom written MATLAB scripts to meas-
ure the optical path difference. They were then processed to calculate
the phase, intensity and phase cleaned images (the background set to
1,000 and the field cropped to remove edges). Background normaliza-
tion was performed using a gridfit method, and a watershed algorithm
was used to separate cells which came in contact with each other. Mass
was calculated by integrating the intensity of the whole cell.
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Sequencing and AneuFinder analysis

A mixed population of diploid and tetraploid RPE-1 CCNB1*® FUCCI
cells were synchronized in G1 using 1 1M palbociclib (Selleckchem
S1579) for16 h or released in S phase for 20 hin the presence of 10 pM
R0O3306 (Calbiochem 217699) in order to block cells in the subsequent
G2/M.Gland G2/Mdiploid and tetraploid cells were thenisolated using
cell sorting (see ‘FACS sorting of diploid and tetraploid cells’) and col-
lected ina 96-well plate.

Sequencing was performed using a NextSeq 500 (Illumina; up to
77 cycles; single end). The generated data were subsequently demul-
tiplexed using sample-specific barcodes and changed into fastq
files using bcl2fastq (Illumina; version 1.8.4). Reads were afterwards
aligned to the humanreference genome (GRCh38/hg38) using Bow-
tie2 (version 2.2.4; ref.*. Duplicate reads were marked with BamUtil
(version1.0.3; ref. *¢. The aligned read data (bam files) were analysed
with the copy number calling algorithm AneuFinder* (https://github.
com/ataudt/aneufinder). Following GC correction and blacklisting
of artefact-prone regions (extreme low or high coverage in control
samples), libraries were analysed using the dnacopy and edivisive
copy number calling algorithms with variable width bins (average
bin size =1 Mb; step size = 500 kb). The G1 samples were analysed
with an euploid reference*®. The G1samples were used as a reference
for the analysis of the G2/M samples (G1 diploid for G2/M diploid
and Gl polyploid for G2/M polyploid). Aneuploid libraries were not
used as areference and blacklists were constructed using the exam-
ple from Bioconductor as a guideline. The RPE-1 diploid G1 sample
(2n) was analysed with the standard version of AneuFinder (from
Bioconductor) while the other samples were analysed with the devel-
oper version of AneuFinder (from GitHub; 4n and 8n samples). The
ground ploidy for these samples was constrained between 3.5 and 4.5
(4nsamples) or between 7.5 and 8.5 (8n samples; parameters: min.
ground.ploidy and max.ground.ploidy). Results were afterwards
curated by requiring aminimum concordance of 95 % (2n sample) or
90% (4nand 8n samples) between the results of the two algorithms.
Libraries with on average less than 10 reads per chromosome copy of
each bin (2-somy: 20 reads, 3-somy: 30 reads, etc.) were discarded.
This minimum number of reads comes down to roughly 60,000 for
adiploid genome in G1 phase (2n) up to 240,000 for a polyploid
genome in G2/M phase (8n). Analysis of the B) samples showed aber-
rations (wavy patterns) that resulted in wrongly called segments
with a copy number which is either one higher or one lower than
the expected state (when euploid). The means of the read counts
(read counts of the bins) of these states were too close to the mean
of the expected state (for example, mean 5-somy too close to mean
4-somy; 4n sample; Supplementary Methods 1). When more than1
% of the genome was classified as such (for example, more than1 %
5-somy), anon-rounded version of the copy number of the state was
calculated using the mean of the expected state (ploidy of euploid
sample) as areference:

Non-rounded copy number.state =Meanstate/(mean.expected state/
copy number.expected state)

Example 5-somy (4nsample):

Non-rounded copy number.5-somy = Mean.5-somy/(Mean.4-somy/4)

This was done to quantify the distance between the two states. The
values are typically between —0.5 and +0.5 of the state under consid-
eration (for example, 5-somy; between 4.5 and 5.5), which will result
in arounded value equal to the state. The libraries with aberrations
have typically a deviation of 0.25 and more from the expected value
(Supplementary Methods1). Libraries that showed a deviation of more
than 0.25 were therefore discarded (For 5-somy; a value lower than
4.75or higher than 5.25). By applying this cut-off, we eliminated librar-
ies that clearly showed this aberration (Supplementary Methods 1)
while preserving true aneuploid libraries (Supplementary Methods 1).
This specific method was only used for the BJ samples.

GSEA with TCGA PanCancer data

GSEA was performed using GSEA software v.4.2.1**°°, The normalized
mRNA expression (Illumina HiSeq_RNASeqV2, RSEM) from pan cancer
studies were downloaded from https://www.cbioportal.org/: detailed
information about RNA sequencing experiment and tools used can
be found at the NCI's Genomic Data Commons (GDC) portal https://
gdc.cancer.gov. The ploidy status for bladder urothelial carcinoma
(156 near-diploid and 200 near-tetraploid samples), Lung adenocarci-
noma (205 near-diploid and 240 near-tetraploid samples), and ovarian
serous cystadenocarcinoma (116 near-diploid and 130 near-tetraploid
samples) were extracted from®. In addition to ranked list of genes and
ploidy status, we use gene sets derived from the GO Biological Pro-
cessontology to assess significant pathway enrichment between near
-diploid and near tetraploid tumors in GSEA tool. GSEA is a computa-
tional method that determines whether a defined set of genes shows
statistically significant concordant differences between two biological
states (for example, two distinct phenotypes), using the algorithm
based onthe calculation of an enrichmentscore (ES), the estimation of
significance level of ES (nominal Pvalue) and adjustment for multiple
hypothesis testing (ES normalization and FDR calculation)*.

Quantifications

Image analysis and quantifications were performed using Image )
software V2.1.0/1.53c, https://imagej.net/software/fiji/downloads.
To quantify the colocalizations between two signals (Extended Data
Figs.3i,m,4g,j) we calculated the Manders coefficient using the JACOP
pluginwithImage]) V2.1.0/1.53c software. We determined that the colo-
calizations between yH2AX signal and EdAU, FANCD2 or RAD51 signals
are not random using an home-made based Costes randomization on
nuclear area with Image J software. 1000 randomizations of the pixel
positions were performed for each condition (Supplementary data 2).
3D videos (Extended Data Figs. 3¢, 6¢, 9¢c, d) were corrected using the
3D correct drift plugin with Image ) V2.1.0/1.53¢ software to keep the
cell of interest at the centre of the region of interest. The nuclear area
and DAPI intensity were measured using the wand tool with ImageJ
V2.1.0/1.53c software. For the figures, images were processed on Image
JV2.1.0/1.53c software, and mounted using Affinity Designer (https://
affinity.serif.com/fr/designer/).

Statistics and reproducibility

Atleast two (n) independent experiments were carried out to generate
each dataset, and the statistical significance of differences was calcu-
lated using GraphPad Prism (RRID SCR 002798) version 7.00 for Mac
(GraphPad Software). The statistical test used for each experiment is
indicated in the figure legends. Each representative image (Figs. 2a,
¢, 3a,e,g, Kk, n,4a, Extended DataFigs. 2a, ¢, e, 1, 3a, g, 4¢, 5g, 6¢,9c¢, d,
10a) originates from a dataset composed of at least two (n) independ-
entexperiments.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Dataavailability

Source data are available at https://doi.org/10.6084/m9.figshare.
19137323.v1. Source data are provided with this paper.
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Extended DataFig.1|Characterization of RPE-1cellsupon WGD. (a,dand g)
Graphs showing the percentage of tetraploid interphase RPE-1cellsin the
indicated experimental conditions. Mean + SEM, >100 interphase cells were
analyzed fromthreeindependent experiments. (b, e and h) Graphs showing
the percentage of mono-and multinucleated RPE-1tetraploid cellsin the
indicated experimental conditions. Mean + SEM, >100 interphase cells were
analyzed fromthreeindependent experiments. (c, fand i) Graphs representing
thenuclearareaindiploid (D) and tetraploid (T) RPE-1cells. Mean + SEM, >100

interphase cells were analyzed from threeindependent experiments. (j) Graph
showing the correlation between the number of YH2AX foci and yH2AX foci
intensity indiploid (left panel, gray) and tetraploid (right panel, blue) RPE-1
cellsinduced through MS.>100 interphase cells were analyzed from three
independent experiments. (k-1) Graphs showing the number of yH2AX foci
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Extended DataFig.2|Additional methods and cell lines confirm that WGD
generates highlevels of DNA damage within thefirstinterphase. (a,cande)
Images showing diploid and tetraploid (generated asindicated) RPE-1 cells
labeled withyH2AX (red) and 3-Catenin (gray) antibodies. DNAin blue.
(b, d andf) Graphs showing the number of yH2AX fociindiploid (D) and
tetraploid (T) RPE-1.Mean + SEM, >100 interphase cells were analyzed from at
least three independent experiments. (g-h) Left- Graph showing the percentage
oftetraploidinterphase cellsin BJ (g) or HCT116 (h) cell lines. Mean + SEM, >100
interphase cellswere analyzed fromatleast threeindependent experiments.
Right-Graphrepresenting the number of YH2AX fociin diploid and tetraploid BJ
(g) or HCT116 (h) cells. Mean + SEM, >100 interphase cells were analyzed from at
least three independent experiments. (i) Graph showing the number of yH2AX

fociindiploid (gray) or tetraploid (blue) RPE-1cells treated with1uM APH or
2mMHU. Mean + SEM, >100 interphase cells were analyzed from at least three
independent experiments. (j) Cometimages from diploid (left) and tetraploid
(right) RPE-1cells. (k) Graph showing the olive momentin diploid and tetraploid
RPE-1(left) or B (right) cell lines. Mean + SEM, >100 comets were analyzed from
twoindependent experiments. (I) p5S3and tubulinlevels assessed by western
blot. Etoposide was added as a control for theincreased p53 levels. (mand o)
Graphsrepresenting the mean number of yH2AX fociperinterphase cell over
time (daysinculture) indiploid and tetraploid RPE-1cells. Mean + SEM, >100
interphase cellswere analyzed from two independent experiments. The dotted
linesindicate nuclear area. ANOVA test (one-sided) (b, d, f,g, h, i, k, mand o).
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Extended DataFig. 3 |See next page for caption.



Article

Extended DataFig.3|DNA damageis generated during the first S-phase
upon WGD. (a) 3D RPE-1spheroid low magnification (top) and insets of two
cellsshowing diploid and tetraploid nuclei (bottom) induced through MS
labeled with yH2AX (red) and B-Catenin (yellow) antibodies. DNAin blue.
(b-d) yH2AX index indiploid and tetraploid RPE-1(b), B) (c) and HCT116 (d)
spheroids. Mean + SEM, > 95 interphase cells were analyzed from at least two
independent experiments. (e-f) yH2AX fociin diploid and tetraploid RPE-1
cellsover time. (g) Left - Stills of RPE-1 cells expressing RFP-H2B and GFP-53BP1
timelapse videos. Right- 53BP1foci number in diploid and tetraploid cells.
Mean + SEM, > 40 interphase cells were analyzed from three independent
experiments. (h) 53BP1foci number in fixed diploid and tetraploid RPE-1. (i)
Cellcycledistribution of RPE-1 cellsin the indicated conditions. (j) Percentage
of RPE-1cellsin G1,Sand G2-Min theindicated conditions. Mean + SEM, >30

000 cellsfromatleast threeindependent experiments. (k) Workflow used to
analyze Glor S-phase cells. (Iand m) yH2AX foci number in diploid and
tetraploid RPE-1cellsasindicated. Experiments (and m) share the same
reference control. (n, 0) yYH2AX focinumberin diploid and tetraploid RPE-1
cellssynchronizedin Glusing 0,5 1M abemaciclib (n) or 1M K03861 (o) or
releasedin S-phase. (p) Images of yYH2AX (red) and EdU (cyan)/ PCNA (yellow)
focico-localizationin S-phasein diploid and tetraploid RPE-1cells. DNAin blue.
White squares highlight higher magnifications. (q) Percentage of replication
sites (EdU) colocalizing with yH2AX foci. Mean + SEM, >50 interphase cells
were analyzed fromatleast threeindependent experiments. For (e, f, h,1-0)
Mean + SEM, >100 interphase cells were analyzed from at least three
independent experiments. The dotted lines indicate nuclear area. ANOVA test
(one-sided) (b, c,d, e, f,g, h,j,I,m,nand o). t-test (two-sided) (q).
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Extended DataFig. 5| DNA damageinnewly born tetraploid cellsis
generatedinaDNAreplication-dependent manner. (a) yYH2AX foci number
indiploid and tetraploid RPE-1cellsreleased in S-phase +1 pM PHA.

Mean + SEM, >100 interphase cells were analyzed from at least three
independent experiments. (b-c) yH2AX foci number in diploid and tetraploid
RPE-1cells, arrested in Glusing1 pM palbociclib orreleased in S-phase +

400 nMaphidicolin (APH) (b) or 1 pM PHA (c). Mean + SEM, >100 interphase
cellswere analyzed fromatleast threeindependent experiments. (d) yH2AX
focinumberindiploid and tetraploid RPE-1cellsreleasedinS-phase+400 nM
APH.Mean + SEM, >100 interphase cells were analyzed from at least three
independent experiments. (e-f) yH2AX foci number in diploid and tetraploid
BJ (e) or HCT116 (f) cells, released in S-phase + 400 nM APH. Mean + SEM, >100

interphase cells were analyzed from at least threeindependent experiments.
(g) Images showing EdU * tetraploid RPE-1cells. yH2AX antibodiesinred,
EdUinyellow and DNA inblue. (h) yH2AX foci number relative to EdU intensity
inRPE-1tetraploid cellsreleased in S-phase untreated (left panel) or treated
(right panel) with 400 nM aphidicolin (APH). Mean + SEM, >100 interphase cells
were analyzed fromatleast threeindependent experiments. (i,j) YH2AX foci
number indiploid and tetraploid cells (i, blue) or EnR (j, red), synchronized in
Glusing1pM palbociclib or released in S-phase tnucleosides at two different
concentrations (methods). Mean + SEM, >100 interphase cells were analyzed
fromatleastthreeindependent experiments. The dotted linesindicate the
nuclear area. ANOVA test (one-sided) (a, b, ¢, d, e, f,iand j). Pearson test
(two-sided) (h).
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Extended DataFig. 6| DNAreplication dynamicsisimpaired during the
first S-phase intetraploid cells. (a) Percentage of cells per cell cycle phase in
RPE-1(dark gray) and RPE-1PCNA"°™ cell lines (light gray). (b) Workflow
depicting methods used to process and analyze DNA replication by time-lapse.
(c) Stills of time lapse movies of diploid and tetraploid RPE-1 PCNA®"™™° cells.
Activereplicationsites are visualized using PCNA chromobodies (in cyan) and
reconstructed using /marisin 3D (inred). (d) Total number of active replication
sitesinS-phaseindiploid and tetraploid RPE-1cells. Mean + SEM, >20 S-phase
cellswereanalyzed fromthree independent experiments. (e) EQU foci number
relative to nuclearareain diploid and tetraploid RPE-1cellsin mid (T5) or late
(T9) S-phase.Mean + SEM, >100 interphase cells were analyzed from at least
three independent experiments. (f) Volume of active replication sites (in pm?)
for diploid and tetraploid RPE-1PCNA<"™ cells. Mean + SEM, at least 1000

activereplicationsites were analyzed from three independent experiments.
(g) Meannumber of active replication sites over time in diploid and tetraploid
RPE-1cells.>20 S-phase cells were analyzed from two independent
experiments (see Supplementary Data1). (h) Ratio of early/late S-phase
durationindiploid or tetraploid RPE-1 PCNA®"™ cells + extended G1 duration.
Mean + SEM, >70 cells from two independent experiments were analyzed.

(i) S-phase durationin diploid or tetraploid RPE-1 PCNA"™™ cells + extended G1
duration. Mean + SEM, > 70 cells from two independent experiments were
analyzed. (j) Replication fork speed in diploid and tetraploid HCT116 cells.
Mean + SEM, >250 replication forks were analyzed. (k) Proportion of fibers
withtheindicated inter-origin distance (kb) in diploid or tetraploid HCT116
cells.Mean + SEM, > 75 replication origins were analyzed. ANOVA test
(one-sided) (aande). t-test (two-sided) (d, f, h, i,jand k).
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Extended DataFig.9|Gllengthening restores DNA replication dynamics
andresultsinadecreaseinthelevels of DNA damageintetraploid cells.

(a, b) RPE-1cell cycle profile and percentage of cellsin the indicated conditions.

Mean + SEM, >30 000 cells from at least three independent experiments.

(c) RPEFUCCIindiploid and tetraploid cells treated with 160 nM palbociclib.
(d) Stills of time lapse videos of diploid and tetraploid RPE-1 PCNA"™ cells
withextended G1. Activereplication sites visualized using PCNA chromobodies
(cyan) and reconstructed using /marisin 3D (red). (e) Active replication sites
average number over time with extended G1. Mean + SEM, >11S-phase cells
analyzed, twoindependent experiments (see Supplementary Datal). (f) Active
replicationsites total number with extended G1. Mean + SEM, >11S-phase cells
were analyzed, twoindependent experiments. (g) Active replication sites
volume (um3) with extended G1. Mean + SEM, >1000 Active replication sites
analyzed, threeindependent experiments. (h) EAU foci number relative to

nuclear areawithextended G1. Mean + SEM, >100 interphase cells, at least
threeindependent experiments. (i) Ratio of early/late S phase duration +
extended G1. Mean + SEM, >70 cells, two independent experiments. (j) S-phase
duration +extended G1. Mean + SEM, > 70 cells, two independent experiments.
(k) H2B levels in chromatinbound extracts. Mean + SEM, four independent
experiments. (land m) FANCD2 or 53BP1foci numberin cells synchronized in
GlorreleasedinS-phase + extended G1. (n-p) yH2AX foci numberin cells
synchronized in Glusing the indicated treatments or released in S-phase +
extended G1. (qand r) yH2AX foci number in diploid and tetraploid B (q) or
HCT116 (r) cells synchronized in Gl or released in S-phase + extended G1.

(I-r) Mean + SEM, >100 interphase cells were analyzed, at least three
independent experiments. The dotted lines indicate the nuclear area. ANOVA
test (one-sided) (b, h,i,j,1,m,n, 0, p, qandr). T-test (two-sided) (f, gand k).
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Extended DataFig.10 | E2F10E decreases DNA damagelevelsin tetraploid
human celllines and in DrosophilaNBs. (a) Western blot documenting the
levels of E2F1and tubulin from cell lysates obtained from diploid RPE-1 cells +
E2F1-HA over-expression (OE). (b—c) Graphsrepresenting the number of yH2AX
fociperinterphase cellin diploid (D) and tetraploid (T) BJ (b) or HCT116 (c) cells
releasedinS-phase + E2F10E. Mean + SEM, >100 interphase cells were analyzed
fromatleast threeindependentexperiments. (d) Graph showing wild type
salivary gland cell (in gray), diploid (ingray) and polyploid NBs (in yellow) area
(inpum?). Mean + SEM, >60 cells were analyzed per condition. (¢) Graph showing
YH2Avindexesindiploid (ingray) or polyploid NBs (in yellow) induced through

CF by depleting Pavarotti.Mean + SEM, >40 cells were analyzed per condition.
(f) Graph showing the cellarea (um?) of diploid (gray) and polyploid NBs
(yellow) + E2F10E. Mean + SEM, >30 cells were analyzed per condition.

(g) Graphrepresenting the yH2Avindexin polyploid NBs + 10puM nucleosides.
Mean + SEM, >28 cells were analyzed per condition. (h) Gene set enrichment
analysis from GSEA. Plots show significant enrichment of DNA repair genesin
near-tetraploid tumors when compared to near-diploid tumorsin lung, bladder
and ovarian cancers (TCGA pan cancer dataset). (h) p value from false discovery
rate (FDR; methods). ANOVA test (one-sided) (b, ¢, d, f).

t-test (two-sided) (eand g).
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Data collection Flow cytometry acquisitions were performed using BD FACSDiva Software Version 8.0.1
Microscopy acquisitions were performed using Metamorph 7.10.1 software (Molecular Devices, USA)

Data analysis Image J software V2.1.0/1.53c was used to analyze most of the data. Custom made plugins were used to quantify DNA damage in cells and in
tissues. After manual segmentation of the nuclei, a thresholding operation was used to determine the percentage of gamma H2Av positive
pixels (coverage) and their average intensity in a single z plane in the center of the nucleus. Coverage and intensity were multiplied to obtain
the gamma H2Av. For human cells gamma H2AX signals were measured using z-projection stacks after thresholding. Both Fl and the
percentage of nuclear coverage was obtained for each nucleus. Gamma H2AX index was obtained multiplying Fl by the coverage. Statistical
tests were performed using GraphPad Prism version 7.00 for Mac, GraphPad Software. Quantitative 4D live imaging of endogenous DNA
replication, 3D reconstruction and analysis were done using Imaris Software v.9.6.0. Flow cytometry data were analyzed using FlowJo
software 10.6.0
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size At least 100 interphase cells were analyzed to determine DNA damage levels. The size of the sample was chosen to offer sufficient statistical
power.

Data exclusions | We did not exclude any data,

Replication All experiments were considered as replicates,

Randomization  Randomization was not relevant in this study,

Blinding We tried to analyze DNA damage and quantify the phenotypes and behaviors deseribed in this article in a blind manner initially. However, this
was not possible as tetraploid cells can be easily distinguished from diploid cells. In any case, in terms of immunostaining experiments, the

distinction between both cell types was solely based on the characteristics mentioned in the paper- cell and nuclear size and centrosome
number.

Reporting for specific materials, systems and methods

‘We require information from authors about some types of materials, experimental systemns and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if 2 list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
nfa | Involved in the study n/fa | Involved in the study
(1|4 Antibodies BJ|[] chip-seq
[ 1|B<] eukarystic cell lines L1164 Flow cytometry
B<]|[] Palaesntalagy and archasalogy B4|[] MRibased neuroimaging
[1|[¥] Animalsand other organisms
B<]|[_] Human research participants
B[] clinical data
B<l|[] pual use research of concern
Antibodies
Antibodies used Fer Immuncfluorescence:

Primary and secondary antibodies were used at the following concentrations: Guinea pig anti CEP192 antibody (1/500; Basto lab)s0,
rabbit anti-beta catenin (1/250; C2206 from Sigma-Aldrich, RRID:AB_476831), mouse anti-gamma H2AX phospho 5139 (1/1000;
ab22551 from Abcam, RRID:AB_447150), mouse anti-XRCC1 (1/500; ab1838 from Abcam, RRID:AB_302636), rabbit anti-Rad51
[1/500; ab133534 from Abcarn, RRID:AB_2722613], mouse anti-KUSO [1/200; MAS-12933 from ThermoFisher, RRID:AB_10983840),
rabbit anti-FANCDZ (1,/150; NB100-18255 from Novushio, RRID:AB_1108397), mouse anti-538P1 (1/250; MAB3802 from Millipore,
RRID:AB_2206767), rabbit anti-EH2Av (1,/500; 600-401-914 from Rockland; RRID: AB_11183655), Alexa Fluor® 647 Phalloidin {1/250;
A22787 from ThermoFisher Scientific, RRID:AB_2620155), goat antl-Rabbit Ig5 (H#L) Highly Cross-Adsorbed Secondary Antibody,
Alexa Fluor 647 (1/250; A21245 from ThermoFisher, RRID:AB_2535813), Goat anti-Guinea Pig |gG (H+L) Highly Cross-Adsorbed
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Validation

Secondary Antibody, Alexa Fluor 488 |1/250; A11073 from ThermoFisher, RRID:AB_253411), Goat antl-Mouse IgG {H+L) Cross-
Adsorbed Secondary Antibody, Alexa Fluor 546 [1/250, A11003 from ThermoFisher, RRID:AB_2534071), Goat anti-Rabbit g5 {H+L)
Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 546 (1/250; A-11035 from Therme Fisher Scientific, RRID:AB_2534003).

For Western Blot:

- Primary and secondary antibodies were used at the following concentrations

Mause anti-Btubulin [1/5000; T9026 from Sigma, RRID:AB_477593), mouse anti- COC45 (1/100; sc-55569 from Santa Cruz
Biotechnology, RRID:AB_831146), rabbit anti-PCNA (1/500; sc56 from Santa Cruz, RRID:AB_528110), rabbit anti-Actin {1/2000; AS060
from Sigma-aldrich, RRID:AE_476738), mouse anti-H2B {1,/1000; sc-515808 from Santa Cruz Biotechnology), mouse anti-ORC1
[1/100; 2c-358734 fram Santa Cruz Biotechnology), mouse anti-hCAM2 [1,/500; 610701 from BD Biosciences, RRID:AB_398024),
mause anti-E2F1 {1/2000; 5c251 from Santa Cruz, RRID:AB_627476), mouse anti-CDCE [1/500; sc-9964 from Santa Cruz,
RRID:AB_627236), rabbit anti-COT1 |1/500; BOB45 from Cell Signaling, RRID:AR_10B96851), rabbit anti-Treslin [1/500; A303-4724
from Betyl, RRID:AB_10553545), Goat anti-Rabbit 1gG [H+L) Cross-Adsorbed Secondary Antibody, HRP [1/2500; G21234 from
ThermaoFisher, RRIDGAB_2536530), Peroidase AffiniPure Goat Anti-Mouse IgG (H+L) (1/2500; 115-035-003 from Jackson
ImmunoRessarch, RRID:AB_10015289),

For DNA combing:

Antibodies were used at the following concentrations;

Rabbit anti ssDMNA (1/5; 18731 from IBL International, RRID:AB_494645), Rat anti CldU [1/10; Ab&326 from Abcam,
RRID:ABR_2313786), Mouse anti 1dU [1/10; 555627 from BD Biosciences, RRID:AB_10015222), mouse Alexa Fluor 547 Donkey {1/25;
JIM-715-605-151 from Biozol], Rat Alexa Fluor 594 Donkey (1/25; JIM-712-585-153 from Biozod), Rabbit Brilllant Violet 480 Donkey
[1/25; 711-685-152 from Jakeson Immuno Research, RRID:AB_2651109).

Commercial antibodies were initially considered using the website information and by testing conditions that should increase or
decrease the signals expected, For example- anti-gamma H2A.X phospho 5139 signals should be increased upon the generation of
DMA damage with external agents such as Aphidicoline, which we used. The single non- commercial antibody used was CEP192
antibody [1/500; Basto lab) [Vargas et al,, 2019, Current Biology, PMID: 31495584; previously characterised with CEF192 depletion
and by western blot an the size of the expected band). All secondary antibodies have been tested on multiple occasions in different
projects from the lab. Different combinations of secondary antibodies have already been tested.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Authentication

HTERT RPE-1 cells (ATCC Catif CRL-4D00, RRID:CVCL_4388; HEK293 cells [ATCC Caté CRL-1573, RRID:CVCL_DO45); 81 cells
[ATCC Cat# CRL-4001, RRID:CVICL_6573) and HCT116 cells (ATCC Caté CCL-247, RRID:CVCL_0291)

Cells were authenticated using the Institut Curle genotype validation.

Mycoplasma contamination Bl cells were routinely tested for Mycoplasm contamination. All cells used in this paper were mycoplasm-free,

Commonly misidentified lines e did nat use any mis-identified cell line.

{See |CLAC register)

Animals and other organisms

Palicy Information about studies involving animals; ARRIVE guldelines recommended for reporting animal research

Laboratory animals

Wild animals
Field-collected samples

Ethics owersight

Drosophila melanogaster- w background,
Mutanits analyzed ware L3 male with matched controls,

LIAS EZF1 OF: M{UAS-E2f1 ORFIZH-BEFh

sgh mutant: y w sqh1/FM7

sgh mutant + wrmGald: v w sgh 1/FM 7, WornGald/Cyo
PAV RMAI: v1 w1; P{TRIP.HMIOZ2232 jattPa0

This study did not involeed wild animals,
This study did nat involved samples collected in the field.

Ethical approval is not required for work with Drosophila melanogaster {invertebrate animal- fruit fly). European research guidelines
in terms of disposal and transgenic reporting were followed,

Note that full informaticn on the approval of the study protocol must also be provided in the manuscript.
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

& A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software
Cell population abundance

Gating strategy

A mix of diploid and tetraploid cells (see “generation of tetraploid cells” section) were incubated with 2ug/ml Hoescht (94403
from Sigma Aldrich) for 1 hour at 37°C, 5% CO2. Then, a single cell suspension was generated. Cells were washed using PBS
1X, the supernatant was removed and cells were resuspended in cold cell culture medium at 1x107 cell per ml and kept at 4°
C during all the experiment. FACS sorting was performed using Sony SH800 FACS (BD FACSDiva Software Version 8.0.1).

Sony SH800 and BD LSRII

BD FACSDiva Software Version 8.0.1

Post-sort analysis was performed to determine the purity of the sorted populations (see extended data Fig 8d-e)
Compensation was performed using the appropriate negative control samples. Experimental samples were then recorded
and sorted using gating tools to select the populations of interest. RFP+ / GFP- negative cells (G1 cells) were first selected.

Then, in this population, DNA content was used to segregate diploid (2n) and tetraploid (4n) G1 cells. Once gates have been
determined, diploid and tetraploid G1 cells were sorted into external collection tubes.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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